Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (738)

Search Parameters:
Keywords = pulse generation techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5131 KB  
Article
Predictive Torque Control for Induction Machine Fed by Voltage Source Inverter: Theoretical and Experimental Analysis on Acoustic Noise
by Bouyahi Henda and Adel Khedher
Acoustics 2025, 7(4), 63; https://doi.org/10.3390/acoustics7040063 (registering DOI) - 11 Oct 2025
Abstract
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise [...] Read more.
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise source. Nowadays, the investigation of new advanced control techniques for variable speed drives has developed a potential investigation field. Finite state model predictive control has recently become a very popular research focus for power electronic converter control. The flexibility of this control shows that the switching times are generated using all the information on the drive status. Predictive Torque Control (PTC), space vector PWM and random PWM are investigated in this paper in terms of acoustic noise emitted by an induction machine fed by a three-phase two-level inverter. A comparative study based on electrical and mechanical magnitudes, as well as harmonic analysis of the stator current, is presented and discussed. An experimental test bench is also developed to examine the effect of the proposed PTC and PWM techniques on the acoustic noise of an induction motor fed by a three-phase two-level voltage source converter. Full article
Show Figures

Figure 1

13 pages, 2518 KB  
Article
Investigating Scattering Spectral Characteristics of GaAs Solar Cells by Nanosecond Pulse Laser Irradiation
by Hao Chang, Weijing Zhou, Zhilong Jian, Can Xu, Yingjie Ma and Chenyu Xiao
Aerospace 2025, 12(10), 909; https://doi.org/10.3390/aerospace12100909 - 10 Oct 2025
Abstract
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. [...] Read more.
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. Spectral detection offers a potential approach through unique “spectral fingerprints,” but the spectral characteristics of laser-damaged solar cells remain insufficiently documented. This study investigates the scattering spectral characteristics of triple-junction GaAs (Gallium Arsenide) solar cells subjected to nanosecond pulsed laser irradiation to establish spectral signatures for damage assessment. GaAs solar cells were irradiated at varying energy densities. Bidirectional Reflectance Distribution Function (BRDF) spectra (400–1200 nm) were measured. A thin-film interference model was used to simulate damage effects by varying layer thicknesses, thereby interpreting experimental results. The results demonstrate that as the laser energy density increases from 0.12 to 2.96 J/cm2, the number of absorption peaks in the visible range (400–750 nm) decreases from three to zero, and the oscillation in the near-infrared range vanishes completely, indicating progressive damage to the GaInP (Gallium Indium Phosphide) and GaAs layers. This study provides a spectral-based approach for remote assessment of laser-induced damage to solar cells, which is crucial for satellite health monitoring. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

28 pages, 1955 KB  
Article
Comparative Analysis of High-Voltage High-Frequency Pulse Generation Techniques for Pockels Cells
by Edgard Aleinikov and Vaidotas Barzdenas
Appl. Sci. 2025, 15(19), 10830; https://doi.org/10.3390/app151910830 - 9 Oct 2025
Abstract
This paper presents a comprehensive comparative analysis of high-voltage, high-frequency pulse generation techniques for Pockels cell drivers. These drivers are critical in electro-optic systems for laser modulation, where nanosecond-scale voltage pulses with amplitudes of several kilovolts are required. The study reviews key design [...] Read more.
This paper presents a comprehensive comparative analysis of high-voltage, high-frequency pulse generation techniques for Pockels cell drivers. These drivers are critical in electro-optic systems for laser modulation, where nanosecond-scale voltage pulses with amplitudes of several kilovolts are required. The study reviews key design challenges, with particular emphasis on thermal management strategies, including air, liquid, solid-state, and phase-change cooling methods. Different high-voltage, high-frequency pulse generation architectures including vacuum tubes, voltage multipliers, Marx generators, Blumlein structures, pulse-forming networks, Tesla transformers, switching-mode power supplies, solid-state switches, and high-voltage operational amplifiers are systematically evaluated with respect to cost, complexity, stability, and their suitability for driving capacitive loads. The analysis highlights hybrid approaches that integrate solid-state switching with modular multipliers or pulse-forming circuits as offering the best balance of efficiency, compactness, and reliability. The findings provide practical guidelines for developing next-generation high-performance Pockels cell drivers optimized for advanced optical and laser applications. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 5438 KB  
Article
Investigation of Constant SVPWM and Variable RPWM Strategies on Noise Generated by an Induction Motor Powered by VSI Two- or Three-Level
by Bouyahi Henda and Adel Khedher
Appl. Sci. 2025, 15(19), 10819; https://doi.org/10.3390/app151910819 - 9 Oct 2025
Viewed by 47
Abstract
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of [...] Read more.
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of electric traction. The discrete tonal bands produced by the IM stator current spectrum controlled by the fixed pulse width modulation (PWM) technique have damaging effects on the electronic noise source. Moreover, it has been factually proven that the noise content is strongly associated with the harmonics of the source feeding electric machine. Thus, the harmonic content is influenced by the control strategy VSI to produce pulse width modulation (PWM). Currently, the investigation of new advanced control techniques for variable speed drives has developed into a potential investigation file. Two fundamental topologies for a three-phase inverter have been suggested in the literature, namely two- and three-level topologies. Therefore, this paper investigated the effect of variable and fixed PWM strategies, such as random PWM (RPWM) and space vector PWM (SVPWM), on the noise generated by an IM, powered with a two- or three-level inverter. Simulation results showed the validity and efficiency of the proposed variable RPWM strategy in reducing sideband harmonics for both the two and three levels at different switching frequencies and modulation indexes. The proposed PWM strategies were further evaluated by the results of equivalent experiments on an IM fed by a two-level VSI. The experimental measurements of harmonic current and noise spectra demonstrate that the acoustic noise is reduced and dispersed totally for the RPWM strategy. Full article
Show Figures

Figure 1

12 pages, 2720 KB  
Article
Dual-Frequency Soliton Generation of a Fiber Laser with a Dual-Branch Cavity
by Xinbo Mo and Xinhai Zhang
Photonics 2025, 12(10), 981; https://doi.org/10.3390/photonics12100981 - 2 Oct 2025
Viewed by 190
Abstract
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, [...] Read more.
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, the laser can establish simultaneous operation in the normal and anomalous dispersion regimes within the respective loops, enabling the generation of two distinct soliton types. The CSs exhibit a 3 dB spectral bandwidth of 9.7750 nm and a pulse duration of 273 fs, while the DSs have a quasi-rectangular spectrum spanning 18.7074 nm and a pulse duration of 2.2 ps, which can be externally compressed to 384 fs. The fundamental repetition rate is approximately 21 MHz, with a repetition rate difference of 216 Hz for the two pulse trains. Stable second-order, third-order, and fourth-order harmonic mode-locking (HML) can be achieved through optimization of pump power and intracavity polarization states. The laser we build in this work has significant potential for applications in high-precision spectroscopy and asynchronous optical sampling. Full article
Show Figures

Figure 1

13 pages, 8905 KB  
Article
Giant Modulation of Microstructure and Ferroelectric/Piezoelectric Responses in Pb(Zr,Ti)O3 Ultrathin Films via Single-Pulse Femtosecond Laser
by Bin Wang, Mingchen Du, Hu Wang, Mengmeng Wang and Dawei Li
Nanomaterials 2025, 15(18), 1450; https://doi.org/10.3390/nano15181450 - 20 Sep 2025
Viewed by 372
Abstract
Ferroelectric oxides, such as Pb(Zr,Ti)O3 (PZT), have been shown to maintain stable ferroelectricity even in ultrathin film configurations. However, achieving controllable modulation of microstructure and physical responses in these ultrathin films remains challenging, limiting their potential applications in modern nanoelectronics and optoelectronics. [...] Read more.
Ferroelectric oxides, such as Pb(Zr,Ti)O3 (PZT), have been shown to maintain stable ferroelectricity even in ultrathin film configurations. However, achieving controllable modulation of microstructure and physical responses in these ultrathin films remains challenging, limiting their potential applications in modern nanoelectronics and optoelectronics. Here, we propose a single-pulse femtosecond (fs) laser micromachining technique for high-precision engineering of microstructure and ferroelectric/piezoelectric responses in ultrathin PZT films. The results show that various microstructures can be selectively fabricated through precise control of fs laser fluence. Specifically, nano-concave arrays are formed via low-fluence laser irradiation, which is mainly attributed to the fs laser peening effect. In contrast, nano-volcano (nano-cave) structures are generated when the laser fluence is close to or reaches the ablation threshold. Additionally, applying an fs laser pulse with fluence exceeding a critical threshold enables the formation of nano-cave structures with controlled depth and width in PZT/Pt/SiO2 multilayers. Piezoresponse force microscopy measurements demonstrate that the laser peening process significantly enhances the piezoelectric response while exerting minimal influence on the coercive field of PZT thin films. This improvement is attributed to the enhanced electromechanical energy transfer and concentrated compressive stresses distribution in PZT thin films resulting from the laser peening effect. Our study not only offers an effective strategy for microstructure and property engineering in ferroelectric materials at the nanoscale but also provides new insights into the underlying mechanism of ultrafast laser processing in ferroelectric thin films. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials (Second Edition))
Show Figures

Figure 1

18 pages, 1321 KB  
Article
Enhanced AI-Driven Harmonic Optimization in 36-Pulses Converters for SCADA Integration
by Antonio Valderrabano-Gonzalez and Carlos E. Castañeda
Electronics 2025, 14(18), 3623; https://doi.org/10.3390/electronics14183623 - 12 Sep 2025
Viewed by 407
Abstract
This paper presents an integrated approach for optimizing the performance of a 36-pulses converter system by using artificial intelligence (AI) techniques to be included in a Supervisory Control and Data Acquisition (SCADA) environment. The focus of the proposal is on enhancing harmonic reduction [...] Read more.
This paper presents an integrated approach for optimizing the performance of a 36-pulses converter system by using artificial intelligence (AI) techniques to be included in a Supervisory Control and Data Acquisition (SCADA) environment. The focus of the proposal is on enhancing harmonic reduction through intelligent adjustment of switching angles and coordinated control of the reinjection transformer included in the power converter topology. A key component of the proposed methodology involves a simulation-based process to determine optimal firing angles (α1, α2, and α3), based on Selective Harmonic Elimination (SHE) theory, that minimize Total Harmonic Distortion (THD). Using MATLAB with Simulink and PLECS models, a parametric sweep of the firing angles, generating a comprehensive dataset of THD outcomes. This dataset, consisting of THD evaluations across fine-grained angle variations, serves as the training foundation for supervised machine learning models—specifically, neural network regressors—that approximate the nonlinear mapping between firing angles and harmonic distortion. These predictive models are then employed as surrogates to estimate THD rapidly and guide the selection of optimal switching angles in real time without requiring iterative numerical solvers. Optimization heuristics and predictive models are then deployed to dynamically adapt system parameters in real time under varying load conditions. The proposed method demonstrates significant improvements in power quality and operational reliability, highlighting the potential of AI-assisted SCADA systems in advanced power electronics applications. Implementation results performed on a 36-pulses voltage source converter prototype are included to illustrate the appropriateness of the proposal. Full article
Show Figures

Figure 1

25 pages, 8078 KB  
Article
Robust Sensorless Predictive Power Control of PWM Converters Using Adaptive Neural Network-Based Virtual Flux Estimation
by Noumidia Amoura, Adel Rahoui, Boussad Boukais, Koussaila Mesbah, Abdelhakim Saim and Azeddine Houari
Electronics 2025, 14(18), 3620; https://doi.org/10.3390/electronics14183620 - 12 Sep 2025
Viewed by 404
Abstract
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) [...] Read more.
The rapid evolution of modern power systems, driven by the large-scale integration of renewable energy sources and the emergence of smart grids, presents new challenges in maintaining grid stability, power quality, and control reliability. As critical interfacing elements, three-phase pulse width modulation (PWM) converters must now ensure resilient and efficient operation under increasingly adverse and dynamic grid conditions. This paper proposes an adaptive neural network-based virtual flux (VF) estimator for sensorless predictive direct power control (PDPC) of PWM converters under nonideal grid voltage conditions. The proposed estimator is realized using an adaptive linear neuron (ADALINE) configured as a quadrature signal generator, offering robustness against grid voltage disturbances such as voltage unbalance, DC offset and harmonic distortion. In parallel, a PDPC scheme based on the extended pq theory is developed to reject active-power oscillations and to maintain near-sinusoidal grid currents under unbalanced conditions. The resulting VF-based PDPC (VF-PDPC) strategy is validated via real-time simulations on the OPAL-RT platform. Comparative analysis confirms that the ADALINE-based estimator surpasses conventional VF estimation techniques. Moreover, the VF-PDPC achieves superior performance over conventional PDPC and extended pq theory-based PDPC strategies, both of which rely on physical voltage sensors, confirming its robustness and effectiveness under non-ideal grid conditions. Full article
Show Figures

Figure 1

15 pages, 3461 KB  
Article
Research on Noise Suppression Strategies for High-Frequency Harmonic Noise in Automotive Electronic Water Pumps
by Xiaodan Feng, Xipei Ma, Pingqing Fan and Yansong Wang
World Electr. Veh. J. 2025, 16(9), 507; https://doi.org/10.3390/wevj16090507 - 9 Sep 2025
Viewed by 745
Abstract
In this paper, in order to effectively reduce the electromagnetic noise of automotive electronic water pumps, a Hybrid Random Carrier Space Vector Pulse Width Modulation Hybrid Random Carrier Space Vector Pulse Width Modulation, (HRCSVPWM) technique based on linear congruential generator (LCG) algorithm is [...] Read more.
In this paper, in order to effectively reduce the electromagnetic noise of automotive electronic water pumps, a Hybrid Random Carrier Space Vector Pulse Width Modulation Hybrid Random Carrier Space Vector Pulse Width Modulation, (HRCSVPWM) technique based on linear congruential generator (LCG) algorithm is proposed to study the suppression effect of current harmonics and acoustic vibration response with an automotive electronic water pump as the research object. Firstly, the HRCSVPWM based technique is proposed on the basis of SVPWM and pulse width modulation strategies. Secondly, the performance of random numbers generated for HRCSVPWM is analyzed, and it is proposed to use an LCG random number generator to generate excellent random numbers combined with a genetic algorithm to quickly determine the optimal values of three random parameters, namely, random number Ri, mixing degree coefficient Ki, and spreading width Ti, which enhances the stochasticity and spatial traversal of random sequences and ensures the effect of the HRSVPWM control method. Finally, simulation analysis is carried out, and a noise experimental platform is built for experimental verification. The results show that using the improved HRCSVPWM control strategy, compared with the SVPWM control strategy, the total harmonic content decreased by close to 21.81%, and the sound pressure level amplitude decreased by an average of approximately 6 dB. Full article
Show Figures

Figure 1

24 pages, 973 KB  
Review
Machine Learning in Thermography Non-Destructive Testing: A Systematic Review
by Shaoyang Peng, Sri Addepalli and Maryam Farsi
Appl. Sci. 2025, 15(17), 9624; https://doi.org/10.3390/app15179624 - 1 Sep 2025
Viewed by 1180
Abstract
This paper reviews recent advances in machine learning (ML) algorithms to improve the postprocessing and interpretation of thermographic data in non-destructive testing (NDT). While traditional NDT methods (e.g., visual inspection, ultrasonic testing) each have their own advantages and limitations, thermographic techniques (e.g., pulsed [...] Read more.
This paper reviews recent advances in machine learning (ML) algorithms to improve the postprocessing and interpretation of thermographic data in non-destructive testing (NDT). While traditional NDT methods (e.g., visual inspection, ultrasonic testing) each have their own advantages and limitations, thermographic techniques (e.g., pulsed thermography, laser thermography) have become valuable complementary tools, particularly in inspecting advanced materials such as carbon fiber-reinforced polymers (CFRPs) and superalloys. These techniques generate large volumes of thermal data, which can be challenging to analyze efficiently and accurately. This review focuses on how ML can accelerate defect detection and automated classification in thermographic NDT. We summarize currently popular algorithms and analyze the limitations of existing workflows. Furthermore, this structured analysis provides an in-depth understanding of how artificial intelligence can assist in processing NDT data, with the potential to enable more accurate defect detection and characterization in industrial applications. Full article
Show Figures

Figure 1

11 pages, 2248 KB  
Communication
Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion
by Dayu Wang, Daqian Tang, Yangyang Peng, Junxiao Zhan, Haoming Wang and Yan Zhou
Photonics 2025, 12(9), 858; https://doi.org/10.3390/photonics12090858 - 26 Aug 2025
Viewed by 574
Abstract
Quartic solitons in ultrafast fibre lasers (intra-cavity optical fibre modulation systems) have been theoretically and experimentally analysed in recent years. However, there are few reports about extra-cavity modulating quartic solitons. In this situation, the purpose of this work is to investigate a quartic [...] Read more.
Quartic solitons in ultrafast fibre lasers (intra-cavity optical fibre modulation systems) have been theoretically and experimentally analysed in recent years. However, there are few reports about extra-cavity modulating quartic solitons. In this situation, the purpose of this work is to investigate a quartic soliton’s extra-cavity modulation. In this paper, we theoretically simulate an extra-cavity-modulating quartic soliton with negative fourth-order dispersion at 1550 nm. The simulation relies on a physical model of a single-mode optical fibre system. Through controlling soliton parameters in an extra-cavity modulation system, a quartic soliton’s orthogonal polarisation modes will show unique characteristics depending on which kind of parameter is changed (seven parameters are considered for variation). For example, through the variation in the projection angle, only a horizontally polarised quartic soliton pulse is generated. These results explore the dynamics of quartic solitons in single-mode optical fibre modulation systems and are applicable to optical soliton transmission techniques in the field of optical fibre communication. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

27 pages, 4110 KB  
Article
Millisecond Laser Oblique Hole Processing of Alumina Ceramics
by Yuyang Chen, Xianshi Jia, Zhou Li, Chuan Guo, Ranfei Guo, Kai Li, Cong Wang, Wenda Cui, Changqing Song, Kai Han and Ji’an Duan
Nanomaterials 2025, 15(16), 1261; https://doi.org/10.3390/nano15161261 - 15 Aug 2025
Viewed by 550
Abstract
Alumina ceramic substrates are ideal materials for next-generation microelectronic systems and devices, widely used in aerospace, 5G communications, and LED lighting. High-quality hole processing is essential for system interconnection and device packaging. Millisecond lasers have emerged as a promising choice for hole processing [...] Read more.
Alumina ceramic substrates are ideal materials for next-generation microelectronic systems and devices, widely used in aerospace, 5G communications, and LED lighting. High-quality hole processing is essential for system interconnection and device packaging. Millisecond lasers have emerged as a promising choice for hole processing in alumina ceramic due to their high processing efficiency. However, existing research has rarely explored the mechanisms and processing techniques of millisecond laser oblique hole formation. This study systematically investigates the dynamic evolution of oblique hole processing in alumina ceramic through theoretical simulations, online detection, and process experiments. Through the simulation model, we have established the relationship between material temperature and hole depth. By analyzing the ablation phenomena on the upper and lower surfaces of the ceramic during the transient interaction process between the millisecond laser and the ceramic, the material removal mechanism in this process is elucidated. Additionally, this study examines the millisecond laser oblique hole processing technology by analyzing the influence of various laser parameters on hole formation. It reveals that appropriately increasing the single-pulse energy of millisecond lasers can optimize the material removal rate and hole taper. Ultimately, the formation mechanism of millisecond laser oblique hole processing in alumina ceramics is comprehensively summarized. The results provide theoretical and methodological guidance for high-speed laser drilling of alumina ceramic substrates. Full article
Show Figures

Graphical abstract

10 pages, 2113 KB  
Article
Generation of 27 nm Spectral Bandwidth, Two-Port Output Pulses Directly from a Yb-Doped Fiber Laser
by Junyu Chen, Mengyun Hu, Jianing Chen, Chixuan Zou, Zichen Zhao, Gantong Zhong and Shuai Yuan
Photonics 2025, 12(8), 812; https://doi.org/10.3390/photonics12080812 - 14 Aug 2025
Viewed by 1204
Abstract
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced [...] Read more.
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced to achieve broad spectral bandwidth and strong output power. The dual wavelengths were emitted from the clockwise and counterclockwise ports, respectively, and self-started mode-locking was achieved. The bidirectional output laser generates stable pulses with up to 223.5 mW average power at a 46.04 MHz repetition rate, corresponding to a pulse energy of 5 nJ. The bidirectional ultrashort outputs of the laser provide potential applications in supercontinuum generation and medical and biological applications. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

34 pages, 6943 KB  
Review
A Review on Recent Advances in Signal Processing in Interferometry
by Yifeng Wang, Fangyuan Zhao, Linbin Luo and Xinghui Li
Sensors 2025, 25(16), 5013; https://doi.org/10.3390/s25165013 - 13 Aug 2025
Cited by 2 | Viewed by 1614
Abstract
Optical interferometry provides high-precision displacement and angle measurement solutions for a wide range of cutting-edge industrial applications. One of the key factors to achieve such precision lies in highly accurate optical encoder signal processing, as well as the calibration and compensation techniques customized [...] Read more.
Optical interferometry provides high-precision displacement and angle measurement solutions for a wide range of cutting-edge industrial applications. One of the key factors to achieve such precision lies in highly accurate optical encoder signal processing, as well as the calibration and compensation techniques customized for specific measurement principles. Optical interferometric techniques, including laser interferometry and grating interferometry, are usually classified into homodyne and heterodyne systems according to their working principles. In homodyne interferometry, the displacement is determined by analyzing the phase variation of amplitude-modulated signals, and common demodulation methods include error calibration methods and ellipse parameter estimation methods. Heterodyne interferometry obtains displacement information through the phase variation of beat-frequency signals generated by the interference of two light beams with shifted frequencies, and its demodulation techniques include pulse-counting methods, quadrature phase-locked methods, and Kalman filtering. This paper comprehensively reviews the widely used signal processing techniques in optical interferometric measurements over the past two decades and conducts a comparative analysis based on the characteristics of different methods to highlight their respective advantages and limitations. Finally, the hardware platforms commonly used for optical interference signal processing are introduced. Full article
Show Figures

Figure 1

13 pages, 4450 KB  
Article
Laser-Based Selective Removal of EMI Shielding Layers in System-in-Package (SiP) Modules
by Xuan-Bach Le, Won Yong Choi, Keejun Han and Sung-Hoon Choa
Micromachines 2025, 16(8), 925; https://doi.org/10.3390/mi16080925 - 11 Aug 2025
Viewed by 745
Abstract
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, [...] Read more.
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, we propose a novel, laser-based approach for the selective removal of EMI shielding layers without physical masking. Numerical simulations were conducted to investigate the thermal and mechanical behavior of multilayer EMI shielding structures under two irradiation modes: full-area and laser scanning. The results showed that the laser scanning method induced higher interfacial shear stress, reaching up to 38.6 MPa, compared to full-area irradiation (12.5 MPa), effectively promoting delamination while maintaining the integrity of the underlying epoxy mold compound (EMC). Experimental validation using a nanosecond pulsed fiber laser confirmed that complete removal of the EMI shielding layer could be achieved at optimized laser powers (~6 W) without damaging the EMC, whereas excessive power (8 W) caused material degradation. The laser scanning speed was 50 mm/s, and the total laser irradiation time of the package was 0.14 s, which was very fast. This study demonstrates the feasibility of a non-contact, damage-free, and selective EMI shielding removal technique, offering a promising solution for next-generation semiconductor packaging. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

Back to TopTop