Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (565)

Search Parameters:
Keywords = pulse repetition rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2661 KB  
Systematic Review
The Effects of Repetitive Transcranial Magnetic Stimulation on Gait, Motor Function, and Balance in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Myoung-Ho Lee, Ju-Hak Kim, Je-Seung Han and Myoung-Kwon Kim
J. Clin. Med. 2026, 15(1), 166; https://doi.org/10.3390/jcm15010166 - 25 Dec 2025
Viewed by 135
Abstract
Objective: This study aimed to systematically evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on gait, motor function, and balance in patients with Parkinson’s disease (PD) and identify optimal stimulation parameters for clinical application. Methods: This systematic review and [...] Read more.
Objective: This study aimed to systematically evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on gait, motor function, and balance in patients with Parkinson’s disease (PD) and identify optimal stimulation parameters for clinical application. Methods: This systematic review and meta-analysis of randomized controlled trials (CTs) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, EMBASE, Cochrane Central, Scopus, and Ovid-LWW were searched until December 2024 for RCTs evaluating the effects of rTMS on PD-related gait, balance, or motor outcomes. Nineteen studies (n = 547) met the inclusion criteria. Data on study characteristics, rTMS protocols (frequency, target area, pulses, session duration, number of sessions, and treatment duration), and outcome measures (freezing of gait questionnaire [FOG-Q], gait speed, Unified Parkinson’s Disease Rating Scale Part III [UPDRS-III], UPDRS total, and timed up and go [TUG] test) were extracted. Effect sizes (Hedges’ g) were pooled using inverse variance meta-analysis, heterogeneity was assessed using I2, and publication bias was assessed using funnel plots and Egger’s regression. Results: rTMS produced significant improvements in gait freezing (FOG-Q: g = −0.74; 95% confidence interval [CI] [−1.05, −0.43]; p < 0.001), gait speed (g = 0.62; 95% CI [0.29, 0.95]; p < 0.001), and motor symptoms (UPDRS-III: g = −0.42; 95% CI [−0.70, −0.15]; p = 0.003). No significant effects were observed for UPDRS total (g = 0.18; p = 0.58) or balance (TUG, g = −0.29; p = 0.06). Egger’s test indicated publication bias for gait speed (p = 0.016); however, trim-and-fill imputed zero studies. Subgroup analyses indicated that high-frequency stimulation of the supplementary motor area (SMA) for ≥20 min over 10 sessions (total duration <2 weeks or ≥2 weeks) optimally improved gait speed, whereas low-frequency stimulation targeting M1 and SMA with >1000 pulses per session for 20 min over 10 sessions within <2 weeks most effectively improved the UPDRS-III scores. Conclusions: rTMS exerts moderate and significant benefits on gait and motor performance in PD, particularly when tailored protocols involving SMA or M1 stimulation are employed. High-frequency SMA protocols improve gait speed, whereas low-frequency M1/SMA protocols optimize motor symptom relief. These findings provide evidence-based guidance for rTMS implementation in PD rehabilitation. Full article
(This article belongs to the Special Issue Parkinson's Disease: Recent Advances in Diagnosis and Treatment)
Show Figures

Figure 1

14 pages, 2795 KB  
Communication
Transmission Characteristics of 80 Gbit/s Nyquist-DWDM System in Atmospheric Turbulence
by Silun Du, Qiaochu Yang, Tuo Chen and Tianshu Wang
Sensors 2025, 25(24), 7598; https://doi.org/10.3390/s25247598 - 15 Dec 2025
Viewed by 167
Abstract
We experimentally demonstrate an 80 Gbit/s Nyquist-dense wavelength division multiplexed (Nyquist-DWDM) transmission system operating in a simulated atmospheric turbulence channel. The system utilizes eight wavelength-tunable lasers with 100 GHz spacing, modulated by cascaded Mach–Zehnder modulators, to generate phase-locked Nyquist pulse sequences with a [...] Read more.
We experimentally demonstrate an 80 Gbit/s Nyquist-dense wavelength division multiplexed (Nyquist-DWDM) transmission system operating in a simulated atmospheric turbulence channel. The system utilizes eight wavelength-tunable lasers with 100 GHz spacing, modulated by cascaded Mach–Zehnder modulators, to generate phase-locked Nyquist pulse sequences with a 10 GHz repetition rate and a temporal width of 66.7 ps. Each channel is synchronously modulated with a 10 Gbit/s pseudo-random bit sequence (PRBS) and transmitted through controlled weak turbulence conditions generated by a temperature-gradient convection chamber. Experimental measurements reveal that, as the turbulence intensity increases from Cn2=1.01×1016 to 5.71×1016 m2/3, the signal-to-noise ratio (SNR) of the edge channel (C29) and central channel (C33) decreases by approximately 6.5 dB while maintaining stable Nyquist waveform profiles and inter-channel orthogonality. At a forward-error-correction (FEC) threshold of 3.8×103, the minimum receiver sensitivity is −17.66 dBm, corresponding to power penalties below 5 dB relative to the back-to-back condition. The consistent SNR difference (<2 dB) between adjacent channels confirms uniform power distribution and low inter-channel crosstalk under turbulence. These findings verify that Nyquist pulse shaping substantially mitigates phase distortion and scintillation effects, demonstrating the feasibility of high-capacity DWDM free-space optical (FSO) systems with enhanced spectral efficiency and turbulence resilience. The proposed configuration provides a scalable foundation for future multi-wavelength FSO links and hybrid fiber-wireless optical networks. Full article
(This article belongs to the Special Issue Sensing Technologies and Optical Communication)
Show Figures

Figure 1

11 pages, 1416 KB  
Communication
50.9 W and Efficient Mid-Infrared Supercontinuum Generation in a Fluoride Fiber
by Shuyi Wang, Linyong Yang, Yamei Xu, Weiqiang Yang, Bin Zhang and Jing Hou
Photonics 2025, 12(12), 1185; https://doi.org/10.3390/photonics12121185 - 30 Nov 2025
Viewed by 380
Abstract
A 50.9-W all-fiber mid-infrared (MIR) supercontinuum (SC) laser with a conversion efficiency of over 76.7% is demonstrated in a ZBLAN (ZrF4–BaF2–LaF3–AlF3–NaF) fiber. The entire system consists of a broadband thulium-doped fiber amplifier (TDFA) operating at [...] Read more.
A 50.9-W all-fiber mid-infrared (MIR) supercontinuum (SC) laser with a conversion efficiency of over 76.7% is demonstrated in a ZBLAN (ZrF4–BaF2–LaF3–AlF3–NaF) fiber. The entire system consists of a broadband thulium-doped fiber amplifier (TDFA) operating at 1.9–2.6 μm and a piece of ZBLAN fiber. The system features an all-fiber architecture, which is achieved by directly splicing the pigtail fiber of the TDFA to the ZBLAN fiber. The system’s stability and reliability were ensured by the utilization of the water-cooled fusion splicing joint between the silica fiber and ZBLAN fiber, and an AlF3 fiber endcap. When the seed pulse repetition rate (PRR) was 3 MHz and the pulse duration was 6 ns, a MIR SC laser with an average power of 50.9 W and a spectral range of 1.9–3.6 μm was obtained, with a corresponding power conversion efficiency (from the TDFA output to the SC laser output) of 76.7%. By adjusting the pulse duration to 4 ns, the generated SC laser exhibited a spectral range of 1.9–3.7 μm and an average power of 50.1 W, corresponding to a power conversion efficiency of 75.1%. Such a supercontinuum (SC) laser paves the way for the application of high-power SC lasers in a wide range of fields. Full article
Show Figures

Figure 1

10 pages, 2899 KB  
Article
Study of a High-Power, Long-Pulse-Width Acousto-Optical Q-Switched 1064 nm Laser Based on a Multi-Pass Cavity
by Wenbo Li, Zhaochen Lv, Yu Ding, Qingxuan Li, Jiapeng Hu, Chenpeng Deng, Tian Lan, Anru Yan, Youqiang Liu, Xuesheng Liu and Zhiyong Wang
Appl. Sci. 2025, 15(23), 12536; https://doi.org/10.3390/app152312536 - 26 Nov 2025
Viewed by 304
Abstract
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original [...] Read more.
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original laser cavity length by 1200 mm. The laser achieved a maximum average output power of 123.6 W with a repetition rate of 10 kHz. At this power level, the laser pulse width was broadened to 157.5 ns, which can be compared to 82.5 ns without the MPC structure, achieving a broadening ratio of 90.9%. The beam quality factors were Mx2 = 10.75 in the horizontal direction and My2 = 11.37 in the vertical direction. The experimental results demonstrate that inserting an MPC into the cavity is an effective method for broadening the pulse width of nanosecond lasers. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

11 pages, 1817 KB  
Article
Laser-Induced Synthesis of Crystalline Silicon Compounds from Aluminum–Silica–Carbon Powder
by Andrey Ivanovich Gorodov, Vyacheslav Ivanovich Pavlenko, Daria Alexandrovna Sinebok, Natalia Igorevna Cherkashina, Roman Nikolaevich Yastrebinsky, Anna Viktorovna Yastrebinskaya and Nadezhda Ivanovna Bondarenko
J. Compos. Sci. 2025, 9(12), 643; https://doi.org/10.3390/jcs9120643 - 26 Nov 2025
Viewed by 693
Abstract
The paper investigates the feasibility of laser-induced synthesis of crystalline silicon compounds from a powder system consisting of metallic aluminum, amorphous silica, and carbon atoms. Using pulsed laser radiation (wavelength 1064 nm), it is experimentally demonstrated that varying the processing parameters—pulse energy, repetition [...] Read more.
The paper investigates the feasibility of laser-induced synthesis of crystalline silicon compounds from a powder system consisting of metallic aluminum, amorphous silica, and carbon atoms. Using pulsed laser radiation (wavelength 1064 nm), it is experimentally demonstrated that varying the processing parameters—pulse energy, repetition rate, scanning speed, and pulse duration—allows for targeted control of the phase composition of the products. Modes for the selective formation of crystalline silicon, mullite, and intermediate acid-soluble aluminosilicates are established. Using a simplified thermal model, a correlation is demonstrated between the achieved temperature in the irradiation zone and the formation of specific phases, with not only the peak temperature at the laser point but also the exposure time playing a key role. It is shown that crystalline acid-soluble silicate phases preceded the formation of mullite. The results of low-temperature laser synthesis of crystalline silicon-containing materials hold great promise for various applications. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

13 pages, 6311 KB  
Article
High-Repetition-Rate Femtosecond Laser System with Time-Domain Shaping and Cooperative Chirped Pulse Amplification
by Xinjian Pan, Yuezhang Hou, Zhuoao Wen, Yuanzhu Zhou, Huiling Wu, Zhenghao Li, Zhili Li, Qingguo Gao, Chunjian Deng, Jianjun Yang and Liming Liu
Photonics 2025, 12(11), 1090; https://doi.org/10.3390/photonics12111090 - 5 Nov 2025
Viewed by 2645
Abstract
Ytterbium-doped femtosecond fiber lasers are widely used in scientific research, industrial processing, and other fields due to their high quantum efficiency, wide gain bandwidth, and compact structure. This article addresses the problems of low processing efficiency and difficulty in increasing the average power [...] Read more.
Ytterbium-doped femtosecond fiber lasers are widely used in scientific research, industrial processing, and other fields due to their high quantum efficiency, wide gain bandwidth, and compact structure. This article addresses the problems of low processing efficiency and difficulty in increasing the average power of femtosecond lasers. A high repetition rate fiber chirped pulse amplification system is built, which uses a high repetition rate Figure-9 fiber laser as the seed source and an acousto-optic modulator (AOM) to shape the dense pulse train in the time domain. The main amplification stage uses a large mode field ytterbium-doped fiber to achieve full fiberization of the amplification system, and a volume grating (VBG) is selected as the pulse compressor to make the laser system highly integrated. When the repetition rate is 67.5 MHz, the compressed output laser has an average power of 20.5 W, a pulse width of 447 fs, a pulse train energy of 750 μJ, a spot ellipticity of 0.96, and a beam quality M2 better than 1.4 (Mx2=1.33, My2=1.16). Full article
Show Figures

Figure 1

12 pages, 4468 KB  
Article
Binary-Tree Structure for Extended Range-Distributed Acoustic Sensing
by Xiangge He, Zhi Cao, Min Zhang and Hailong Lu
Appl. Sci. 2025, 15(21), 11748; https://doi.org/10.3390/app152111748 - 4 Nov 2025
Viewed by 361
Abstract
The dual-pulse heterodyne demodulation distributed acoustic sensing (HD-DAS) system has superior performance but is fundamentally limited by the short sensing range, which poses a significant obstacle to its application in long-distance monitoring. This paper proposes and experimentally demonstrates a novel binary-tree structure DAS [...] Read more.
The dual-pulse heterodyne demodulation distributed acoustic sensing (HD-DAS) system has superior performance but is fundamentally limited by the short sensing range, which poses a significant obstacle to its application in long-distance monitoring. This paper proposes and experimentally demonstrates a novel binary-tree structure DAS (BTS-DAS) aimed at overcoming this critical limitation. By physically decoupling the long-distance transmission fiber from the final sensing part, this structure effectively expands the system’s remote sensing capability without compromising the high pulse repetition rate for high-performance measurement. We identified modulation instability (MI), rather than stimulated Brillouin scattering (SBS), as the dominant nonlinear noise source in the extended fiber chain. Through careful power management, we established an optimal launch power window. The practical feasibility of the system was verified during on-site testing, where vibrations were successfully detected over a 10 km transmission link with sensing occurring in the 250 m sensing fiber segment, achieving a low background noise of −59.79 dB ref rad/Hz. This work presents a robust and scalable solution for long-range, high-performance acoustic sensing. Full article
(This article belongs to the Special Issue Advanced Optical Fiber Sensors: Applications and Technology)
Show Figures

Figure 1

17 pages, 5562 KB  
Article
Obtaining Iron Chelates and Iron Oxide Nanoparticles via Multispark Discharge Treatment of EDTA Solutions in Argon Atmosphere
by Viktoriia V. Gudkova, Valentin D. Borzosekov, Maria A. Zimina, Igor V. Moryakov, Dmitry V. Malakhov, Namik Gusein-zade and Evgeny M. Konchekov
Plasma 2025, 8(4), 45; https://doi.org/10.3390/plasma8040045 - 3 Nov 2025
Viewed by 806
Abstract
This study investigates the physicochemical processes in aqueous solutions treated with a high-current (up to 300 A) pulsed multispark discharge. Pulse length was 2 μs at a 50 Hz repetition rate. The discharge occurred within bubbles of argon injected between the stainless-steel electrodes [...] Read more.
This study investigates the physicochemical processes in aqueous solutions treated with a high-current (up to 300 A) pulsed multispark discharge. Pulse length was 2 μs at a 50 Hz repetition rate. The discharge occurred within bubbles of argon injected between the stainless-steel electrodes at the constant flow rate. The erosion of electrode material during the discharge led to iron and other alloy components entering the liquid. Optical emission spectra confirmed the erosion of electrode material (Fe, Cr, Ni atoms and ions). EDTA and its disodium salt were used in order to study their effect on the metal particle formation process. Treatment with deionized water led to an increase in conductivity and the generation of hydrogen peroxide (up to 1200 µM). In contrast, the presence of EDTA and its disodium salt drastically altered the reaction pathways: the H2O2 yield decreased, and the solution conductivity dropped substantially for the acidic form of EDTA, while the decrease was minor for EDTA-Na2. This effect is attributed to the buffered chelation of eroded metal ions, forming stable Fe-EDTA complexes, as confirmed by a characteristic absorption band at 260 nm. The results demonstrate the critical role of complex-forming agents in modulating plasma–liquid interactions, shifting the process from direct erosion products to the formation of stable coordination compounds. Full article
Show Figures

Figure 1

13 pages, 5839 KB  
Article
Surface Wettability Control Without Knowledge of Surface Topography and Chemistry—A Versatile Approach
by Alexander Wienke, Shefna Shareef, Jürgen Koch, Peter Jäschke and Stefan Kaierle
Photonics 2025, 12(11), 1055; https://doi.org/10.3390/photonics12111055 - 24 Oct 2025
Viewed by 509
Abstract
This paper introduces a versatile approach to achieve specific surface functionality with-out the need for detailed knowledge of surface topography. This is accomplished for applications targeting wettability properties by integrating contact angle measurement into a micromachining setup with a nanosecond pulsed UV laser, [...] Read more.
This paper introduces a versatile approach to achieve specific surface functionality with-out the need for detailed knowledge of surface topography. This is accomplished for applications targeting wettability properties by integrating contact angle measurement into a micromachining setup with a nanosecond pulsed UV laser, allowing for fully automated programs to find optimal functionalization without requiring knowledge on the topography or on possible laser-induced chemical changes itself. This study investigates the impact of various processing parameters, including laser pulse energy, scanning speed, hatching distance, jump speed, and laser repetition rate, on the wetting properties of two widely used polymers: polyethylene (PE) and ethylene propylene diene monomer (EPDM). A design of experiment (DOE) approach is used for experimental design and subsequent modeling. Finally, the effectiveness of this new approach is evaluated and compared with conventional methods. Full article
(This article belongs to the Special Issue Laser Surface Processing: From Fundamentals to Applications)
Show Figures

Figure 1

16 pages, 3453 KB  
Article
Finite Element Analysis of Thermal–Mechanical Coupling and Process Parameter Optimization in Laser Etching of Al–Tedlar–Kevlar Composite Films
by Ming Liu, Rui Wang, Shanglin Hou, Kaiwen Shang, Dunzhu Gesang and Guang Wei
Materials 2025, 18(21), 4839; https://doi.org/10.3390/ma18214839 - 23 Oct 2025
Viewed by 507
Abstract
Laser processing of heterogeneous composites requires a clear understanding of coupled thermal and mechanical responses to ensure structural integrity and patterning precision. In this study, a thermal–mechanical coupling model based on the finite element method was developed to investigate laser–material interactions in Al–Tedlar–Kevlar [...] Read more.
Laser processing of heterogeneous composites requires a clear understanding of coupled thermal and mechanical responses to ensure structural integrity and patterning precision. In this study, a thermal–mechanical coupling model based on the finite element method was developed to investigate laser–material interactions in Al–Tedlar–Kevlar composite films. The effects of key parameters—including pulse energy, spot size, pulse duration, and repetition frequency—on the evolution of temperature and stress fields were systematically examined. The simulations reveal that pulse energy leads to a linear rise in peak temperature, while pulse duration exerts a nonlinear influence on energy density and thermal uniformity. Increasing repetition frequency promotes thermal accumulation, enlarging the heat-affected zone. Coupled analyses further indicate significant stress concentrations at material interfaces, which may trigger delamination and compromise film reliability. Through comprehensive parameter evaluation, the optimal processing conditions were identified as 0.5 mJ pulse energy, 20 kHz repetition rate, 45 μm spot diameter, and 120 ns pulse duration. These findings clarify the governing mechanisms of thermal–mechanical interactions in multilayer composites and provide theoretical guidance for optimizing laser micropatterning processes while enhancing interfacial stability and manufacturing quality. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 12946 KB  
Article
Experimental Study on Backwater-Assisted Picosecond Laser Trepanning of 304 Stainless Steel
by Liang Wang, Rui Xia, Jie Zhou, Yefei Rong, Changjian Wu, Long Xu, Xiaoxu Han and Kaibo Xia
Metals 2025, 15(10), 1138; https://doi.org/10.3390/met15101138 - 13 Oct 2025
Cited by 1 | Viewed by 518 | Correction
Abstract
This study focuses on the high-precision microhole machining of 304 stainless steel and explores a backwater-assisted picosecond laser trepanning technique. The laser used is a 30 W green picosecond laser with a wavelength of 532 nm, a repetition rate of 1000 kHz, and [...] Read more.
This study focuses on the high-precision microhole machining of 304 stainless steel and explores a backwater-assisted picosecond laser trepanning technique. The laser used is a 30 W green picosecond laser with a wavelength of 532 nm, a repetition rate of 1000 kHz, and a pulse width of less than 15 ps. Experiments were conducted under both water-based and non-water-based laser processing environments to systematically investigate the effects of laser power and scanning cycles on hole roundness, taper, and overall hole quality. The experimental results further confirm the advantages of the backwater-assisted technique in reducing slag accumulation, minimizing roundness variation, and improving hole uniformity. In addition, thermal effects during the machining process were analyzed, showing that the water-based environment effectively suppresses the expansion of the heat-affected zone and mitigates recast layer formation, thereby enhancing hole wall quality. Compared with conventional non-water-based methods, the backwater-assisted approach demonstrates superior processing stability, better hole morphology, and more efficient thermal management. This work provides a reliable technical route and theoretical foundation for precision microhole machining of stainless steel and exhibits strong potential for engineering applications. Full article
(This article belongs to the Special Issue Laser Processing of Metallic Material)
Show Figures

Figure 1

13 pages, 2616 KB  
Article
Kilowatt-Level EUV Regenerative Amplifier Free-Electron Laser Enabled by Transverse Gradient Undulator in a Storage Ring
by Changchao He, Nanshun Huang, Tao Liu, Changliang Li, Bo Liu and Haixiao Deng
Photonics 2025, 12(10), 983; https://doi.org/10.3390/photonics12100983 - 2 Oct 2025
Viewed by 781
Abstract
High-average-power extreme ultraviolet (EUV) sources are essential for large-scale nanoscale chip manufacturing, yet commercially available laser-produced plasma sources face challenges in scaling to the kilowatt level. We propose a novel scheme that combines the high repetition rate of a diffraction-limited storage ring with [...] Read more.
High-average-power extreme ultraviolet (EUV) sources are essential for large-scale nanoscale chip manufacturing, yet commercially available laser-produced plasma sources face challenges in scaling to the kilowatt level. We propose a novel scheme that combines the high repetition rate of a diffraction-limited storage ring with a regenerative amplifier free-electron laser (RAFEL) employing a transverse gradient undulator (TGU). By introducing dispersion in the storage ring, electrons of different energies are directed into corresponding magnetic field strengths of the TGU, thereby satisfying the resonance condition under a large energy spread and increasing the FEL gain. Simulations show that at equilibrium, the average EUV power exceeds 1 kW, with an output pulse energy reaching ∼2.86 μJ, while the energy spread stabilizes at ∼0.45%. These results demonstrate the feasibility of ring-based RAFEL with TGU as a promising route toward kilowatt-level EUV sources. Full article
(This article belongs to the Special Issue Next-Generation X-Ray Optical Technologies and Applications)
Show Figures

Figure 1

12 pages, 2720 KB  
Article
Dual-Frequency Soliton Generation of a Fiber Laser with a Dual-Branch Cavity
by Xinbo Mo and Xinhai Zhang
Photonics 2025, 12(10), 981; https://doi.org/10.3390/photonics12100981 - 2 Oct 2025
Viewed by 609
Abstract
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, [...] Read more.
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, the laser can establish simultaneous operation in the normal and anomalous dispersion regimes within the respective loops, enabling the generation of two distinct soliton types. The CSs exhibit a 3 dB spectral bandwidth of 9.7750 nm and a pulse duration of 273 fs, while the DSs have a quasi-rectangular spectrum spanning 18.7074 nm and a pulse duration of 2.2 ps, which can be externally compressed to 384 fs. The fundamental repetition rate is approximately 21 MHz, with a repetition rate difference of 216 Hz for the two pulse trains. Stable second-order, third-order, and fourth-order harmonic mode-locking (HML) can be achieved through optimization of pump power and intracavity polarization states. The laser we build in this work has significant potential for applications in high-precision spectroscopy and asynchronous optical sampling. Full article
Show Figures

Figure 1

18 pages, 5317 KB  
Article
Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver
by Keegan Kelp, Dawson Wright, Kirk Schriner, Jacob Stephens, James Dickens, John Mankowski, Zach Shaw and Andreas Neuber
Energies 2025, 18(19), 5129; https://doi.org/10.3390/en18195129 - 26 Sep 2025
Viewed by 574
Abstract
This work details the development of a 10-stage solid-stage linear transformer driver (SSLTD) capable of producing 24 kV, 1 kA pulses with a rise-time of ∼10 ns utilizing SiC MOSFET switches. Throughout the development process, various design parameters were investigated for their influence [...] Read more.
This work details the development of a 10-stage solid-stage linear transformer driver (SSLTD) capable of producing 24 kV, 1 kA pulses with a rise-time of ∼10 ns utilizing SiC MOSFET switches. Throughout the development process, various design parameters were investigated for their influence on the LTD’s performance. Among these considerations was an evaluation of the behavior of several nanocrystalline magnetic core materials subject to high-voltage pulsed conditions, with an emphasis on minimizing energy losses. Another design parameter of interest lies in the physical layout of the LTD structure, particularly the diameter of the central stalk and the dielectric material, which together define the characteristics of the coaxial transmission line, as well as the overall height of each stage. The influence of each of these parameters was weighed to optimize the final design for fastest output pulse rise-time, highest efficiency, and cleanest output pulse waveform profile across varying load resistance. This work also introduces a pulsed reset technique, where repetition-rated burst testing was used to find the maximum operational frequency of the LTD without driving the magnetic cores into saturation. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

15 pages, 10639 KB  
Article
Waveform Self-Referencing Algorithm for Low-Repetition-Rate Laser Coherent Combination
by Zhuoyi Yang, Haitao Zhang, Dongxian Geng, Yixuan Huang and Jinwen Zhang
Appl. Sci. 2025, 15(19), 10430; https://doi.org/10.3390/app151910430 - 25 Sep 2025
Viewed by 516
Abstract
Indirect detection phase control algorithms, such as the dithering algorithm and the stochastic parallel gradient descent algorithm (SPGD), have simple system structures and are applicable to filled-aperture coherent combinations with high efficiency. The performances of these algorithms are limited when applied to a [...] Read more.
Indirect detection phase control algorithms, such as the dithering algorithm and the stochastic parallel gradient descent algorithm (SPGD), have simple system structures and are applicable to filled-aperture coherent combinations with high efficiency. The performances of these algorithms are limited when applied to a coherent combination of pulsed fiber lasers with a low repetition rate (≤5 kHz). Firstly, due to the overlap of the phase noise frequency and repetition rate, conventional algorithms cannot effectively distinguish the phase noise from the pulse fluctuation, and directly applying filtering will result in the phase information being filtered out. Secondly, if the pulse fluctuation is ignored and only the continuous part of the phase information is utilized, it relies on the presetting of conditions to separate the pulse from the continuous part and loses the phase information of the pulse part. In this article, we propose a waveform self-referencing algorithm (WSRA) based on a two-channel near-infrared laser coherent combination system to overcome the above challenges. Firstly, by modelling a self-referencing waveform, a nonlinear scaling operation is performed on the combined signal to generate a pseudo-continuous signal, which removes the intrinsic pulse fluctuation while preserving the phase noise information. Secondly, the phase control signal is calculated based on the pseudo-continuous signals after parallel perturbation. Finally, the phase noise is corrected by optimization. The results show that our method effectively suppresses the waveform fluctuation at a 5 kHz repetition rate, the light intensity reaches an ideal value (0.9939 Imax), and the root-mean-square (RMS) phase error is only 0.0130 λ. This method does not require the presetting of pulse detection thresholds or conditions, and solves the challenge of coherent combination at a low repetition rate, with adaptability to different pulse waveforms. Full article
(This article belongs to the Special Issue Near/Mid-Infrared Lasers: Latest Advances and Applications)
Show Figures

Figure 1

Back to TopTop