Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = pumped heat pipe cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9337 KiB  
Article
Evaporative Condensation Air-Conditioning Unit with Microchannel Heat Exchanger: An Experimental Study
by Junjie Chu, Xiang Huang, Hongxu Chu, Liu Yang, Weihua Lv, Xing Tang and Jinxing Tian
Energies 2025, 18(9), 2356; https://doi.org/10.3390/en18092356 - 5 May 2025
Viewed by 507
Abstract
A new evaporative condensation refrigerant pump heat pipe air-conditioning unit based on a microchannel heat pipe heat exchanger is proposed. Performance experiments were conducted on the unit, and the experimental results show that the cooling capacity of the unit in the dry, wet, [...] Read more.
A new evaporative condensation refrigerant pump heat pipe air-conditioning unit based on a microchannel heat pipe heat exchanger is proposed. Performance experiments were conducted on the unit, and the experimental results show that the cooling capacity of the unit in the dry, wet, and mixed modes can reach 112.1, 105.8, and 115.4 kW, respectively, the optimal airflow ratio of the secondary/primary airflow is 2.2, 1.8, and 1.8, respectively, and the EER decreases with increasing airflow ratio. With increasing dry- and wet-bulb temperatures of the secondary-side inlet air, the cooling capacity and energy efficiency ratio of the unit decrease, and the energy efficiency ratio in the wet mode is higher than that in the dry mode, which can prolong the operating hours of the wet mode within the operating temperature range of the dry mode and improve the energy efficiency of the unit. A new calculation method for the refrigerant charge is proposed, and the optimal refrigerant charge is 32 kg based on the experimental results, which agrees with the theoretical calculation results. Full article
(This article belongs to the Special Issue Advanced Heating and Cooling Technologies for Sustainable Buildings)
Show Figures

Figure 1

19 pages, 18181 KiB  
Article
Modeling and Design Aspects of Shallow Geothermal Energy Piles—A Case Study on Large Commercial Building Complex in Zagreb, Croatia
by Marija Macenić and Tomislav Kurevija
Geosciences 2025, 15(3), 90; https://doi.org/10.3390/geosciences15030090 - 1 Mar 2025
Viewed by 822
Abstract
With ambitious targets set by the EU for the reduction of emissions from the energy sector by 2030, there is a need to design and develop more building projects using renewable energy sources. Even though in Europe, heating and cooling share from renewable [...] Read more.
With ambitious targets set by the EU for the reduction of emissions from the energy sector by 2030, there is a need to design and develop more building projects using renewable energy sources. Even though in Europe, heating and cooling share from renewable resources is increasing, and in 2021, the total share in this sector in Croatia was at 38%, the share of heat production by heat pumps is rather low. One possibility to increase this share is to install energy piles when constructing a building, which is becoming an increasingly common practice. This case study focuses on such a system designed for a large, non-residential building in Zagreb, Croatia. The complex was designed as 13 separate dilatations, with central heating and cooling of all facilities, covered by 260 energy piles (130 pairs in serial connection), with a length of the polyethylene pipe of 20 m in a double loop inserted within the pile. The thermo-technical system was designed as a bivalent parallel system, with natural gas covering peak heating loads and a dry cooler covering cooling peak loads when the loads cannot be covered only by ground-source heat pumps. In the parallel bivalent system, the geothermal source will work with a much higher number of working hours at full load than is the case for geothermal systems that are dimensioned to peak consumption. Therefore, the thermal response test was conducted on two energy piles, connected in series, to obtain thermogeological parameters and determine the heat extraction and rejection rates. The established steady-state heat rate defines the long-term ability to extract heat energy during constant thermal load, with the inlet water temperature from the pile completely stabilized, i.e., no significant further sub-cooling is achieved in the function of the geothermal field operation time. Considering the heating and cooling loads of the building, modeling of the system was performed in such a manner that it utilized renewable energy as much as possible by finding a bivalent point where the geothermal system works efficiently. It was concluded that the optimal use of the geothermal field covers total heating needs and 70% for cooling, with dry coolers covering the remaining 30%. Additionally, based on the measured thermogeological parameters, simulations of the thermal response test were conducted to determine heat extraction and rejection rates for energy piles with various geometrical parameters of the heat exchanger pipe and fluid flow variations. Full article
Show Figures

Figure 1

33 pages, 15689 KiB  
Article
Analysis of the Heat Transfer Performance of a Buried Pipe in the Heating Season Based on Field Testing
by Yongjie Ma, Jingyong Wang, Fuhang Hu, Echuan Yan, Yu Zhang, Yibin Huang, Hao Deng, Xuefeng Gao, Jianguo Kang, Haoxin Shi, Xin Zhang, Jianqiao Zheng and Jixiang Guo
Energies 2024, 17(21), 5466; https://doi.org/10.3390/en17215466 - 31 Oct 2024
Cited by 1 | Viewed by 1312
Abstract
Ground source heat pump (GSHP) systems have been widely used in the field of shallow geothermal heating and cooling because of their high thermal efficiency and environmental friendliness. A borehole heat exchanger (BHE) is the key part of a ground source heat pump [...] Read more.
Ground source heat pump (GSHP) systems have been widely used in the field of shallow geothermal heating and cooling because of their high thermal efficiency and environmental friendliness. A borehole heat exchanger (BHE) is the key part of a ground source heat pump system, and its performance and investment cost have a direct and significant impact on the performance and cost of the whole system. The ground temperature gradient, air temperature, seepage flow rate, and injection flow rate affect the heat exchange performance of BHEs, but most of the research on BHEs lacks field test verification. Therefore, this study relied on the results of a field thermal response test (TRT) based on a distributed optical fiber temperature sensor (DOFTS) and site hydrological, geological, and geothermal data to establish a corrected numerical model of buried pipe heat transfer and carry out the heat transfer performance analysis of a buried pipe in the heating season. The results showed that the ground temperature gradient of the test site was about 3.0 °C/100 m, and the temperature of the constant-temperature layer was about 9.17 °C. Increasing the air temperature could improve the heat transfer performance. The temperature of the surrounding rock and soil mass of the single pipe spread uniformly, and the closer it was to the buried pipe, the lower the temperature. When there is groundwater seepage, the seepage carries the cold energy generated by a buried pipe’s heat transfer through heat convection to form a plume zone, which can effectively alleviate the phenomenon of cold accumulation. With an increase in seepage velocity, the heat transfer of the buried pipe increases nonlinearly. The heat transfer performance can be improved by appropriately reducing the temperature and velocity of the injected fluid. Selecting a backfill material with higher thermal conductivity than the ground body can improve the heat transfer performance. These research results can provide support for the optimization of the heat transfer performance of a buried tube heat exchanger. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

18 pages, 3954 KiB  
Article
Investigation of a Gas-Pump-Driven Loop Heat Pipe
by Yangyiming Rong, Weitao Su, Shuai Wang, Bowen Du, Zujun Mao and Shaozhi Zhang
Energies 2024, 17(21), 5283; https://doi.org/10.3390/en17215283 - 24 Oct 2024
Viewed by 674
Abstract
A loop heat pipe (LHP) is an efficient method of conserving energy in data center cooling applications. In scenarios where the installation is constrained by height or distance limitations, pump driving is needed. This paper examines the performance changes induced by a gas [...] Read more.
A loop heat pipe (LHP) is an efficient method of conserving energy in data center cooling applications. In scenarios where the installation is constrained by height or distance limitations, pump driving is needed. This paper examines the performance changes induced by a gas pump both experimentally and theoretically. An adjustable, oil-free linear compressor is utilized as a gas pump. The evaporator is a finned-tube heat exchanger and the condenser is a water-cooled plate heat exchanger. When the filling ratio of the working fluid is insufficient, employing a gas pump can enhance the heat transfer performance. However, when the filling ratio of the working fluid is sufficient, while the gas pump can increase the flowrate of the working fluid, the heat transfer rate (HTR) does not change significantly. In fact, it may reduce the energy efficiency ratio of the heat pipe. Infrared thermography has proven to be an efficient tool for estimating the area ratio of different zones within the evaporator, which is crucial for the output regulation of the compressor. The area ratio of the two-phase zone is nearly linear to the HTR. Through the establishment of a physical model of a gas-pump-driven loop heat pipe (GPLHP), the impacts of the LHP size and gas pump operation on the heat transfer performance are analyzed. It is found that the gas pump can extend the application range of the LHP, although it has a minimal impact on the maximum HTR. How to select a gas pump for an LHP is discussed. Full article
Show Figures

Figure 1

28 pages, 2842 KiB  
Review
Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System
by Khaled Salhein, C. J. Kobus, Mohamed Zohdy, Ahmed M. Annekaa, Edrees Yahya Alhawsawi and Sabriya Alghennai Salheen
Energies 2024, 17(19), 5003; https://doi.org/10.3390/en17195003 - 8 Oct 2024
Cited by 9 | Viewed by 3384
Abstract
Ground heat pump systems (GHPSs) are esteemed for their high efficiency within renewable energy technologies, providing effective solutions for heating and cooling requirements. These GHPSs operate by utilizing the relatively constant temperature of the Earth’s subsurface as a thermal source or sink. This [...] Read more.
Ground heat pump systems (GHPSs) are esteemed for their high efficiency within renewable energy technologies, providing effective solutions for heating and cooling requirements. These GHPSs operate by utilizing the relatively constant temperature of the Earth’s subsurface as a thermal source or sink. This feature allows them to perform greater energy transfer than traditional heating and cooling systems (i.e., heating, ventilation, and air conditioning (HVAC)). The GHPSs represent a sustainable and cost-effective temperature-regulating solution in diverse applications. The ground heat exchanger (GHE) technology is well known, with extensive research and development conducted in recent decades significantly advancing its applications. Improving GHE performance factors is vital for enhancing heat transfer efficiency and overall GHPS performance. Therefore, this paper provides a comprehensive review of research on various factors affecting GHE performance, such as soil thermal properties, backfill material properties, borehole depth, spacing, U-tube pipe properties, and heat carrier fluid type and velocity. It also discusses their impact on heat transfer efficiency and proposes optimal solutions for improving GHE performance. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

27 pages, 12103 KiB  
Article
Investigation of the Optimal Operation Method of the Heat Recovery Ground Source Heat Pump System Installed in an Actual Building and Evaluation of Energy Saving Effect
by Takao Katsura, Yasushi Nakamura, Tomoya Ohara, Ken Kinouchi and Katsunori Nagano
Energies 2024, 17(14), 3558; https://doi.org/10.3390/en17143558 - 19 Jul 2024
Viewed by 907
Abstract
In this paper, a heat recovery ground source heat pump (HR-GSHP) system, in which the primary pipes of the GSHP for air conditioning and the GSHP for hot water are connected to ground heat exchangers (GHEs) and each GSHP is operated simultaneously or [...] Read more.
In this paper, a heat recovery ground source heat pump (HR-GSHP) system, in which the primary pipes of the GSHP for air conditioning and the GSHP for hot water are connected to ground heat exchangers (GHEs) and each GSHP is operated simultaneously or within a short period of time, was installed in a dormitory building on a trial basis. Then, the optimal operation method to minimize the energy consumption of the system was investigated. The operating period of the GSHP for HW was changed and simulations were conducted to determine the operating period with the lowest energy consumption, which was 8 months from April to November. Furthermore, the HR-GSHP system was operated for 8 years from 2012 to 2019, and actual measurements were carried out to verify the system performance and the energy saving effect in optimal operation. In actual operation, it was confirmed that the minimum temperature was about 10 °C or higher even when the GSHP for HW was operated year-round. Therefore, the GSHP for HW was operated year-round after the third year of operation. It was confirmed that the operation of the GSHP for HW in summer, especially in August and September when the cooling load is large, can improve the system’s efficiency by the effect of recovering cooling exhaust heat. In the eighth year of operation, when the GSHP for HW was operated most during the summer season, the system was able to reduce power consumption for air conditioning and hot water supply by approximately 17%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 2505 KiB  
Article
TRNSYS Simulation of a Bi-Functional Solar-Thermal-Energy-Storage-Assisted Heat Pump System
by Mingzhen Wang, Eric Hu and Lei Chen
Energies 2024, 17(14), 3376; https://doi.org/10.3390/en17143376 - 10 Jul 2024
Cited by 3 | Viewed by 1602
Abstract
The escalating energy demands in buildings, particularly for heating and cooling demands met by heat pumps, have placed a growing stress on energy resources. The bi-functional thermal diode tank (BTDT) is proposed as thermal energy storage to improve the heating and cooling performances [...] Read more.
The escalating energy demands in buildings, particularly for heating and cooling demands met by heat pumps, have placed a growing stress on energy resources. The bi-functional thermal diode tank (BTDT) is proposed as thermal energy storage to improve the heating and cooling performances of heat pumps in both summer and winter. The BTDT is an insulated water tank with a gravity heat pipe (GHP), which can harvest and store heat passively from sun radiation and the external environment during the daytime. In summer, it harvests and stores cold energy from the air and night sky during the daytime. The performance of the BTDT-assisted heat pump (BTDT-HP) system in Adelaide, Australia, during the 2021–2022 summer and winter seasons was evaluated by conducting a TRNSYS simulation. This study revealed that the BTDT-HP system outperformed the reference ASHP system, where up to 8% energy in heating and 39.75% energy in cooling could be saved. An overall reduction in the energy consumption of 18.89% was achieved. Increasing the BTDT volume and GHP panel area enabled the tank to store more thermal and cold energy across the winter and summer seasons, thereby improving the system’s performance. The maximum ESPs were found to be 31.6% and 41.2% for heating and cooling for the study case under optimal conditions. When the GHP panel area was fixed at 15 m2, the BTDT volume should be at least 28 m3 for the BTDT-HP system, boasting cooling and heating capacities of 40 kW and 43.2 kW, to achieve positive energy savings. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 7559 KiB  
Article
Impact of Geometrical Misplacement of Heat Exchanger Pipe Parallel Configuration in Energy Piles
by Qusi I. Alqawasmeh, Guillermo A. Narsilio and Nikolas Makasis
Energies 2024, 17(11), 2580; https://doi.org/10.3390/en17112580 - 27 May 2024
Cited by 5 | Viewed by 1454
Abstract
Shallow geothermal or ground source heat pump (GSHP) energy systems offer efficient space heating and cooling, reducing greenhouse gas emissions and electrical consumption. Incorporating ground heat exchangers (GHEs) within pile foundations, as part of these GSHP systems, has gained significant attention as it [...] Read more.
Shallow geothermal or ground source heat pump (GSHP) energy systems offer efficient space heating and cooling, reducing greenhouse gas emissions and electrical consumption. Incorporating ground heat exchangers (GHEs) within pile foundations, as part of these GSHP systems, has gained significant attention as it can reduce capital costs. The design and optimisation of GHEs connected in parallel within energy piles have been researched widely, considering symmetrical placement, while the potential misplacement due to construction errors and the optimal placement remain mostly unexplored. This study utilises 3D finite element numerical methods, analysing energy piles with diameters from 0.5 m to 1.4 m, equipped with parallelly connected U-tube and W-tube GHEs. The impact of GHE loop placement is analysed, considering the influence of the ground and concrete thermal conductivities, pile length, fluid flow rate, GHE pipe diameter, and pile spacing. Results indicate a marginal impact, less than 3%, on the overall heat transfer when loops deviate from symmetry and less than 5% on the total heat transfer shared by each loop, except for highly non-symmetric configurations. Symmetrical and evenly spaced loop placement generally maintains favourable thermal performance and ease of installation. This study underscores the flexibility in GHE design and construction with a low risk of thermal yield variations due to uncertainties, particularly with a separation-to-shank distance ratio between 0.5 and 1.5 in a symmetrical distribution. Full article
(This article belongs to the Special Issue Energy Geotechnics and Geostructures—2nd Edition)
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
Computational Fluid Dynamics Heat Transfer Analysis of Double Pipe Heat Exchanger and Flow Characteristics Using Nanofluid TiO2 with Water
by Abdulaziz S. Alhulaifi
Designs 2024, 8(3), 39; https://doi.org/10.3390/designs8030039 - 30 Apr 2024
Cited by 3 | Viewed by 2795
Abstract
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve [...] Read more.
A device called a heat exchanger is used to exchange heat transfer between two fluids with different temperatures. Because of its durability and ability to handle high-pressure application, the concentric double pipe heat exchangers are widely utilized for numerous industrial applications. To conserve pumping power energy, many researchers were involved in study of the nanoparticles to be embedded in the fluid, which will enrich the fluid thermal conductivity and surface area. This article demonstrates the flow characteristics and convective heat transfer of nanofluids containing 0.2, 0.4 and 0.6 of vol% TiO2 nanoparticles dispersed in water under turbulent conditions, which mainly can be used for cooling nuclear reactors applications. Reynolds numbers varying from 4000 to 18,000 are examined numerically. The convective heat transfer coefficient results of the nanofluid agree well against experimental data, which are slightly more than that of base water at 1.94%. The results of the numerical model showed that the convective heat transfer coefficient of nanofluids will increase when the Reynolds and volume fraction increases. By increasing the temperature of the annular hot water, the heat transfer rate will increase, showing no major impact to the convective heat transfer coefficient of nanofluids. A generalised solution predicting the convective heat transfer coefficient for extensive nanoparticle materials is proposed. The conclusion of the empirical equation is tested among published data and the results are highly congruent, confirming the strength of the gamma equation. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

18 pages, 5836 KiB  
Article
CFD Analysis of the Pressure Drop Caused by the Screen Blockage Rate in a Membrane Strainer
by Inhong Min, Jongwoong Choi, Gwangjae Kim and Hyunsik Jo
Processes 2024, 12(4), 831; https://doi.org/10.3390/pr12040831 - 19 Apr 2024
Viewed by 2318
Abstract
Autostrainer is used for the purpose of debris removal in order to increase the efficiency of the heat exchanger by taking the required raw water as a heat source for the pre-cooling hydrothermal system. During the operation of the autostrainer, a pressure drop [...] Read more.
Autostrainer is used for the purpose of debris removal in order to increase the efficiency of the heat exchanger by taking the required raw water as a heat source for the pre-cooling hydrothermal system. During the operation of the autostrainer, a pressure drop occurs due to the blockage of the screen in the autostrainer. As a result, the resistance of the pipe network for the intake system is changed, and the operating efficiency point of the pump, valve, heat exchanger, etc., is altered. By calculating the system resistance taking into account the pressure drop caused by the blockage rate of the screen in the autostrainer, the optimum operating efficiency can be expected when the intake system such as a pump, valve or heat exchanger, etc. is constructed. In this study, Computational Fluid Dynamics (CFD) was used to construct a scenario in which screen blockage may occur, predicting pressure drop for the slot cross-section of the screen in the autostrainer to derive a resistance coefficient value. The resistance coefficient value was applied to the porous region corresponding to the screen in the autostrainer’s 3D shape and compared with the experimental value for the pressure drop and headloss coefficient. By predicting the pressure drop for the autostrainer’s screen blockage rate of 0% to 50%, the coefficient of headloss required for the design of the intake system was calculated. Additionally, in order to predict the debris removal rate, which is the original role of the autostrainer, the debris was assumed to be particles, and sedimentation rate was predicted according to the size and weight of the particles. Building on this, when introducing the autostrainer used in pre-cooling into the membrane filtration process, due to the pressure loss caused by the inflow of debris during the use of the autostrainer, this study aims to utilize Computational Fluid Dynamics (CFD) to derive the head loss coefficients according to the screen blockage rate, and use these coefficients to calculate the system’s resistance curve. Additionally, in this study, the term “autostrainer” is used instead of the term “membrane strainer” to align with more popular terminology. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

34 pages, 1251 KiB  
Review
Condensation Flow of Refrigerants Inside Mini and Microchannels: A Review
by Anıl Başaran and Ali Cemal Benim
Appl. Sci. 2024, 14(7), 2988; https://doi.org/10.3390/app14072988 - 2 Apr 2024
Viewed by 2066
Abstract
Nowadays, the demand for obtaining high heat flux values in small volumes has increased with the development of technology. Condensing flow inside mini- and microchannels has been becoming a promising solution for refrigeration, HVAC, air-conditioning, heat pumps, heat pipes, and electronic cooling applications. [...] Read more.
Nowadays, the demand for obtaining high heat flux values in small volumes has increased with the development of technology. Condensing flow inside mini- and microchannels has been becoming a promising solution for refrigeration, HVAC, air-conditioning, heat pumps, heat pipes, and electronic cooling applications. In these applications, employing mini/microchannels in the condenser design results in the working fluid, generally refrigerant, undergoing a phase change inside the mini/microchannels. On the other hand, the reduction in the hydraulic diameter during condensation gives rise to different flow regimes and heat transfer mechanisms in the mini- and microchannels compared to the conventional channels. Therefore, the understanding of fluid flow and heat transfer characteristics during condensation of refrigerant inside mini- and microchannels has been gaining importance in terms of condenser design. This study presents a state-of-the-art review of condensation studies on refrigerants inside mini- and microchannels. The review includes experimental studies as well as correlation models, which are developed to predict condensation heat transfer coefficients and pressure drop. The refrigerant type, thermodynamical performance, and compatibility, as well as the environmental effects of refrigerant, play a decisive role in the design of refrigeration systems. Therefore, the environmental impacts of refrigerants and current regulations against them are also discussed in the present review. Full article
(This article belongs to the Special Issue Feature Papers in Section 'Applied Thermal Engineering')
Show Figures

Figure 1

20 pages, 3495 KiB  
Article
Experimental Study of a Pump-Driven Microchannel-Separated Heat Pipe System
by Shengpeng Chen, Peng Xu, Juan Shi, Lisha Sheng, Chaoling Han and Zhenqian Chen
Sustainability 2023, 15(24), 16839; https://doi.org/10.3390/su152416839 - 14 Dec 2023
Cited by 2 | Viewed by 1534
Abstract
The current situation of high energy consumption in data centers places high demands on the energy consumption and heat-dissipation efficiency of cooling technology. This article studies the steady-state flow and heat-transfer characteristics of a pump-driven separated heat pipe system from an experimental perspective. [...] Read more.
The current situation of high energy consumption in data centers places high demands on the energy consumption and heat-dissipation efficiency of cooling technology. This article studies the steady-state flow and heat-transfer characteristics of a pump-driven separated heat pipe system from an experimental perspective. After designing and selecting the pump-driven microchannel-separated heat pipe system, an experimental platform is built to test the pump-driven microchannel-separated heat pipe system under variable operating conditions. It is found that the optimal filling rate range of the system is 75% to 95%, and the optimal condensing air volume is 4250 m3/h. The relationship between the circulating mass flow rate and the heat-transfer capacity of the heat pipe system is comprehensively influenced by the resistance of each section and the heat-transfer coefficient at the heat exchanger. When the indoor and outdoor temperature difference increases from 10 °C to 30 °C, the heat transfer increases by 261.5%, and the working medium of R410a has a better heat-transfer performance than R134A at outdoor temperatures ranging from 0 to 15 °C. The results contribute to the application of pump-assisted microchannel heat pipe systems in data center machines, which provide guidance for the application of cabinet-level thermal management. Full article
Show Figures

Figure 1

19 pages, 3422 KiB  
Article
Performance Study of Booster-Driven Hybrid Cooling Units for Free Cooling in Data Centers
by Rong Zhuang, Feng Zhou, Xuwen Tian, Buqing Xu, Shaocong Li and Guoyuan Ma
Sustainability 2023, 15(19), 14558; https://doi.org/10.3390/su151914558 - 7 Oct 2023
Cited by 2 | Viewed by 1339
Abstract
In the data center, using ambient energy cooling technology can effectively reduce the average power use efficiency, and the heat pipe as an effective use of ambient energy device has attracted much attention. For the dynamic heat pipe, reducing the power consumption of [...] Read more.
In the data center, using ambient energy cooling technology can effectively reduce the average power use efficiency, and the heat pipe as an effective use of ambient energy device has attracted much attention. For the dynamic heat pipe, reducing the power consumption of the pump effectively is the key to improving the efficiency. In this paper, the rotary booster is selected as the gas phase booster device of the heat pipe unit, the standard unit of the rotary booster is improved, and three types of boosters are obtained, including two improved boosters and one standard unit. Comparative test studies are conducted on three different types of boosters, and the power of the booster shows a downward trend with the increase in indoor and outdoor temperature differences (outdoor temperature decreases). With the increase in indoor and outdoor temperature differences, the cooling capacity increases first and then decreases. When the indoor and outdoor temperature difference is greater than 20 °C, the suction pressure of the booster is greater than the saturated condensing pressure force under outdoor ambient temperature, and the work of the booster decreases. Among the three types of boosters, the medium pressure ratio booster energy efficiency ratio (EER) is the largest. After throttling the standard unit, results show that its cooling capacity unit increases, but the booster power also increases, and the EER is still smaller than that of the improved unit. Full article
(This article belongs to the Topic Clean and Low Carbon Energy)
Show Figures

Figure 1

17 pages, 5389 KiB  
Article
Drilling Deeper in Shallow Geoexchange Heat Pump Systems—Thermogeological, Energy and Hydraulic Benefits and Restraints
by Tomislav Kurevija, Marija Macenić and Martina Tuschl
Energies 2023, 16(18), 6577; https://doi.org/10.3390/en16186577 - 12 Sep 2023
Cited by 1 | Viewed by 1903
Abstract
In the last decade, due to climate change concerns and new environmental regulations in the EU, there was a tremendous rise in installed heat pump systems in new homes and buildings. The majority of these installed units are related to air-source heat pumps, [...] Read more.
In the last decade, due to climate change concerns and new environmental regulations in the EU, there was a tremendous rise in installed heat pump systems in new homes and buildings. The majority of these installed units are related to air-source heat pumps, as they offer a good trade-off between capital and operating expenses. However, when analysing heating and cooling heat pump systems from the primary energy consumption and ecological aspects, groundwater and shallow geothermal heat pump systems offer superior efficiency, compared to all market-available thermo-technical systems today. In the last decade, ground-source systems have seen some technological improvement by employing new borehole heat exchanger designs, such as piping with internal fins and a wider diameter (so called Turbocollector) to enhance the heat transfer between fluid and rock, as well as to reduce the pressure drop in the system. Furthermore, the process of drilling deeper offers higher ground temperatures and consequently higher seasonal performance factors in the heating cycle, due to the effect of the geothermal gradient. Nevertheless, although deeper boreholes provide better heat extraction rates per meter during the heat pump heating cycle, at the same time, it reduces heat rejection rates during the heat pump cooling cycle. The objective of this paper is to analyse and evaluate benefits and downsides of a new approach in the heat pump system design with deeper borehole heat exchangers of up to 300 m, comparing it to the traditional design of double-loop exchangers with 100 m depth. The geothermal borehole grid design simulation model, along with heat extraction and rejection, is performed on a yearly basis. The results are showing that the benefits of shallow geothermal boreholes, from the hydraulic and thermodynamic point of view, still dominate over deeper solutions. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

4 pages, 2248 KiB  
Proceeding Paper
Enhancing Energy Efficiency: Geothermal Heat Pumps Utilizing Existing Water Boreholes in Pakistan
by Saif Ullah, Muhammad Irfan and Muhammad Mahabat Khan
Eng. Proc. 2023, 45(1), 6; https://doi.org/10.3390/engproc2023045006 - 7 Sep 2023
Viewed by 1817
Abstract
Vertical borehole geothermal heat pumps (GHPs) offer eco-friendly and energy-efficient heating and cooling. This paper proposes enhancing the coefficient of performance (COP) by converting air source heat pumps (ASHPs) into ground source heat pumps (GSHPs). This study presents a cost-effective approach to utilizing [...] Read more.
Vertical borehole geothermal heat pumps (GHPs) offer eco-friendly and energy-efficient heating and cooling. This paper proposes enhancing the coefficient of performance (COP) by converting air source heat pumps (ASHPs) into ground source heat pumps (GSHPs). This study presents a cost-effective approach to utilizing existing water boreholes in Pakistani buildings, reducing drilling and piping expenses. The results show that GSHPs achieved average COP values of 5.92, 33.33% higher than ASHPs. GSHPs demonstrated an average energy efficiency ratio (EER) of 20.12, exceeding ASHPs by 33.9%. These findings highlight the enhanced COP and energy efficiency of GSHPs, making them an attractive option for sustainable HVAC systems. Full article
Show Figures

Figure 1

Back to TopTop