Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver
Abstract
1. Introduction
Background
2. Materials and Methods
2.1. System Setup
2.1.1. Stage Layout
2.1.2. Magnetic Reset Controls
2.2. Magnetic Materials
3. Results
3.1. Material Responses
3.2. Single-Stage Testing
3.3. Ten-Stage Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LTD | Linear Transformer Driver |
SSLTD | Solid-State Linear Transformer Driver |
SiC | Silicon Carbide |
PTFE | Polytetrafluoroethylene |
References
- Spielman, R. Pulsed-Power Innovations for Next-Generation, High-Current Drivers. IEEE Trans. Plasma Sci. 2022, 50, 2621–2627. [Google Scholar] [CrossRef]
- Azizi, M.; van Oorschot, J.; Huiskamp, T. Ultrafast Switching of SiC MOSFETs for High-Voltage Pulsed-Power Circuits. IEEE Trans. Plasma Sci. 2020, 48, 4262–4271. [Google Scholar] [CrossRef]
- Stygar, W.A.; Cuneo, M.E.; Headley, D.I.; Ives, H.C.; Leeper, R.J.; Mazarakis, M.G.; Olson, C.L.; Porter, J.L.; Wagoner, T.C.; Woodworth, J.R. Architecture of Petawatt-Class Z-Pinch Accelerators. Phys. Rev. Spec. Top.—Accel. Beams 2007, 10, 030401. [Google Scholar] [CrossRef]
- Jiang, W. Review of Solid-State Linear Transformer Driver Technology. Matter Radiat. Extrem. 2018, 3, 159–164. [Google Scholar] [CrossRef]
- Xue, H.; Yuan, Q.; Ding, W.; Meng, Y.; Wan, Z.; Wang, Y. Fast and Flexible Solid-State Linear Transformer Driver for Plasma Discharge Based on Metal Oxide Semiconductor Field Effect Transistor. Rev. Sci. Instrum. 2024, 95, 054704. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Zhu, Y.; Wang, Y.; Jiang, S.; Li, Z. Study on the Basic Characteristics of Solid-State Linear Transformer Drivers. IEEE Trans. Plasma Sci. 2020, 48, 3168–3175. [Google Scholar] [CrossRef]
- Risch, R.; Biela, J. Solid-State Marx Generator vs. Linear Transformer Driver: Comparison of Parasitics and Pulse Waveforms for Nanosecond Pulsers. In Proceedings of the 2021 IEEE Pulsed Power Conference (PPC), Denver, CO, USA, 12–16 December 2021; pp. 1–12. [Google Scholar]
- Smith, I.D. Induction voltage adders and the induction accelerator family. Phys. Rev. Spec. Top.—Accel. Beams 2004, 7, 064801. [Google Scholar] [CrossRef]
- McBride, R.D.; Stygar, W.A.; Cuneo, M.E.; Sinars, D.B.; Mazarakis, M.G.; Leckbee, J.J.; Savage., M.E.; Hutsel, B.T.; Douglass, J.D.; Kiefer, M.L.; et al. A Primer on Pulsed Power and Linear Transformer Drivers for High Energy Density Physics Applications. IEEE Trans. Plasma Sci. 2018, 46, 3928–3967. [Google Scholar] [CrossRef]
- Acosta-Lech, D.; Houck, T.L.; McHale, B.; Misch, M.K.; Sugihara, K. Multi-Pulse Performance of Amorphous Metal Magnetic Cores at High Magnetization Rates. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–28 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Taccetti, J.M.; McCrady, R.; Rose, C.R. Fast magnetization of amorphous metallic cores. In Proceedings of the 2017 IEEE 21st International Conference on Pulsed Power (PPC), Brighton, UK, 18–22 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kim, M.; Clancy, T.; Houck, T.L.; Pogue, N. Pulsed Transformer Magnetic Core Comparison of Different Materials for Pulsed Power Applications. In Proceedings of the 2023 IEEE Pulsed Power Conference (PPC), San Antonio, TX, USA, 25–29 June 2023; pp. 1–4. [Google Scholar]
- Petrescu, L.G.; Petrescu, M.C.; Cazacu, E.; Constantinescu, C.D. Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency. Materials 2021, 14, 7745. [Google Scholar] [CrossRef] [PubMed]
- Vellinger, J.; Goldmann, D.; Metzger, J.; Schramm, S. Losses of Nanocrystalline Core Materials for High Power, High Frequency Applications. In Proceedings of the PCIM Europe 2022, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 10–12 May 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Li, Y. Measurement and Simulation of Magnetic Properties of Nanocrystalline Alloys under High-Frequency Pulse Excitation. Materials 2023, 16, 2850. [Google Scholar] [CrossRef] [PubMed]
- Burdt, R.; Curry, R.D.; McDonald, K.F.; Melcher, P.; Ness, R.; Huang, C. Evaluation of nanocrystalline materials, amorphous metal alloys, and ferrites for magnetic pulse compression applications. J. Appl. Phys. 2006, 99, 08D911. [Google Scholar] [CrossRef]
- Koval’chuk, B.M.; Vizir’, V.A.; Kim, A.A.; Kumpyak, E.V.; Loginov, S.V.; Bastrikov, A.N.; Chervyakov, V.V.; Tsoi, N.V.; Monjaux, P.; Kh’yui, D. Fast primary storage device utilizing a linear pulse transformer. Russ. Phys. J. 1997, 40, 1142–1153. [Google Scholar] [CrossRef]
- Mazarakis, M.G.; Fowler, W.E.; Kim, A.A.; Sinebryukhov, V.A.; Rogowski, S.T.; Sharpe, R.A.; McDaniel, D.H.; Olson, C.L.; Porter, J.L.; Struve, K.W.; et al. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments. Phys. Rev. Spec. Top.—Accel. Beams 2009, 12, 050401. [Google Scholar] [CrossRef]
- Mazarakis, M.G.; Fowler, W.E.; LeChien, K.L.; Long, F.W.; Matzen, M.K.; McDaniel, D.H.; McKee, R.G.; Olson, C.L.; Porter, J.L.; Rogowski, S.T.; et al. High-Current Linear Transformer Driver Development at Sandia National Laboratories. IEEE Trans. Plasma Sci. 2010, 38, 704–713. [Google Scholar] [CrossRef]
- Sun, G.; Li, L.; Ding, W.; Shen, S. Bipolar Solid-State LTD Based on Push-pull Circuit. In Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 12–13 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- GeneSic Semiconductor. G2R120MT33J 3300V 120 mΩ SiC MOSFET. Rev 21 May 2021. Available online: https://www.genesicsemi.com/sic-mosfet/G2R120MT33J/G2R120MT33J.pdf (accessed on 23 September 2025).
- GeneSic Semiconductor. G2R1000MT33J 3300V 1000 mΩ SiC MOSFET. Rev 21 June 2021. Available online: https://www.genesicsemi.com/sic-mosfet/G2R1000MT33J/G2R1000MT33J.pdf (accessed on 23 September 2025).
- Metglas. FT-3W High-Performance Nanocrystalline Foil. 2015. Available online: https://metglas.com/wp-content/uploads/2016/12/FT-3W-Datasheet-Nov_2015-1.pdf (accessed on 23 September 2025).
- Howard, A.B.; Curry, R.D.; Burdt, R.A. High-dB/dt Square-Pulse Excitation of Finemet Magnetic Material. IEEE Trans. Plasma Sci. 2016, 44, 1914–1918. [Google Scholar] [CrossRef]
- Wright, D.; Kelp, K.; Klein, T.; Stephens, J.; Dickens, J.; Mankowski, J.; Shaw, Z.C.; Neuber, A. Assessing nanocrystalline pulsed transformer core performance using Maxwell ANSYS. AIP Adv. 2025, 15, 065323. [Google Scholar] [CrossRef]
- Greenwood, M.; Gowar, J.; Bird, B. A comparability parameter for amorphous magnetic materials. In Proceedings of the 7th Pulsed Power Conference, Monterey, CA, USA, 11–14 June 1989; pp. 186–189. [Google Scholar] [CrossRef]
- Hochberg, M.; Sack, M.; Mueller, G. A Test Environment for Power Semiconductor Devices Using a Gate-Boosting Circuit. IEEE Trans. Plasma Sci. 2016, 44, 2030–2034. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Y.; Gao, Y. A Novel Active Gate Driver for Improving Switching Performance of High-Power SiC MOSFET Modules. IEEE Trans. Power Electron. 2019, 34, 7775–7787. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Katsura, K.; Yamada, T.; Sato, Y. Comprehensive Evaluation of Gate Boost Driver for SiC-MOSFETs. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Collier, L.; Kajiwara, T.; Dickens, J.; Mankowski, J.; Neuber, A. Fast SiC Switching Limits for Pulsed Power Applications. IEEE Trans. Plasma Sci. 2019, 47, 5306–5313. [Google Scholar] [CrossRef]
Author (Year) | # of Stages | Rise-Time | Load | ||
---|---|---|---|---|---|
Jiang (2018 [4] | 30 | 40 ns | 29 kV | 967 V | 120 |
Rao (2020) [6] | 9 | 30.4 ns | 7.5 kV | 833 V | 100 |
Risch (2021) [7] | 5 | 4 ns | 4 kV | 800 V | 40 |
Sun (2021) [20] | 4 | 15 ns | 1.9 kV | 433 V | 50 |
Xue (2024) [5] | 10 | 6.2 ns | 8.8 kV | 880 V | 300 |
This Work (2025) | 10 | 10 ns | 24 kV | 2.4 kV | 25 |
Material | Annealing Field | (max) | (T) | (A/m) | (%) |
---|---|---|---|---|---|
FT-3W-M | No Field | 74,000 | 1.18 | 1 | 60 |
FT-3W-L | Transverse | 16,500 | 1.18 | 1 | 3 |
FT-3W-H | Longitudinal | 6000 | 1.18 | 1 | 80 |
Gate Voltage (V) | Rise-Time (ns) |
---|---|
10 | 34.4 |
15 | 15.4 |
20 | 8.7 |
25 | 7.9 |
Average | Average | Rise-Time | |
---|---|---|---|
500 V | 488 V | 9.8 A | 4.5 ns |
1 kV | 977 V | 19.8 A | 5.7 ns |
1.5 kV | 1459 V | 29.7 A | 6.7 ns |
2 kV | 1939 V | 39.3 A | 7.5 ns |
2.4 kV | 2328 V | 47 A | 7.9 ns |
(kV) | Average (kV) | Average (A) | Rise-Time (ns) |
---|---|---|---|
0.5 | 4.96 | 99 | 5.5 |
1 | 9.82 | 196 | 7 |
1.5 | 14.68 | 294 | 8.1 |
2 | 19.83 | 397 | 9.4 |
2.4 | 23.82 | 476 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelp, K.; Wright, D.; Schriner, K.; Stephens, J.; Dickens, J.; Mankowski, J.; Shaw, Z.; Neuber, A. Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver. Energies 2025, 18, 5129. https://doi.org/10.3390/en18195129
Kelp K, Wright D, Schriner K, Stephens J, Dickens J, Mankowski J, Shaw Z, Neuber A. Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver. Energies. 2025; 18(19):5129. https://doi.org/10.3390/en18195129
Chicago/Turabian StyleKelp, Keegan, Dawson Wright, Kirk Schriner, Jacob Stephens, James Dickens, John Mankowski, Zach Shaw, and Andreas Neuber. 2025. "Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver" Energies 18, no. 19: 5129. https://doi.org/10.3390/en18195129
APA StyleKelp, K., Wright, D., Schriner, K., Stephens, J., Dickens, J., Mankowski, J., Shaw, Z., & Neuber, A. (2025). Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver. Energies, 18(19), 5129. https://doi.org/10.3390/en18195129