Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = pulp and by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 88
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 978
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

19 pages, 6125 KiB  
Article
Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds
by Chenxu Zhao, Junpeng Niu, Wei Wang, Yebo Wang, Linlin Cheng, Yonghong Meng, Yurong Guo and Shujie Song
Foods 2025, 14(13), 2322; https://doi.org/10.3390/foods14132322 - 30 Jun 2025
Viewed by 338
Abstract
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored [...] Read more.
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored at −20 °C for 0, 3, 6, 9, and 12 months as the research materials, the dynamic changes in the phenotype, color, antioxidant activity, and flavor compounds were comprehensively evaluated. The results showed that frozen storage caused a significant decline in the quality of the fruit pulp. Specifically, the contents of chlorophyll and carotenoids decreased and the color deteriorated (color difference increased); the turbidity and centrifugal sedimentation rates increased, and pH and viscosity changed in different stages. Additionally, antioxidant compounds, such as vitamin C and total phenols, were significantly reduced with the extension of storage duration, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability was decreased. The content of volatile aroma compounds diminished, leading to a notable shift in the flavor profile. Correlation analysis revealed that changes in volatile substances were significantly correlated with physical, chemical, and antioxidant indicators (p < 0.05). These correlations can serve as a key basis for assessing quality deterioration. This study systematically elucidated, for the first time, the mechanism of quality deterioration in kiwifruit pulp during frozen storage, thereby providing theoretical support for enterprises to optimize pulp grading strategies and the timing of by-product development. Hence, it is recommended that the duration of freezing should be limited to less than 9 months for kiwifruit pulp. Moreover, it is essential to consider varietal differences and new pretreatment technologies to further enhance the industrial utilization and economic value of frozen pulp. Full article
Show Figures

Figure 1

33 pages, 2663 KiB  
Review
Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed
by Javier Echave, Antía G. Pereira, Ana O. S. Jorge, Paula Barciela, Rafael Nogueira-Marques, Ezgi N. Yuksek, María B. P. P. Oliveira, Lillian Barros and M. A. Prieto
Molecules 2025, 30(13), 2726; https://doi.org/10.3390/molecules30132726 - 25 Jun 2025
Viewed by 541
Abstract
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being [...] Read more.
Grape (Vitis vinifera L.) is one of the most extensively cultivated crops in temperate climates, with its primary fate being wine production, which is paired with a great generation of grape pomace (GP). GP contains a plethora of antioxidant phenolic compounds, being well-known for its high content of various tannins, liable for the astringency of this fruit. Winemaking produces a great mass of by-products that are rich in tannins. Grape seed (GSd) and pulp waste, as well as leaves and stems (GSt), are rich in condensed tannins (CTs), while its skin (GSk) contains more flavonols and phenolic acids. CTs are polymers of flavan-3-ols, and their antioxidant and anti-inflammatory properties are well-accounted for, being the subject of extensive research for various applications. CTs from the diverse fractions of grapefruit and grapevine share similar structures given their composition but diverge in their degree of polymerization, which can modulate their chemical interactions and may be present at around 30 to 80 mg/g, depending on the grape fraction. Thus, this prominent agroindustrial by-product, which is usually managed as raw animal feed or further fermented for liquor production, can be valorized as a source of tannins with high added value. The present review addresses current knowledge on tannin diversity in grapefruit and grapevine by-products, assessing the differences in composition, quantity, and degree of polymerization. Current knowledge of their reported bioactivities will be discussed, linking them to their current and potential applications in food and feed. Full article
Show Figures

Figure 1

25 pages, 6421 KiB  
Article
Potential of Carob Pulp Powder: Influence of Cultivar on Nutritional Composition, Antioxidant Activity, and Functional Properties
by Carme Garau, Mónica Umaña, Miquel Llompart, Ismael Velázquez, Isabel Gálvez and Susana Simal
Molecules 2025, 30(13), 2715; https://doi.org/10.3390/molecules30132715 - 24 Jun 2025
Viewed by 317
Abstract
Carob pulp powder (CPP), a by-product of Ceratonia siliqua L., is rich in bioactive compounds with potential for functional foods. This study evaluated how genetic variability among cultivars affects the nutritional composition and functional quality of CPP. Nineteen cultivars from Majorca (13), Ibiza [...] Read more.
Carob pulp powder (CPP), a by-product of Ceratonia siliqua L., is rich in bioactive compounds with potential for functional foods. This study evaluated how genetic variability among cultivars affects the nutritional composition and functional quality of CPP. Nineteen cultivars from Majorca (13), Ibiza (4), and two open-flowering selections were grown under identical conditions in Majorca, Spain. CPP samples showed high dietary fibre (22.6–47.4 g/100 g dry matter), total sugars (22.5–62.5 g/100 g dm), and antioxidant activity (11.1–78.4 µmol TE/g dm, CUPRAC method). Significant differences among cultivars were observed in protein and fructose content, fatty acid profiles, antioxidant activity, colour, acidity, and functional properties like water- and oil-holding capacities. Principal component analysis distinguished the Ibiza cultivars by higher soluble solids, fructose, and stearic acid content but lower antioxidant activity. Open-flowering selections exhibited the highest antioxidant and water retention capacities. These results confirm that genetic origin strongly influences CPP’s nutritional and functional traits, endorsing its use as a natural, health-promoting ingredient for functional food development. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
The Effect of Freeze-Dried Cherry Pomace and Red Potato Pulp on the Content of Bioactive Substances in Pasta
by Dorota Gumul, Wiktor Berski, Eva Ivanišová, Joanna Oracz and Marek Kruczek
Int. J. Mol. Sci. 2025, 26(13), 6020; https://doi.org/10.3390/ijms26136020 - 23 Jun 2025
Viewed by 296
Abstract
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content [...] Read more.
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content of health-promoting ingredients, such as dietary fiber, minerals, vitamins, and polyphenols. Food industry by-products, or even waste, can be applied as a source of many bioactive substances, thus enriching pasta with bioactive ingredients. Two by-products, Cherry Pomace (CP) and Red Potato Pulp (RPP) were applied as health-promoting supplements for wheat pasta, at three levels (10, 20, and 30%). The antioxidant potential of the resulting pasta was examined (by DPPH, ABTS, FRAP, and FOMO methods), and the antioxidant’s content was also tested. The amount of polyphenols determined by HPLC was higher in the case of CP than in RPP, and the main ones were 5-O-Caffeoylquinic acid and Cyanidin 3-O-rutinoside in CP, whereas for RPP it was Pelargonidin 3-(4‴-p-coumaroylrutinoside)-5-glucoside. Fortified pasta samples were characterized by a higher content of total polyphenols and phenolic acids, flavonoids, flavanols, and anthocyanins. In pasta with a share of CP, some polyphenols were unstable during pasta production. Pasta with a share of CP was characterized by very high antioxidant activity due to a high level of phenolic acids and anthocyanins acting synergistically. It was also characterized by a higher content of phytosterols. A 30% addition of CP into pasta is considered the most beneficial in terms of increasing the health-promoting properties of such a product. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Compounds in Human Health)
Show Figures

Graphical abstract

15 pages, 3440 KiB  
Article
Catechol-Modified Alkali Lignin for Cr (VI) Removal from Synthetic Wastewater
by Chenkun Yu, Ze Liang, Ruoyao Zhou, Tingting Gao, Zhaojiang Wang, Xiaoxia Cai, Qian Lu, Cong Li, Jinshui Yao and Qinze Liu
Polymers 2025, 17(12), 1658; https://doi.org/10.3390/polym17121658 - 15 Jun 2025
Viewed by 514
Abstract
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater [...] Read more.
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater or convert it to Cr (III), catechol-modified alkali lignin (CAL) was prepared using catechol, acetone, and alkali lignin, which is a byproduct in the paper-pulping process. The sample was characterized using a combination of techniques, including scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Various factors influencing the adsorption behavior of CAL were investigated. The adsorption behavior aligns with the pseudo-second-order kinetic model and adheres to the Langmuir isotherm model. CAL simultaneously achieves Cr (VI) adsorption (498.4 mg/g) and reduction (54.6% to Cr (III)), surpassing single-function lignin adsorbents by integrating catechol’s redox capacity with lignin’s structural stability, which is another way to efficiently utilize Cr (VI) solutions. The mechanism of adsorption and reduction is discussed, which is influenced by its functional groups. In brief, this method paves a new path for the utilization of alkali lignin and provides novel opportunities for the removal of Cr (VI) contamination. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

19 pages, 586 KiB  
Article
In Vitro Antioxidant, Antithrombotic and Anti-Inflammatory Activities of Bioactive Metabolites Extracted from Kiwi and Its By-Products
by Anastasia Maria Moysidou, Konstantina Cheimpeloglou, Spyridoula Ioanna Koutra, Vasileios Manousakis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha and Alexandros Tsoupras
Metabolites 2025, 15(6), 400; https://doi.org/10.3390/metabo15060400 - 13 Jun 2025
Viewed by 582
Abstract
Background/Objectives: Growing interest in natural, health-promoting ingredients for functional foods, nutraceuticals, and cosmetics has increased the demand for bioactive compounds from kiwi (Actinidia deliciosa). This study aimed to assess the antioxidant, anti-inflammatory, and antithrombotic properties of amphiphilic bioactives extracted from kiwi fruit and [...] Read more.
Background/Objectives: Growing interest in natural, health-promoting ingredients for functional foods, nutraceuticals, and cosmetics has increased the demand for bioactive compounds from kiwi (Actinidia deliciosa). This study aimed to assess the antioxidant, anti-inflammatory, and antithrombotic properties of amphiphilic bioactives extracted from kiwi fruit and its by-products, including peel, seeds, and pulp. Methods: Bioactive compounds were extracted and analyzed using liquid chromatography–mass spectrometry (LC–MS) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy. Antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays. Anti-inflammatory and antithrombotic effects were assessed through inhibition of platelet aggregation induced by platelet-activating factor (PAF) and adenosine diphosphate (ADP) in human platelets. Results: All extracts showed significant antioxidant activity. FTIR and LC–MS analyses confirmed the presence of phenolics, flavonoids, carotenoids, and polar lipids. Kiwi peel extract exhibited the strongest inhibition of PAF- and ADP-induced platelet aggregation, attributed to its higher content of phenolics and unsaturated polar lipids. LC–MS data indicated a favorable fatty acid profile with high omega-9 levels and a low omega-6/omega-3 ratio. Polar lipid structural analysis revealed a predominance of phospholipids with unsaturated fatty acids at the sn-2 position. Conclusions: Kiwi by-products are valuable sources of health-promoting bioactives with antioxidant and anti-inflammatory potential. These findings support their incorporation into nutraceutical, nutricosmetic, and cosmeceutical products and lay the groundwork for further studies on safety, efficacy, and practical application. Full article
Show Figures

Figure 1

26 pages, 4446 KiB  
Article
Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties
by Halima Belhadad, Nadir Bellel and Ana Bras
Buildings 2025, 15(11), 1950; https://doi.org/10.3390/buildings15111950 - 4 Jun 2025
Viewed by 472
Abstract
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and [...] Read more.
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and a porous aggregate, without further fractionation, to evaluate its influence on the hygrothermal and mechanical behavior of cementitious composites. While prior studies have often focused selectively on thermal conductivity, this work provides a comprehensive assessment of all major thermal parameters; including diffusivity, effusivity, and specific heat capacity; offering deeper insights into the full thermal behavior of bio-based concretes. OH was incorporated at 0%, 10%, and 20% by weight, and the resulting concretes were subjected to a comprehensive characterization of their thermal, hygric, mechanical, and microstructural properties. Thermal performance metrics included conductivity, specific heat capacity, diffusivity, effusivity, time lag, and predicted energy savings. Hygric behavior was assessed through the moisture buffering value (MBV), while density, porosity, and mechanical strengths were also evaluated. At 20% OH content, thermal conductivity decreased to 0.405 W/m·K (a 72% reduction), thermal diffusivity dropped by 87%, and thermal effusivity reached 554 W·s0.5/m2·K, collectively enhancing thermal inertia and increasing the time lag by 77% (to 2.32 h). MBVs improved to 2.18 g/m2·%RH, rated as “Excellent” for indoor moisture regulation. Despite the higher porosity, the bio-concrete maintained adequate mechanical integrity, with compressive and flexural strengths of 11.68 MPa and 3.58 MPa, respectively, attributed to the crack-bridging action of the fibrous inclusions. Microstructural analysis (SEM/XRD) revealed improved paste continuity and denser C–S–H formation, attributed to enhanced matrix compatibility following oil removal via thermal pre-treatment. These findings demonstrate the viability of OH as a new bio-based, multifunctional additive for fabricating thermally efficient, hygroscopically active, and structurally sound concretes suitable for sustainable construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

12 pages, 574 KiB  
Article
Bioactive Potential of Arazá (Eugenia stipitata) Seeds: Hypoglycemic, Antiradical, and Nutritional Properties
by Claudia Cristina Pérez Jaramillo, Jonh Jairo Méndez Arteaga, Liceth N. Cuéllar Álvarez and Walter Murillo Arango
Plants 2025, 14(11), 1662; https://doi.org/10.3390/plants14111662 - 30 May 2025
Viewed by 443
Abstract
Arazá (Eugenia stipitata) seeds, which are an abundant byproduct of pulp processing in the Amazon region, represent up to 84% of the fruit’s dry matter and remain underutilized. This study investigates, for the first time, the bioactive potential of hydroethanolic (70:30) [...] Read more.
Arazá (Eugenia stipitata) seeds, which are an abundant byproduct of pulp processing in the Amazon region, represent up to 84% of the fruit’s dry matter and remain underutilized. This study investigates, for the first time, the bioactive potential of hydroethanolic (70:30) extracts from Arazá seeds (ASs) to inhibit key enzymes related to glycemic and cholesterol regulation, specifically α-amylase, α-glucosidase, and HMG-CoA reductase. Additionally, the proximate characterization, antioxidant capacity assessment, and LC-MS analysis of phenolic compound composition were performed. The results demonstrated that the hydroethanolic extracts exhibited the significant inhibition of α-amylase and α-glucosidase, with IC50 values of 47.06 and 49.99 µg/mL, respectively. This inhibitory activity correlates with the total phenolic content (155.88 ± 6.12 mg GAE/g dry weight) and compounds such as epicatechin gallate and p-hydroxybenzoic acid. The extract also showed a high capacity to scavenge the DPPH radicals (IC50 = 46.63 µg/mL), although no inhibition of HMG-CoA reductase or cytotoxicity in blood cells was observed. Proximate analysis revealed that ASs are low in lipids (0.16%), proteins (4.96%), and ash (0.82%) but contain a considerable amount of fiber (27.7%). These findings suggest that ASs represent a valuable byproduct with potential for further research on its application in diabetes management. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

36 pages, 2259 KiB  
Review
Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization
by Ramesh Kumar Saini, Mohammad Imtiyaj Khan, Vikas Kumar, Xiaomin Shang, Ji-Ho Lee and Eun-Young Ko
Antioxidants 2025, 14(6), 650; https://doi.org/10.3390/antiox14060650 - 28 May 2025
Viewed by 1115
Abstract
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, [...] Read more.
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, discarded by-products such as fruit and vegetable peels contain more bioactive compounds than edible pulp. Thus, valorizing this waste and these by-products for commercially vital bioactive products can solve their disposal problems and help alleviate climate change crises. Additionally, it can generate surplus revenue, significantly improving food production and processing economics. Interestingly, several bioactive extracts derived from citrus peel, carrot pomace, olive leaf, and grape seed are commercially available, highlighting the importance of agro-food waste and by-product valorization. Considering this background information, this review aims to provide holistic information on major AIBPs; recovery methods of bioactive compounds focusing on polyphenols, carotenoids, oligosaccharides, and pectin; microencapsulation of isolated bioactive for enhanced physical, chemical, and biological properties; and their commercial application. In addition, green extraction methods are discussed, which have several advantages over conventional extraction. The concept of the circular bio-economy approach, challenges in waste valorization, and future perspective are also discussed. Full article
(This article belongs to the Special Issue Valorization of Waste Through Antioxidant Extraction and Utilization)
Show Figures

Figure 1

26 pages, 1591 KiB  
Review
Apple Waste/By-Products and Microbial Resources to Promote the Design of Added-Value Foods: A Review
by Hiba Selmi, Ester Presutto, Martina Totaro, Giuseppe Spano, Vittorio Capozzi and Mariagiovanna Fragasso
Foods 2025, 14(11), 1850; https://doi.org/10.3390/foods14111850 - 22 May 2025
Viewed by 982
Abstract
Apple fruit is among the most consumed fruits in the world, both in fresh and processed forms (e.g., ready-to-eat fresh slices, juice, jam, cider, and dried slices). During apple consumption/processing, a significant amount of apple residue is discarded. These residues can also be [...] Read more.
Apple fruit is among the most consumed fruits in the world, both in fresh and processed forms (e.g., ready-to-eat fresh slices, juice, jam, cider, and dried slices). During apple consumption/processing, a significant amount of apple residue is discarded. These residues can also be interesting materials to exploit, particularly for direct valorization in the design of added-value foods. In fact, apple waste/by-products are rich in essential components, including sugars, proteins, dietary fibers, and phenolic compounds, as they comprise apple peels, seeds, and pulp (solid residue of juice production). In this sense, the current review paper presents an overview of the nutritional composition of apple waste/by-products, and mainly apple pomace, highlighting their application in producing value-added products through microbial biotechnology. If appropriately managed, apple by-products can generate a variety of useful compounds required in food (as well as in feed, pharmaceutics, and bioenergy). Recent strategies for the synergic use of apple waste/by-products and microbial resources such as lactic acid bacteria and yeasts are discussed. This review contributes to defining a reference framework for valorizing apple waste/by-products from a circular economy perspective through the application of bioprocesses (e.g., fermentation), mainly oriented towards designing foods with improved quality attributes. Full article
Show Figures

Figure 1

14 pages, 1550 KiB  
Article
Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production
by Gayane Mikoyan, Liana Vanyan, Akerke Toleugazykyzy, Roza Bekbayeva, Kamila Baichiyeva, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(10), 2648; https://doi.org/10.3390/en18102648 - 20 May 2025
Cited by 1 | Viewed by 839
Abstract
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP [...] Read more.
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP was pretreated via thermochemical hydrolysis, and the effects of substrate concentration, dilution, and glycerol supplementation were evaluated. Hydrogen production was highly dependent on substrate dilution and nutrient balance. The septuple mutant achieved the highest H2 yield in 30 g L−1 SBP hydrolysate (0.75% sulfuric acid) at 5× dilution with glycerol, reaching 12.06 mmol H2 (g sugar)−1 and 0.28 mmol H2 (g waste)−1, while the wild type under the same conditions yielded 3.78 mmol H2 (g sugar)−1 and 0.25 mmol H2 (g waste)−1. In contrast, undiluted hydrolysates favored biomass accumulation over H2 production, with the highest biomass yield (0.3 g CDW L−1) obtained using the septuple mutant in 30 g L−1 SBP hydrolysate without glycerol. These findings highlight the potential of genetically optimized E. coli and optimized hydrolysate conditions to enhance the valorization of agro-industrial waste, supporting future advances in sustainable hydrogen bioeconomy and integrated waste biorefineries. Full article
Show Figures

Figure 1

14 pages, 515 KiB  
Article
Potential Use of Tropical and Subtropical Fruits By-Products in Pig Diet: In Vitro Two-Step Evaluation
by Dieu donné Kiatti, Francesco Serrapica, Nadia Musco, Rossella Di Palo and Serena Calabrò
Animals 2025, 15(10), 1454; https://doi.org/10.3390/ani15101454 - 17 May 2025
Viewed by 502
Abstract
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew [...] Read more.
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew and mango fruits, a huge amount of waste is generated, which is generally discarded into the environment, contributing to global pollution and water contamination. This study aims to propose alternative feeds for pigs by characterizing cashew, pineapple and mango fruit by-products through an in vitro two-step (gastro-intestinal and caecum) study to provide feeds not competing with humans and promoting eco-sustainable livestock. Ten by-products [i.e., pineapple peel and pomace; cashew nut testa, cashew (var. yellow) whole fruit and pomace; cashew (var. red) whole fruit and pomace; mango peel, kernel and testa] were sampled in Benin. The samples involved chemical analysis and an in vitro two-step digestion method (enzymatic + microbial digestibility). The results report a low dry matter (DM) content specifically in the pomace, peel and whole apple (13.0–27.2%), while higher lipids were observed for cashew nut testa and mango kernel (26.4 and 11.2% DM). The investigated by-products fall within the interval of referenced feeds for structural carbohydrates (NDF: 7.6–47.1% DM) and protein (6.21–51.2% DM), except mango by-products with a low content of protein (2.51–4.69% DM). The total dry matter digestibility, short-chain fatty acid and gas production were low for cashew by-products and stopped after 48 h of incubation. Pineapple pomace, cashew whole apple, pomace and testa can be considered as feedstuff in fattening pigs, presenting characteristics partly similar to beet pulp. Indeed, mango peel and kernel should be combined with a protein feed source to feed pigs. Presently, fruit by-products, such as those from cashew, pineapple and mango, are thrown into the environment, contributing to global warming and water pollution. These problems would be reduced by recycling these wastes in other fields, such as pig nutrition, creating a circular economy to provide feeds promoting eco-sustainable livestock. Indeed, in vivo studies are needed before proposing these by-products for pig diets. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

20 pages, 4370 KiB  
Article
Eco-Friendly Synthesis of ZnO Nanoparticles from Natural Agave, Chiku, and Soursop Extracts: A Sustainable Approach to Antibacterial Applications
by G. Mustafa Channa, Jackeline Iturbe-Ek, Alan O. Sustaita, Dulce V. Melo-Maximo, Atiya Bhatti, Juan Esparza-Sanchez, Diego E. Navarro-Lopez, Edgar R. Lopez-Mena, Angelica Lizeth Sanchez-Lopez and Luis Marcelo Lozano
Crystals 2025, 15(5), 470; https://doi.org/10.3390/cryst15050470 - 16 May 2025
Viewed by 1485
Abstract
Traditional methods of synthesizing nanoparticles often rely on physical and chemical processes using synthetic hazardous chemicals. In contrast, the rise in green chemistry emphasizes using bioactive compounds from plants for the eco-friendly synthesis of nanostructures. These green synthesis techniques are increasingly recognized for [...] Read more.
Traditional methods of synthesizing nanoparticles often rely on physical and chemical processes using synthetic hazardous chemicals. In contrast, the rise in green chemistry emphasizes using bioactive compounds from plants for the eco-friendly synthesis of nanostructures. These green synthesis techniques are increasingly recognized for their simplicity, cost-effectiveness, and ability to yield non-toxic by-products, an approach that aligns with sustainable practices. In this research, a straightforward, cheap, environmentally friendly, and sustainable procedure was developed to fabricate Zinc oxide nanoparticles (ZnO-NPs) employing three different pulp extracts: Agave (Agave americana), Chiku (Manilkara zapota), and Soursop (Annona muricata) to serve in the synthesis as capping, reduction, or stabilization agent. Analytical characterization techniques confirmed the successful phytosynthesis of ZnO-NPs, evidenced by significant absorbance peaks of UV-Vis spectra at 362 nm, and the chemical composition of ZnO without noticeable traces of phytochemical residues by carrying out ATR-FTIR analysis. SEM, STEM microscopies, and XRD analysis verified that the ZnO nanoparticles possess spherical geometries and hexagonal crystal structures. The average size of these nanoparticles was around 15.94, 18.08, and 23.32 nm for Agave, Chiku, and Soursop extract-based synthesis, respectively. Additionally, the in vitro antibacterial activity of phytosynthetized ZnO-NPs was evaluated against E. coli and S. aureus, confirming effective bacterial growth inhibition and demonstrating their significant antimicrobial potential. Full article
Show Figures

Graphical abstract

Back to TopTop