Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion
Abstract
1. Introduction
2. Theoretical Physical Model
3. Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wang, M.H. Research progress on all-polarization-maintaining mode-locked fiber lasers. Photonics 2025, 12, 36. [Google Scholar] [CrossRef]
- Agrawal, G.P. Temporal reflection from ultrashort solitons in nonlinear dispersive medium: Impact of Raman scattering. Photonics 2024, 11, 1189. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zeng, Q.; Yang, Y.Z.; Du, G.G.; Ji, J.H.; Song, Y.F.; Wang, Z.H.; Wang, K. Generation and dynamics of multiple pulses in an ultrafast fiber laser with a single-mode fiber-graded-index multimode fiber-single-mode fiber-based saturable absorber. Photonics 2024, 11, 52. [Google Scholar] [CrossRef]
- Yildirim, Y.; Biswas, A. Optical solitons for the concatenation model with differential group delay having multiplicative white noise by F-expansion approach. Phys. Lett. A 2024, 527, 129998. [Google Scholar] [CrossRef]
- González-Gaxiola, O.; Biswas, A.; Moraru, L.; Moldovanu, S. Highly dispersive optical solitons in absence of self-phase modulation by Laplace-Adomian decomposition. Photonics 2023, 10, 114. [Google Scholar] [CrossRef]
- Zhong, W.P.; Belić, M.; Yang, Z.P. Optical wave packet compression using counterpropagating Scorer beams. Commun. Theor. Phys. 2025, 77, 055501. [Google Scholar] [CrossRef]
- Feng, N.; Yuan, Z.R.; Tang, H.T.; Zhou, R.L.; Nakkeeran, K.; Ji, E.C. Dispersion-managed all polarization-maintaining 2μm mode-locked fiber laser with nonreciprocal phase bias. Opt. Laser Technol. 2025, 183, 112340. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, H.D.; Zheng, J.W.; Li, J.B.; Zhang, F.; Fan, M.Q.; Xiang, X.J.; Tian, X.C.; Huang, Z.M.; Zhang, R.; et al. Transient behaviors in a spectrum-tailored all-PM NALM mode-locked fiber laser. Opt. Express 2024, 32, 25223–25234. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Jia, S.J.; Wang, S.B.; Farrell, G.; Li, Z.R.; Wang, P.F. Observation of mid infrared domain-wall dark pulses in an Er3+/Pr3+ co-doped InF3-glass based fiber laser. J. Light. Technol. 2025, 43, 4940–4944. [Google Scholar] [CrossRef]
- Lv, C.; Yin, B.; Ding, X.R.; Lv, Y.Z.; Wang, Y.M.; Sun, Z.G.; Xiao, S.Y.; Wang, M.G.; Pei, L.; Wu, S.H. Switchable dual-wavelength bright/dark pulses cylindrical vector beams fiber laser based on SMF-GIFMF-SMF as saturable absorber. Opt. Laser Technol. 2025, 184, 112513. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.W.; Lin, W.; Hu, X.; Xu, H.J.; Ma, Y.C.; Liang, Z.H.; Ling, L.; Xiong, Z.J.; Guo, Y.K.; et al. Polarization symmetry breaking of GHz dissipative solitons. Phys. Rev. Lett. 2025, 134, 213803. [Google Scholar] [CrossRef]
- Huang, X.Z.; Li, X.H.; Chen, E.C.; Pan, Z.W.; Guo, P.L.; Sun, L.X.; Wang, Y.S.; Zhao, W. Power-guided asymmetrical vector dissipative soliton molecules in a compact fiber resonator. IEEE J. Sel. Top. Quant. 2024, 30, 2100106. [Google Scholar] [CrossRef]
- Li, M.; Qin, L.; Li, X.W.; Zhang, J.X.; Zhang, Y.B.; Li, J.S.; Li, S.G.; Li, G. Study on characteristics of noise-like pulses and dissipative soliton resonance pulses in nonlinear multimode interference mode-locked fiber lasers. Opt. Laser Technol. 2025, 187, 112799. [Google Scholar] [CrossRef]
- Zhao, D.S.; Zhu, X.R.; Wu, Z.X.; Wang, J.W.; Li, X.; Tian, L.; Chen, L.R.; Zheng, Y.H. Direct generation and amplification of ultra-broadband noise-like pulse in an all-PM Tm-doped fiber laser system. J. Light. Technol. 2025, 43, 5843–5849. [Google Scholar] [CrossRef]
- Li, Y.; Mu, Y.; Xi, F.; Wang, X.; Li, X.H. 1.6 μm dissipative soliton resonance fiber laser based on nonlinear loop mirror. Opt. Laser Technol. 2025, 183, 112304. [Google Scholar] [CrossRef]
- Zou, J.H.; Pang, X.Y.; Luo, Z.Q. All-fiber mode-locked deep-red laser by a phase-biased NOLM. J. Light. Technol. 2025, 43, 4981–4987. [Google Scholar] [CrossRef]
- Yao, B.C.; Wang, W.T.; Xie, Z.D.; Zhou, Q.; Tan, T.; Zhou, H.; Guo, G.C.; Zhu, S.N.; Zhu, N.H.; Wong, C.W. Interdisciplinary advances in microcombs: Bridging physics and information technology. Elight 2024, 4, 19. [Google Scholar] [CrossRef]
- Yang, Q.F.; Hu, Y.W.; Torres-Company, V.; Vahala, K. Efficient microresonator frequency combs. Elight 2024, 4, 18. [Google Scholar] [CrossRef]
- Dai, X.L.; Qi, Y.Y.; Yu, Q.X.; He, C.J.; Yang, S.; Lu, Z.W. Comparative robustness analysis of quadratic solitons and pure-quartic solitons. Chaos Solitons Fract. 2025, 197, 116506. [Google Scholar] [CrossRef]
- Zou, D.F.; Guo, P.L.; Liu, R.M.; Zhang, A.Y.; Li, J.L.; Chen, G.J.; Dang, H.; Li, X.H.; Song, Y.J.; Shum, P.P. Quantum diffusion of pure-quartic solitons in a laser cavity. Opt. Express 2025, 33, 1427–1447. [Google Scholar] [CrossRef]
- Blanco-Redondo, A.; de Sterke, C.M.; Sipe, J.E.; Krauss, T.F.; Eggleton, B.J.; Husko, C. Pure-quartic solitons. Nat. Commun. 2016, 7, 10427. [Google Scholar] [CrossRef]
- Runge, A.F.J.; Hudson, D.D.; Tam, K.K.K.; de Sterke, C.M.; Blanco-Redondo, A. The pure-quartic soliton laser. Nat. Photonics 2020, 14, 492–497. [Google Scholar] [CrossRef]
- Wang, Z.T.; Mao, Y.F.; Ling, X.H.; Zhang, L.F. Nonlinear evolution of modulational instability under the interaction of Kerr nonlinearity with pure higher, even-order dispersion. Opt. Express 2023, 31, 42338–42346. [Google Scholar] [CrossRef]
- Zhang, J.H.; Jia, Y.H.; Lan, W.Z.; Kudryashov, N.A.; Wang, X.Y.; Dai, C.Q. From metastable to stable states: Stability and explosion of pure-quartic soliton induced by the spectral filtering in fiber laser. Chaos Solitons Fract. 2025, 192, 116094. [Google Scholar] [CrossRef]
- Zhang, J.H.; Qin, H.Q.; Si, Z.Z.; Jia, Y.H.; Kudryashov, N.A.; Wang, Y.Y.; Dai, C.Q. Pure-quartic soliton attracted state and multi-soliton molecules in mode-locked fiber lasers. Chaos Solitons Fract. 2024, 187, 115380. [Google Scholar] [CrossRef]
- Song, Y.F.; Huang, S.P.; Wang, Z.H.; Lin, J.H.; Tung, J.C. High-performance tunable vector soliton pulse generation in Thulium-Holmium co-doped fiber lasers utilizing a HNLF-GIMF saturable absorber. J. Light. Technol. 2025, 43, 4988–4994. [Google Scholar] [CrossRef]
- Lan, H.W.; Chen, F.L.; Komarov, A.; Komarov, K.; Tang, X.H.; Tang, M.; Zhu, H.Y.; Zhao, L.M. Period-doubling bifurcation and polarization dynamics of vector solitons in a fiber laser. Phys. Rev. A 2024, 110, 053505. [Google Scholar] [CrossRef]
- Li, K.X.; Wang, X.D.; Geng, X.; Lu, M.X.; Fu, M.Z.; Fan, Y.H.; Li, S.W. Real-time observation of stationary and pulsating noise-like vector pulses in a fiber laser. Opt. Express 2023, 31, 23406–23418. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhang, Y.S.; Wang, H.M.; Tang, D.Q.; Zhan, J.X.; Zhou, Y. Extra-cavity modulating a dark bisoliton. Phys. Scr. 2025, 100, 015541. [Google Scholar] [CrossRef]
- Tang, D.Q.; Zhan, J.X.; Wang, D.Y.; Wang, H.M.; Peng, Y.Y.; Tiu, Z.C.; Zhou, Y. Extra-cavity modulating a soliton molecule with chirped Gaussian pulse shape. Photonics 2024, 11, 1098. [Google Scholar] [CrossRef]
- Wu, Z.C.; Hua, S.H.; Xu, C.Y.; Zhao, Y.Z.; Pan, J.X.; Luo, D.; Zhang, J.; Huang, T.Y. Extra-cavity manipulation from traditional scalar to flexible vector solitons. J. Opt. Soc. Am. B 2022, 39, 2181–2185. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.F.; Fang, Y.Z.; Liao, M.S. Generation of pseudo-high-order polarization-locked vector solitons. J. Technol. 2020, 20, 196–201. [Google Scholar]
- Kim, C.J.; Lu, X.D.; Kong, D.M.; Chen, N.; Chen, Y.T.; Oxenløwe, L.K.; Yvind, K.; Zhang, X.L.; Yang, L.; Pu, M.H.; et al. Parity-time symmetry enabled ultra-efficient nonlinear optical signal processing. Elight 2024, 4, 6. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Tang, D.; Peng, Y.; Zhan, J.; Wang, H.; Zhou, Y. Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion. Photonics 2025, 12, 858. https://doi.org/10.3390/photonics12090858
Wang D, Tang D, Peng Y, Zhan J, Wang H, Zhou Y. Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion. Photonics. 2025; 12(9):858. https://doi.org/10.3390/photonics12090858
Chicago/Turabian StyleWang, Dayu, Daqian Tang, Yangyang Peng, Junxiao Zhan, Haoming Wang, and Yan Zhou. 2025. "Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion" Photonics 12, no. 9: 858. https://doi.org/10.3390/photonics12090858
APA StyleWang, D., Tang, D., Peng, Y., Zhan, J., Wang, H., & Zhou, Y. (2025). Extra-Cavity Modulation of a Quartic Soliton with Negative Fourth-Order Dispersion. Photonics, 12(9), 858. https://doi.org/10.3390/photonics12090858