Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pulsed laser diode driver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5528 KB  
Article
Design of Nanosecond Pulse Laser Diode Array Driver Circuit for LiDAR
by Chengming Li, Min Tao, Haolun Du, Ziming Wang and Junfeng Song
Appl. Sci. 2024, 14(20), 9557; https://doi.org/10.3390/app14209557 - 19 Oct 2024
Cited by 2 | Viewed by 3746
Abstract
The pulse laser emission circuit plays a crucial role as the emission unit of time-of-flight (TOF) LiDAR. This paper proposes a nanosecond-level pulse laser diode array drive circuit for LiDAR, primarily aimed at addressing the issue of high-speed scanning drive for the laser [...] Read more.
The pulse laser emission circuit plays a crucial role as the emission unit of time-of-flight (TOF) LiDAR. This paper proposes a nanosecond-level pulse laser diode array drive circuit for LiDAR, primarily aimed at addressing the issue of high-speed scanning drive for the laser diode array at the emission end of solid-state LiDAR. Based on the single pulse laser diode drive circuit, this paper innovatively designs a circuit that includes modules such as a boost circuit, linear power supply, high-speed gate driver, GaN field-effect transistor, and pulse narrowing circuit, realizing an 8-channel laser diode array drive circuit. This circuit can achieve a pulse laser array drive with a single channel operating frequency of greater than 100 kHz, an output pulse width of less than 5 ns, a peak power greater than 75 W, and a channel switching time that does not exceed 1 μs. A field programmable gate array (FPGA) is used to control the operation of this circuit and perform a series of performance tests. Experimental results show that this circuit has a high repetition rate, large output power, a narrow pulse width, and fast switching speeds, making it highly suitable for use in the optical emission module of solid-state LiDAR. Full article
Show Figures

Figure 1

12 pages, 7899 KB  
Article
A Modified Current-Mode VCSEL Driver for Short-Range LiDAR Sensor Applications in 180 nm CMOS
by Juntong Li, Yeojin Chon, Shinhae Choi and Sung-Min Park
Photonics 2024, 11(9), 868; https://doi.org/10.3390/photonics11090868 - 16 Sep 2024
Cited by 1 | Viewed by 1870
Abstract
This paper presents a modified current-mode vertical-cavity surface-emitting laser (VCSEL) driver as a transmitter for short-range light detection and ranging (LiDAR) sensors, where a stable bias generator is suggested with a regulated cascode current mirror circuit to provide the bias current of 1 [...] Read more.
This paper presents a modified current-mode vertical-cavity surface-emitting laser (VCSEL) driver as a transmitter for short-range light detection and ranging (LiDAR) sensors, where a stable bias generator is suggested with a regulated cascode current mirror circuit to provide the bias current of 1 mA with a trivial deviation of 5.4%, even at the worst-case process–voltage–temperature (PVT) variations. Also, a modified current-steering logic circuit is exploited with N-type MOSFET (NMOS) switches to deliver the modulation currents of 0.1~10 mApp to the VCSEL diode simultaneously, with no overshoot distortions. Post-layout simulations of the modified current-mode VCSEL driver (m-CMVD), using 180 nm CMOS technology, demonstrate very large and clean output pulses with significantly reduced signal distortions. Hereby, the VCSEL diode is transformed into an equivalent circuit with a 1.6 V DC voltage and a 50 Ω resistor for circuit simulations. The proposed m-CMVD consumes a maximum of 11 mW from a 3.3 V supply voltage and the chip core occupies an area of 0.196 mm2. Full article
Show Figures

Figure 1

26 pages, 5766 KB  
Article
A Load-Adaptive Driving Method for a Quasi-Continuous-Wave Laser Diode
by Yajun Wu, Wenqing Liu, Xinhui Sun, Jinxin Chen, Gang Cheng, Xi Chen, Yibin Fu, Pan Liu and Tianshu Zhang
Micromachines 2024, 15(3), 355; https://doi.org/10.3390/mi15030355 - 29 Feb 2024
Viewed by 2301
Abstract
A quasi-continuous-wave (QCW) laser diode (LD) driver is commonly used to drive diode bars and stacks designed specifically for QCW operations in solid-state lasers. Such drivers are optimized to deliver peak current and voltage pulses to LDs while maintaining low average power levels. [...] Read more.
A quasi-continuous-wave (QCW) laser diode (LD) driver is commonly used to drive diode bars and stacks designed specifically for QCW operations in solid-state lasers. Such drivers are optimized to deliver peak current and voltage pulses to LDs while maintaining low average power levels. As a result, they are widely used in laser processing devices and laser instruments. Traditional high-energy QCW LD drivers primarily use capacitors as energy storage components and pulsed constant-current sources with op-amps and power metal-oxide-semiconductor field-effect transistors (MOSFETs) as their core circuits for generating repeated constant-current pulses. The drawback of this type of driver is that the driver’s output voltage needs to be manually adjusted according to the operating voltage of the load before use to maximize driver efficiency while providing a sufficient current. Another drawback is its inability to automatically adjust the output voltage to maintain high efficiency when the load changes during the driver operation. Drastic changes in the load can cause the driver to fail to function properly in extreme cases. Based on the above traditional circuit structure, this study designed a stability compensation circuit and realized a QCW LD driver for driving a GS20 diode stack with a maximum repetition rate of 100 Hz, a constant current of approximately 300 A, a load voltage of approximately 10 V, and a pulse width of approximately 300 μs. In particular, a high-efficiency, load-adaptive driving method was used with the MOSFETs in the critical saturation region (i.e., between the linear and saturated regions), controlling its power loss effectively while achieving maximum output current of the driver. The experiments demonstrated that the driver efficiency could be maintained at more than 80% when the load current varied from 50 to 300 A. Full article
Show Figures

Figure 1

10 pages, 3036 KB  
Communication
A Low-Cost Measurement Methodology for LiDAR Receiver Integrated Circuits
by Ji-Eun Joo, Shinhae Choi, Yeojin Chon and Sung-Min Park
Sensors 2023, 23(13), 6002; https://doi.org/10.3390/s23136002 - 28 Jun 2023
Cited by 4 | Viewed by 2521
Abstract
This paper presents a test methodology to facilitate the measuring processes of LiDAR receiver ICs by avoiding the inherent walk error issue. In a typical LiDAR system, a costly laser diode driver emits narrow light pulses with fast rising edges, and the reflected [...] Read more.
This paper presents a test methodology to facilitate the measuring processes of LiDAR receiver ICs by avoiding the inherent walk error issue. In a typical LiDAR system, a costly laser diode driver emits narrow light pulses with fast rising edges, and the reflected pulses from targets enter an optical detector followed by an analog front-end (AFE) circuit. Then, the received signals pass through the cascaded amplifiers down to the time-to-digital converter (TDC) that can estimate the detection range. However, this relatively long signal journey leads to the significant decline of rising-edge slopes and the output pulse spreading, thus producing inherent walk errors in LiDAR receiver ICs. Compensation methods requiring complex algorithms and extra chip area have frequently been exploited to lessen the walk errors. In this paper, however, a simpler and lower-cost methodology is proposed to test LiDAR receiver ICs by employing a high-speed buffer and variable delay cells right before the TDC. With these circuits, both START and STOP pulses show very similar pulse shapes, thus effectively avoiding the walk error issue. Additionally, the time interval between two pulses is easily determined by varying the number of the delay cells. Test chips of the proposed receiver IC implemented in a 180-nm CMOS process successfully demonstrate easier and more accurate measurement results. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

15 pages, 4070 KB  
Article
Performance Evaluation of Input Power of Diode Laser on Machined Leather Specimen in Laser Beam Cutting Process
by Tamer Khalaf, Muthuramalingam Thangaraj, Khaja Moiduddin, Vasanth Swaminathan, Syed Hammad Mian, Faraz Ahmed and Mohamed Kamaleldin Aboudaif
Materials 2023, 16(6), 2416; https://doi.org/10.3390/ma16062416 - 17 Mar 2023
Cited by 7 | Viewed by 2404
Abstract
Numerous industries, including footwear, handicrafts, and the automobile industry, utilize leather materials. The main goal of this study was to investigate the effect of input power of the diode laser in laser cutting on vegetable chrome tanned buffalo leather to enhance the cutting [...] Read more.
Numerous industries, including footwear, handicrafts, and the automobile industry, utilize leather materials. The main goal of this study was to investigate the effect of input power of the diode laser in laser cutting on vegetable chrome tanned buffalo leather to enhance the cutting process. In the present investigation, carbonization, kerf width, and material removal rate (MRR) were taken as performance measures. The diode-based laser beam machining was designed and fabricated with 2.5 W, 5.5 W, and 20 W diode laser to cut vegetable chrome tanned leather. The high-intensity 20 W diode laser produced lower carbonization, lower kerf width, and higher material removal rate compared with the 2.5 W and 5.5 W diodes. This improved performance was due to the adjustable features associated with this diode laser actuation in the form of circular shape with adjustable diameter. A high power with a lower spot size under pulsed mode can produce higher power density. Since a higher power density can establish less interaction time, it produces lower carbonization. Due to the ability of the 20 W diode laser driver to control the beam shape and size, it could produce a lower kerf width and higher MRR. The optimal parameters for cutting chrome vegetable tanned cow leather were a standoff distance of 18 mm, feed rate of 200 mm/min, and duty cycle of 70%. Full article
(This article belongs to the Special Issue Advanced Machining Technology for Modern Engineering Materials)
Show Figures

Figure 1

22 pages, 45170 KB  
Article
Design of High Peak Power Pulsed Laser Diode Driver
by Ching-Yao Liu, Chih-Chiang Wu, Li-Chuan Tang, Wei-Hua Chieng, Edward-Yi Chang, Chun-Yen Peng and Hao-Chung Kuo
Photonics 2022, 9(9), 652; https://doi.org/10.3390/photonics9090652 - 14 Sep 2022
Cited by 9 | Viewed by 11551
Abstract
This paper attempts to describe a laser diode driver circuit using the depletion mode gallium nitride high electron mobility transistor (D-mode GaN HEMT) to generate nanosecond pulses at a repetition rate up to 10 MHz from the vertical-cavity surface-emitting laser (VCSEL). The feature [...] Read more.
This paper attempts to describe a laser diode driver circuit using the depletion mode gallium nitride high electron mobility transistor (D-mode GaN HEMT) to generate nanosecond pulses at a repetition rate up to 10 MHz from the vertical-cavity surface-emitting laser (VCSEL). The feature of this driver circuit is a large instantaneous laser power output designed in the most efficient way. The design specifications include a pulse duration between 10 ns and 100 ns and a peak power up to above 100 W. The pulsed laser diode driver uses the D-mode GaN HEMT, which has very small Coss difference between turn-on and turn-off states. The analysis is according to a laser diode model that is adjusted to match the VCSEL, made in National Yang Ming Chiao Tung University (NYCU). A design guide is summarized from the derivations and analysis of the proposed laser diode driver. According to the design guide, we selected the capacitor, resistor, and diode components to achieve 10 ns to 100 ns pulse duration for laser lighting. The experiment demonstrated that the maximum power-to-light efficiency can be as high as 86% and the maximum peak power can be 150 W, which matches the specifications of certain applications such as light detection and ranging (LiDAR). Full article
Show Figures

Figure 1

17 pages, 13826 KB  
Article
An Efficiency Improvement Driver for Master Oscillator Power Amplifier Pulsed Laser Systems
by Fu-Zen Chen, Yu-Cheng Song and Fu-Shun Ho
Processes 2022, 10(6), 1197; https://doi.org/10.3390/pr10061197 - 16 Jun 2022
Cited by 1 | Viewed by 3028
Abstract
The master oscillator power amplifier (MOPA) pulsed laser, one of the popular topologies for high-power fiber laser systems, is widely applied in industrial machining laser systems. In MOPA, the low-power pulsed laser, stimulated from a seed laser diode, is amplified by the high- [...] Read more.
The master oscillator power amplifier (MOPA) pulsed laser, one of the popular topologies for high-power fiber laser systems, is widely applied in industrial machining laser systems. In MOPA, the low-power pulsed laser, stimulated from a seed laser diode, is amplified by the high- power optical energy from pump laser diodes via the gain fiber. Generally, the high-power pump laser diodes are driven by lossy linear current drivers. The switched mode current drivers boost the driver efficiency but suffer from pulse energy consistency due to the current switching ripple. In this paper, a laser driver system that varies the switching frequency of current source to synchronize with pulsed laser repetition rate is analyzed and implemented. Experimental results are demonstrated using a 20 W pulsed fiber laser system. Full article
(This article belongs to the Special Issue Advances in Energy-Saving Technology and Monitoring)
Show Figures

Figure 1

12 pages, 2854 KB  
Letter
Power Efficient Current Driver Based on Negative Boosting for High-Speed Lasers
by Saad Arslan, Syed Asmat Ali Shah and HyungWon Kim
Electronics 2019, 8(11), 1309; https://doi.org/10.3390/electronics8111309 - 8 Nov 2019
Cited by 3 | Viewed by 7190
Abstract
Vertical-cavity surface-emitting lasers (VCSELs) are commonly used in high-speed optical communication and 3D sensing applications. Both of these applications require high switching frequency and a short rise time of the VCSEL current. The parasitic inductance of the wire (connecting the driver with VCSEL) [...] Read more.
Vertical-cavity surface-emitting lasers (VCSELs) are commonly used in high-speed optical communication and 3D sensing applications. Both of these applications require high switching frequency and a short rise time of the VCSEL current. The parasitic inductance of the wire (connecting the driver with VCSEL) makes it challenging to achieve a short rise time, which often incur increased supply voltage and excessive power consumption. This paper utilizes a momentary boosting in supply voltage to overcome the parasitic inductance of the wire with minimal power overhead. The proposed technique uses a precalculated boosting capacitance to produce negative voltage for common-anode VCSELs. The boosting capacitance provides the required amount of charge during the rising transition and automatically disconnects itself in steady-state. Circuit simulations reveal up to three times shorter rise time at the negligible cost of less than 10% power overhead. Full article
(This article belongs to the Section Quantum Electronics)
Show Figures

Figure 1

19 pages, 5395 KB  
Article
Conceptual Design of a Laser Driver for a Plasma Accelerator User Facility
by Guido Toci, Zeudi Mazzotta, Luca Labate, François Mathieu, Matteo Vannini, Barbara Patrizi and Leonida A. Gizzi
Instruments 2019, 3(3), 40; https://doi.org/10.3390/instruments3030040 - 8 Aug 2019
Cited by 6 | Viewed by 4023
Abstract
The purpose of the European project EuPRAXIA is to realize a novel plasma accelerator user facility. The laser driven approach sets requirements for a very high performance level for the laser system: pulse peak power in the petawatt range, pulse repetition rate of [...] Read more.
The purpose of the European project EuPRAXIA is to realize a novel plasma accelerator user facility. The laser driven approach sets requirements for a very high performance level for the laser system: pulse peak power in the petawatt range, pulse repetition rate of several tens of Hz, very high beam quality and overall stability of the system parameters, along with 24/7 operation availability for experiments. Only a few years ago these performances were considered unrealistic, but recent advances in laser technologies, in particular in the chirped pulse amplification (CPA) of ultrashort pulses and in high energy, high repetition rate pump lasers have changed this scenario. This paper discusses the conceptual design and the overall architecture of a laser system operating as the driver of a plasma acceleration facility for different applications. The laser consists of a multi-stage amplification chain based CPA Ti:Sapphire, using frequency doubled, diode laser pumped Nd or Yb solid state lasers as pump sources. Specific aspects related to the cooling strategy of the main amplifiers, the operation of pulse compressors at high average power, and the beam pointing diagnostics are addressed in detail. Full article
Show Figures

Figure 1

12 pages, 4520 KB  
Article
Charge-Line Dual-FET High-Repetition-Rate Pulsed Laser Driver
by Mateusz Żbik and Piotr Zbigniew Wieczorek
Appl. Sci. 2019, 9(7), 1289; https://doi.org/10.3390/app9071289 - 27 Mar 2019
Cited by 6 | Viewed by 7158
Abstract
Most modern pulsed laser systems require versatile laser diode drivers. A state-of-the-art pulsed laser driver should provide precise peak power regulation, high repetition rate, and pulse duration control. A new, charge line dual-FET transistor circuit structure was developed to provide all these features. [...] Read more.
Most modern pulsed laser systems require versatile laser diode drivers. A state-of-the-art pulsed laser driver should provide precise peak power regulation, high repetition rate, and pulse duration control. A new, charge line dual-FET transistor circuit structure was developed to provide all these features. The pulsed modulation current is adjustable up to Imax = 1.2 A, with the laser diode forward voltage acceptable up to UF max = 20 V. The maximum repetition rate is limited by a charge line circuit to frep max = 20 MHz. Compared to the conventional single transistor drivers, the solution proposed in this paper allows a precise, high resolution width regulation to be obtained, whereas a low pulse jitter is ensured. In the solution, two separate, out-of-phase signals are used to trigger the individual Field Effect Transistors (FET). The resultant pulsed modulation current full-width-at-half-maxima (FWHM) is regulated from ~200 ps up to 2 ns. All control and timing signals are generated with a popular Field-Programmable Gate Array (FPGA) digital circuitry. The use of standard FPGA devices ensures the low cost and high reliability of the circuit, which are not available in laser drivers consisting of sophisticated analogue adjustable delay circuits. Full article
(This article belongs to the Special Issue Ultrafast Laser Pulses)
Show Figures

Graphical abstract

5 pages, 578 KB  
Proceeding Paper
Laser Driver and Analysis Circuitry Development for Quartz-Enhanced Photoacoustic Spectroscopy of NO2 for IoT Purpose
by Alexander Kerschhofer, Philipp Breitegger and Alexander Bergmann
Proceedings 2018, 2(13), 1062; https://doi.org/10.3390/proceedings2131062 - 22 Nov 2018
Cited by 5 | Viewed by 2087
Abstract
The rising effort to track local air pollution measurements require low-cost air quality sensors that provide good accuracy, long-term stability and possibly Internet of Things (IoT) connectivity. To provide such a solution and avoid cost-intensive equipment the development of a low-cost environmental sensor [...] Read more.
The rising effort to track local air pollution measurements require low-cost air quality sensors that provide good accuracy, long-term stability and possibly Internet of Things (IoT) connectivity. To provide such a solution and avoid cost-intensive equipment the development of a low-cost environmental sensor system was started. To measure the pollutant NO2, a quartz-enhanced photoacoustic spectroscopy (QEPAS) setup was established. A pulsed 450 nm laser diode excites NO2 molecules due to its strong absorption at this wavelength and causes a vibrational-translational relaxation, which results in an acoustic wave. The acoustic wave is detected by a quartz tuning fork (QTF) which generates a weak electrical signal proportional to the NO2 concentration. To realize this at low cost, a laser driver and an analysis circuit including a lock-in amplifier and analog-to-digital conversion were developed. We present first results, which proof the functionality of the circuitry compared to a more expensive laboratory setup. Full article
(This article belongs to the Proceedings of EUROSENSORS 2018)
Show Figures

Figure 1

20 pages, 3709 KB  
Article
A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System
by Bruce R. Rae, Keith R. Muir, Zheng Gong, Jonathan McKendry, John M. Girkin, Erdan Gu, David Renshaw, Martin D. Dawson and Robert K. Henderson
Sensors 2009, 9(11), 9255-9274; https://doi.org/10.3390/s91109255 - 18 Nov 2009
Cited by 48 | Viewed by 19957
Abstract
We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × [...] Read more.
We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. Full article
(This article belongs to the Special Issue Delft Workshop 2008-2009—Sensors and Imagers: a VLSI Perspective)
Show Figures

Graphical abstract

Back to TopTop