Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = pulmonary artery hypertension (PAH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5657 KiB  
Article
SUL-150 Limits Vascular Remodeling and Ventricular Failure in Pulmonary Arterial Hypertension
by Lysanne M. Jorna, Dalibor Nakládal, Johannes N. van Heuveln, Diederik E. van der Feen, Quint A. J. Hagdorn, Guido P. L. Bossers, Annemieke van Oosten, Michel Weij, Ludmila Tkáčiková, Soňa Tkáčiková, Robert H. Henning, Martin C. Harmsen, Rolf M. F. Berger and Guido Krenning
Int. J. Mol. Sci. 2025, 26(15), 7181; https://doi.org/10.3390/ijms26157181 - 25 Jul 2025
Viewed by 268
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis of PAH and secondary right ventricular failure, and its targeting may offer therapeutic benefit. In this study, we provide proof-of-concept for the use of the mitochondrially active drug SUL-150 to treat PAH. PAH was induced in rats by monocrotaline, followed by the placement of an aortocaval shunt one week later. The mitoprotective compound SUL-150 (~6 mg·kg−1·day−1) or vehicle was administered intraperitoneally via osmotic minipump for 28 days, implanted at the time of aortocaval shunt placement. Vehicle-treated PAH rats had dyspnea and showed pulmonary artery remodeling with increased responsiveness to phenylephrine, in addition to remodeling of the intrapulmonary arterioles. SUL-150 administration mitigated the dyspnea and the remodeling responses. Vehicle-treated PAH rats developed right ventricular hypertrophy, fibrosis, and failure. SUL-150 administration precluded cardiomyocyte hypertrophy and inhibited ventricular fibrogenesis. Right ventricular failure in vehicle-treated PAH rats induced mitochondrial loss and dysfunction associated with a decrease in mitophagy. SUL-150 was unable to prevent the mitochondrial loss but improved mitochondrial health in the right ventricle, which culminated in the preservation of right ventricular function. We conclude that SUL-150 improves PAH-associated morbidity by the amelioration of pulmonary vascular remodeling and right ventricular failure and may be considered a promising therapeutic candidate to slow disease progression in pulmonary arterial hypertension and secondary right ventricular failure. Full article
Show Figures

Figure 1

9 pages, 418 KiB  
Review
The Occult Cascade That Leads to CTEPH
by Charli Fox and Lavannya M. Pandit
BioChem 2025, 5(3), 22; https://doi.org/10.3390/biochem5030022 - 23 Jul 2025
Viewed by 191
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, [...] Read more.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, CTEPH remains underdiagnosed due to nonspecific symptoms and overlapping features with other forms of pulmonary hypertension. Basic Methodology: This review synthesizes data from large international registries, epidemiologic studies, translational research, and multicenter clinical trials. Key methodologies include analysis of registry data to assess incidence and risk factors, histopathological examination of lung specimens, and molecular studies investigating endothelial dysfunction and inflammatory pathways. Diagnostic modalities and treatment outcomes are evaluated through observational studies and randomized controlled trials. Recent Advances and Affected Population: Research has elucidated that CTEPH arises from incomplete resolution of pulmonary emboli, with subsequent fibrotic transformation mediated by dysregulated TGF-β/TGFBI signaling, endothelial dysfunction, and chronic inflammation. Affected populations are typically older adults, often with prior venous thromboembolism, splenectomy, or prothrombotic conditions, though up to 25% have no history of acute PE. The disease burden is substantial, with delayed diagnosis contributing to worse outcomes and higher societal costs. Microvascular arteriopathy and PAH-like lesions in non-occluded vessels further complicate the clinical picture. Conclusions: CTEPH is now recognized as a treatable disease, with multimodal therapies—surgical endarterectomy, balloon pulmonary angioplasty, and targeted pharmacotherapy—significantly improving survival and quality of life. Ongoing research into molecular mechanisms and biomarker-driven diagnostics promises earlier identification and more personalized management. Multidisciplinary care and continued translational investigation are essential to further reduce mortality and optimize outcomes for this complex patient population. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

12 pages, 1751 KiB  
Article
Causal Inference of Adverse Drug Events in Pulmonary Arterial Hypertension: A Pharmacovigilance Study
by Hongmei Li, Xiaojun He, Cui Chen, Qiao Ni, Linghao Ni, Jiawei Zhou and Bin Peng
Pharmaceuticals 2025, 18(8), 1084; https://doi.org/10.3390/ph18081084 - 22 Jul 2025
Viewed by 260
Abstract
Objective: Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Adverse events (AEs) related to its drug treatment seriously damaged the patient’s health. This study aims to clarify the causal relationship between PAH drugs and these AEs by combining pharmacovigilance signal detection [...] Read more.
Objective: Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease. Adverse events (AEs) related to its drug treatment seriously damaged the patient’s health. This study aims to clarify the causal relationship between PAH drugs and these AEs by combining pharmacovigilance signal detection with the Bayesian causal network model. Methods: Patient data were obtained from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), covering reports from 2013 to 2023. In accordance with standard pharmacovigilance methodologies, disproportionality analysis was performed to detect signals. Target drugs were selected based on the following criteria: number of reports (a) ≥ 3, proportional reporting ratio (PRR) ≥ 2, and chi-square (χ2) ≥ 4. Bayesian causal network models were then constructed to estimate causal relationships. The do-calculus and adjustment formula were applied to calculate the causal effects between drugs and AEs. Results: Signal detection revealed that Ambrisentan, Bosentan, and Iloprost were associated with serious AEs, including death, dyspnea, pneumonia, and edema. For Ambrisentan, the top-ranked adverse drug events (ADEs) based on average causal effect (ACE) were peripheral swelling (ACE = 0.032) and anemia (ACE = 0.021). For Iloprost, the most prominent ADE was hyperthyroidism (ACE = 0.048). Conclusions: This study quantifies causal drug–event relationships in PAH using Bayesian causal networks. The findings offer valuable evidence regarding the clinical safety of PAH medications, thereby improving patient health outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
Sotatercept for Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease: Efficacy and Safety Insights
by Chebly Dagher, Maria Akiki, Kristin Swanson, Brett Carollo, Garett Fiscus, Harrison W. Farber and Raj Parikh
J. Clin. Med. 2025, 14(15), 5177; https://doi.org/10.3390/jcm14155177 - 22 Jul 2025
Viewed by 407
Abstract
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited [...] Read more.
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited treatment options for pulmonary hypertension in patients with interstitial lung disease (PH-ILD), this study aimed to evaluate the use of sotatercept in CTD-PAH patients with concomitant ILD. Methods: Eligible patients (n = 7) had a confirmed diagnosis of CTD-PAH with concomitant ILD. The patients were already receiving background PAH therapy. Baseline hemodynamic and clinical measurements were reassessed after 24 weeks of sotatercept therapy. The variables assessed included six-minute walk distance (6MWD), pulmonary vascular resistance (PVR), echocardiographic right ventricular systolic pressure (eRVSP), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, World Health Organization (WHO) functional class, and supplemental oxygen requirements. Results: The study included seven patients with a mean age of 57 years (range: 39–73 years). After 24 weeks, the mean 6MWT distance increased from 211 m to 348 m (p < 0.01). Mean PVR decreased from 7.77 WU at baseline to 4.53 WU (p < 0.01). Mean eRVSP decreased from 79.43 mmHg to 54.14 mmHg (p < 0.01). NT-proBNP decreased from 3056.86 pg/mL to 1404.29 pg/mL (p < 0.01). The WHO functional class and supplemental oxygen requirements improved in all patients. Conclusions: Sotatercept was tolerated in patients with CTD-PAH and ILD, with no evidence of adverse respiratory effects. When added to foundational PAH therapy, sotatercept resulted in significant improvements across multiple parameters. These findings suggest that sotatercept may be a promising therapeutic option as an adjunctive treatment in this patient population. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

28 pages, 2909 KiB  
Review
State of the Art in Pulmonary Arterial Hypertension: Molecular Basis, Imaging Modalities, and Right Heart Failure Treatment
by Melika Shafeghat, Yasmin Raza, Roberta Catania, Amir Ali Rahsepar, Blair Tilkens, Michael J. Cuttica, Benjamin H. Freed, Jingbo Dai, You-Yang Zhao and James C. Carr
Biomedicines 2025, 13(7), 1773; https://doi.org/10.3390/biomedicines13071773 - 20 Jul 2025
Viewed by 735
Abstract
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and [...] Read more.
Pulmonary hypertension (PH) is broadly defined as a mean pulmonary arterial pressure (mPAP) exceeding 20 mm Hg at rest. Pulmonary arterial hypertension (PAH) is a specific subset of PH characterized by a normal pulmonary arterial wedge pressure (PAWP), combined with elevated mPAP and increased pulmonary vascular resistance (PVR), without other causes of pre-capillary hypertension such as lung diseases or chronic thromboembolic pulmonary hypertension. The majority of PAH cases are idiopathic; other common etiologies include connective tissue disease-associated PAH, congenital heart disease, and portopulmonary hypertension. To a lesser extent, genetic and familial forms of PAH can also occur. The pathophysiology of PAH involves the following four primary pathways: nitric oxide, endothelin-1, prostacyclin, and activin/bone morphogenetic protein (BMP). Dysregulation of these pathways leads to a progressive vasculopathy marked by vasoconstriction, vascular proliferation, elevated right heart afterload, and ultimately right-sided heart failure. Diagnosing PAH is challenging and often occurs at advanced stages. The gold standard for diagnosis remains invasive right heart catheterization. Along with invasive hemodynamic measurements, several noninvasive imaging modalities such as echocardiography and ventilation-perfusion scanning are key adjunct techniques. Also, recent advancements in cardiac magnetic resonance (CMR) have opened a new era for PAH management. Additionally, CMR and echocardiography not only enable diagnosis but also aid in evaluating disease severity and monitoring treatment responses. Current PAH treatments focus on targeting molecular pathways, reducing inflammation, and inhibiting right-sided heart failure. Integrating imaging with basic science techniques is crucial for enhanced patient diagnosis, and precision medicine is emerging as a key strategy in PAH management. Additionally, the incorporation of artificial intelligence into both molecular and imaging approaches holds significant potential. There is a growing need to integrate new imaging modalities with high resolution and reduced radiation exposure into clinical practice. In this review, we discuss the molecular pathways involved in PAH, the imaging modalities utilized for diagnosis and monitoring, and current targeted therapies. Advances in molecular understanding and imaging technologies, coupled with precision medicine, could hold promise in improving patient outcomes and revolutionizing the management of PAH patients. Full article
Show Figures

Graphical abstract

22 pages, 2627 KiB  
Review
Pulmonary Hypertension: Let’s Take Stock!
by Michele Cacia, Egidio Imbalzano, Vincenzo Antonio Ciconte and Marco Vatrano
Life 2025, 15(7), 1137; https://doi.org/10.3390/life15071137 - 18 Jul 2025
Viewed by 341
Abstract
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH [...] Read more.
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH and the specific hemodynamic criteria defining PAH. We discuss the complex pathophysiological mechanisms underlying PAH, including vascular remodeling, endothelial dysfunction, and genetic predisposition. Advances in diagnostic approaches are explored. Current treatment strategies targeting key molecular pathways such as endothelin, nitric oxide, and prostacyclin are reviewed alongside novel and investigational therapies. Prognostic indicators and risk stratification tools are evaluated to guide clinical management. Finally, we underscore the critical role of expert centers in accurate diagnosis, multidisciplinary care, and enrollment in clinical trials, which collectively improve patient outcomes in this challenging disease spectrum. Full article
Show Figures

Figure 1

14 pages, 237 KiB  
Article
Rheumatologists’ Adherence to EULAR Recommendations for Systemic Sclerosis Treatment: Experience of a Single Center in Serbia
by Slavica Pavlov-Dolijanovic, Ivan Jeremic, Milan Bogojevic, Zoran Velickovic, Mirjana Zlatkovic-Svenda, Tijana Kojic, Sasa Janjic, Tatjana Dimic, Biljana Stojic, Ana Markovic, Andjela Perunicic, Aleksandra Djokovic, Jelena Petrovic, Nevena Baljosevic, Aleksandar Jankovic, Maja Omcikus, Zorica Terzic Supic, Natasa Milosavljevic and Goran Radunovic
J. Clin. Med. 2025, 14(14), 4994; https://doi.org/10.3390/jcm14144994 - 15 Jul 2025
Viewed by 471
Abstract
Background: The European League Against Rheumatism (EULAR), in collaboration with the European Scleroderma Trial and Research group (EUSTAR), published the first set of treatment recommendations for systemic sclerosis (SSc) in 2009, with subsequent updates in 2016 and 2023. Objectives: This study [...] Read more.
Background: The European League Against Rheumatism (EULAR), in collaboration with the European Scleroderma Trial and Research group (EUSTAR), published the first set of treatment recommendations for systemic sclerosis (SSc) in 2009, with subsequent updates in 2016 and 2023. Objectives: This study aimed to evaluate how rheumatologists’ clinical approaches to the treatment of SSc evolved following the 2016 update of the clinical management guidelines. Methods: Medication use for SSc was analyzed in a cohort of 378 patients. The patients were stratified based on enrollment before (233 patients) and after (145 patients) the guideline update, and medication usage was compared between the two groups. Results: Although all patients presented with Raynaud’s phenomenon (RP), only 35% received calcium channel blockers. Medications such as iloprost, phosphodiesterase type 5 (PDE-5) inhibitors, fluoxetine, and bosentan, recommended for the treatment of RP and digital ulcers, were not approved for SSc by the Republic Health Insurance Fund. Treatment for pulmonary arterial hypertension (PAH) was administered to only 16 patients (4.2%), including 2 who received bosentan, 10 who received PDE-5 inhibitors, and 4 who were treated with riociguat. The use of PDE-5 inhibitors increased following the 2016 update of the guidelines. Cyclophosphamide was consistently prescribed for interstitial lung disease (ILD), with an increased frequency observed after the guideline update. No significant differences were observed in the use of methotrexate for skin involvement, ACE inhibitors for scleroderma renal crisis, or antibiotics for gastrointestinal symptoms. Proton pump inhibitors (PPIs) were prescribed to 87.3% of patients with gastrointestinal involvement, with an increase in use of both PPIs and prokinetic agents following the guideline update. Conclusions: Rheumatologists’ adherence to the EULAR/EUSTAR guidelines varied considerably, with 25% to 100% of eligible patients receiving the recommended treatments. Concordance improved in the management of PAH, ILD, and gastrointestinal involvement after the 2016 guideline update. Full article
(This article belongs to the Section Immunology)
22 pages, 1104 KiB  
Review
Insights into Pulmonary Arterial Hypertension in Connective Tissue Diseases
by Bogna Grygiel-Górniak, Mateusz Lucki, Przemysław Daroszewski and Ewa Lucka
J. Clin. Med. 2025, 14(13), 4742; https://doi.org/10.3390/jcm14134742 - 4 Jul 2025
Viewed by 834
Abstract
Pulmonary arterial hypertension (PAH) is a severe complication associated with connective tissue diseases (CTDs), which is characterized by a significant influence on the patient’s prognosis and mortality. The prevalence of PAH varies depending on the type of CTD. Still, it is highly prevalent [...] Read more.
Pulmonary arterial hypertension (PAH) is a severe complication associated with connective tissue diseases (CTDs), which is characterized by a significant influence on the patient’s prognosis and mortality. The prevalence of PAH varies depending on the type of CTD. Still, it is highly prevalent in patients with systemic sclerosis (SSc), systemic lupus erythematosus (SLE), mixed connective tissue disease (MCTD), and primary Sjögren’s syndrome (pSS). Identifying rheumatic disease-specific risk factors is crucial for early diagnosis and intervention. Risk factors for PAH development include specific sociological factors (related to race, gender, and age), clinical features (particularly severe Raynaud’s phenomenon and multiple telangiectasias), cardiological factors (pericarditis and left heart disease), biochemical factors (elevated NT-proBNP and decreased HDL-cholesterol), serological factors (presence of ANA, e.g., anti-U1-RNP or SSA, and antiphospholipid antibodies), and pulmonary factors (interstitial lung disease and decreased DLCO or DLCO/alveolar volume ratio < 70%, FVC/DLCO > 1.6). The analysis of risk factors can be the most useful during the selection of patients at high risk of PAH development. The initial diagnosis of PAH is usually based on transthoracic echocardiography (TTE) and is finally confirmed by right heart catheterization (RHC). Targeted therapies can improve outcomes and include endothelin receptor antagonists, prostacyclin analogs, phosphodiesterase inhibitors, and tailored immunosuppressive treatments. Effective management strategies require a multidisciplinary approach involving rheumatologists, cardiologists, and pulmonologists. The risk stratification and individualized treatment strategies can enhance survival and quality of life in patients with PAH-CTD. Full article
(This article belongs to the Special Issue Clinical Insights into Pulmonary Hypertension)
Show Figures

Figure 1

20 pages, 886 KiB  
Article
Plasma Multiplatform Metabolomics Towards Evaluation of Gender Differences in Pulmonary Arterial Hypertension—A Pilot Study
by Renata Wawrzyniak, Tamara Gaillard, Margot Biesemans, Bożena Zięba, Ewa Lewicka, Michał Markuszewski and Alicja Dąbrowska-Kugacka
Biomedicines 2025, 13(7), 1637; https://doi.org/10.3390/biomedicines13071637 - 4 Jul 2025
Viewed by 479
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare and severe condition characterized by increased pulmonary arterial pressure and vascular resistance. Women are more susceptible to PAH yet have higher survival rates than men, a phenomenon called the “estrogen paradox”. This study aims to [...] Read more.
Background: Pulmonary arterial hypertension (PAH) is a rare and severe condition characterized by increased pulmonary arterial pressure and vascular resistance. Women are more susceptible to PAH yet have higher survival rates than men, a phenomenon called the “estrogen paradox”. This study aims to investigate the sex-based differences in PAH using plasma untargeted metabolomics. Methods: Plasma samples were collected from 43 PAH patients and 37 healthy controls. The samples were analyzed using two complementary analytical techniques: gas chromatography–mass spectrometry (GC-QqQ/MS) and liquid chromatography–mass spectrometry (LC-Q-ToF/MS). The metabolic differences between male and female PAH patients and controls were identified using multivariate statistical analyses. Results: Our results show changes in the lipid, fatty acid, and amino acid metabolism in both sexes. Women presented additional changes in the carbohydrate, bile acid, and nucleotide metabolism. The metabolites affected by PAH in women included decreased threonine, tryptophan, and lipid intermediates and elevated bile acids. Men were found to have additional changes in the heme catabolism, cholesterol synthesis, and lipoxygenase pathways. The metabolites affected by PAH in men included decreased branched-chain amino acids and increased bilirubin, phospholipids, and oxidized fatty acids. Conclusions: The gender differences observed in the development of PAH are likely multifactorial. While estrogens and potentially other sex hormones have been implicated in modulating relevant biological pathways, their exact role in disease progression and pathogenesis remains to be fully elucidated. The specific metabolic changes in women and men point to distinct disease mechanisms, potentially explaining the differences in prevalence, prognosis, and treatment response of patients with PAH. The obtained results should be validated with the use of targeted quantitative analyses and larger numbers of patients. Full article
Show Figures

Figure 1

9 pages, 497 KiB  
Article
Efficacy and Safety of Selexipag Treatment in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease
by Chebly Dagher, Maria Akiki, Kristen Swanson, Brett Carollo, Harrison W. Farber and Raj Parikh
Life 2025, 15(6), 974; https://doi.org/10.3390/life15060974 - 18 Jun 2025
Viewed by 626
Abstract
Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and concomitant interstitial lung disease (ILD) are particularly challenging to manage due to concerns about ventilation–perfusion mismatch with systemic vasodilators. In this case series, we evaluated the effects of selexipag in eight prostacyclin-naïve CTD-PAH [...] Read more.
Patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) and concomitant interstitial lung disease (ILD) are particularly challenging to manage due to concerns about ventilation–perfusion mismatch with systemic vasodilators. In this case series, we evaluated the effects of selexipag in eight prostacyclin-naïve CTD-PAH patients with concomitant ILD. Clinical, functional, and laboratory data were collected at baseline and after 16 weeks of treatment. After 16 weeks of treatment, the mean six-minute walk distance increased by 101.75 m (p < 0.05), and the mean estimated right ventricular systolic pressure decreased significantly (p < 0.05). Mean N-terminal pro b-type natriuretic peptide levels declined by 63%, though this reduction did not reach statistical significance. Importantly, supplemental oxygen requirements trended downward (p < 0.05) and pulmonary function tests remained stable. Pulmonary vasodilators have long been unsuccessfully studied in PH-ILD patients until the INCREASE trial. While other systemic agents used in PAH have not shown as much success as inhaled treprostinil in treating PH-ILD, our case series highlights the potential role of selexipag in patients with concomitant CTD-PAH and ILD. Further investigation of selexipag in pure Group 3 PH-ILD patients is warranted. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

16 pages, 1995 KiB  
Review
Gut Microbiome in Pulmonary Arterial Hypertension—An Emerging Frontier
by Sasha Z. Prisco, Suellen D. Oliveira, E. Kenneth Weir, Thenappan Thenappan and Imad Al Ghouleh
Infect. Dis. Rep. 2025, 17(3), 66; https://doi.org/10.3390/idr17030066 - 9 Jun 2025
Viewed by 692
Abstract
Pulmonary arterial hypertension (PAH) is an irreversible disease characterized by vascular and systemic inflammation, ultimately leading to right ventricular failure. There is a great need for adjunctive therapies to extend survival for PAH patients. The gut microbiome influences the host immune system and [...] Read more.
Pulmonary arterial hypertension (PAH) is an irreversible disease characterized by vascular and systemic inflammation, ultimately leading to right ventricular failure. There is a great need for adjunctive therapies to extend survival for PAH patients. The gut microbiome influences the host immune system and is a potential novel target for PAH treatment. We review the emerging preclinical and clinical evidence which strongly suggests that there is gut dysbiosis in PAH and that alterations in the gut microbiome may either initiate or facilitate the progression of PAH by modifying systemic immune responses. We also outline approaches to modify the intestinal microbiome and delineate some practical challenges that may impact efforts to translate preclinical microbiome findings to PAH patients. Finally, we briefly describe studies that demonstrate contributions of infections to PAH pathogenesis. We hope that this review will propel further investigations into the mechanisms by which gut dysbiosis impacts PAH and/or right ventricular function, approaches to modify the gut microbiome, and the impact of infections on PAH development or progression. Full article
(This article belongs to the Special Issue Pulmonary Vascular Manifestations of Infectious Diseases)
Show Figures

Figure 1

21 pages, 679 KiB  
Review
Respiratory Pathophysiology Through the Lens of Mitochondria
by Masafumi Noguchi, Keiko Iwata and Norihito Shintani
Clin. Bioenerg. 2025, 1(1), 4; https://doi.org/10.3390/clinbioenerg1010004 - 5 Jun 2025
Viewed by 543
Abstract
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular [...] Read more.
Mitochondrial integrity is indispensable for pulmonary cellular homeostasis, with its dysfunction increasingly being implicated as a central mechanism in the etiology of respiratory disorders. We present a comprehensive overview of the integral role played by mitochondrial dynamics, such as fusion, fission, mitophagy, intracellular trafficking, and biogenesis, in maintaining pulmonary homeostasis. This study further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders, including chronic obstructive pulmonary disease (COPD), bronchopulmonary dysplasia (BPD), pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), and drug-induced lung disease. It further explores how perturbations in these processes contribute to the pathogenesis of diverse lung disorders—for example, chronic obstructive pulmonary disease (COPD; responsible for roughly 55% of chronic respiratory disease cases), bronchopulmonary dysplasia (BPD; affecting up to 45% of infants born before 29 weeks of gestation), pulmonary arterial hypertension (PAH; a rare condition causing about 22,000 deaths worldwide in 2021), idiopathic pulmonary fibrosis (IPF; 0.33–4.51 cases per 10,000 persons), and drug-induced lung disease. Evidence demonstrates that mitochondria-triggered apoptosis, metabolic shifts, and subsequent inflammatory signaling act together to drive airway tissue remodeling and fibrotic progression across these lung diseases. Furthermore, this review evaluates the therapeutic potential of mitochondrial-targeted drugs, such as MitoQ and SS31, and metformin, which have shown promise in basic and preclinical studies. Preclinical and early clinical evaluations include an ongoing trial of the mitochondrial-targeted antioxidant MitoQ (NCT02966665, phase 1) in COPD, a 4-month open-label DCA study in PAH patients, and studies determining the preclinical efficacy of SS-31 and metformin in IPF models. Ultimately, integrating mitochondrial biomarkers into clinical practice holds the potential not only to facilitate early disease detection but also to enable the development of precision therapies, thereby offering renewed hope for patients afflicted with chronic lung diseases. Full article
Show Figures

Figure 1

20 pages, 608 KiB  
Systematic Review
The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review
by Sebastian T. Jendrek, Franziska Schmelter, Christian Sina, Ulrich L. Günther and Gabriela Riemekasten
Sclerosis 2025, 3(2), 18; https://doi.org/10.3390/sclerosis3020018 - 29 May 2025
Viewed by 754
Abstract
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains [...] Read more.
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains crucial. Unfortunately, biomarkers currently available cannot meet this requirement. SSc is characterized by autoimmune inflammation, vasculopathy, and fibrosis. The immunometabolic characterization of autoimmune diseases contributes to a better understanding of the underlying inflammatory processes. In this narrative review, we included 13 studies on metabolomic patterns in SSc in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). Current studies indicate an altered metabolome in SSc. All documented significant differences between patients with SSc and healthy controls, although the observed metabolomic patterns in SSc were inconsistent between studies. Metabolome alterations include, in particular, energy-related metabolic pathways such as glycolysis/gluconeogenesis, including the synthesis and degradation of ketones, fatty acid oxidation, amino acid-related metabolic pathways, lipid metabolism, and the tricarboxylic acid (TCA) cycle, including pyruvate metabolism. The most frequently examined organ complications with reported significant aberrations of the metabolome were skin involvement, ILD, and PAH. Conclusion: The detailed characterization of the SSc-specific metabolome promises a more comprehensive understanding of the pathogenic mechanisms of the disease. Furthermore, the detection of associations between specific metabolic aberrations and disease phenotypes bears hope for new biomarkers and an improved personalized approach to diagnostics, therapy, and follow-up in the management of SSc. Full article
(This article belongs to the Special Issue Recent Advances in Understanding Systemic Sclerosis)
Show Figures

Figure 1

33 pages, 637 KiB  
Review
Molecular Pathogenesis of Connective Tissue Disease-Associated Pulmonary Arterial Hypertension: A Narrative Review
by Fu-Chiang Yeh, I-Ting Tsai and I-Tsu Chyuan
Biomolecules 2025, 15(6), 772; https://doi.org/10.3390/biom15060772 - 27 May 2025
Viewed by 918
Abstract
Pulmonary arterial hypertension (PAH) is a lethal condition marked by the proliferation and remodeling of small pulmonary arteries, ultimately leading to right ventricular hypertrophy and right heart failure. PAH secondary to connective tissue diseases (CTDs) is a progressive complication with a complex pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a lethal condition marked by the proliferation and remodeling of small pulmonary arteries, ultimately leading to right ventricular hypertrophy and right heart failure. PAH secondary to connective tissue diseases (CTDs) is a progressive complication with a complex pathogenesis that results in the reduced efficacy of vasodilation-based therapies and poor clinical outcomes. Systemic sclerosis is the most commonly associated CTD with PAH in Western countries and has been most extensively investigated. Systemic lupus erythematosus and other CTDs may also be associated with PAH; however, they are less studied. In this review, we explore the general pathobiology of PAH, with a particular emphasis on recent advances in the molecular pathogenesis of CTD-PAH, including endothelial cell dysfunction, dysregulated cell proliferation and vascular remodeling, extracellular matrix remodeling, in situ thrombosis, right ventricular dysfunction, genetic aberrations, and immune dysregulation. We also conduct a thorough investigation into the potential serum biomarkers and immune dysregulation associated with CTD-PAH, summarizing the associated autoantibodies, cytokines, and chemokines. Furthermore, relevant animal models that may help unravel the pathogenesis and contribute to the development of new treatments are also reviewed. Full article
(This article belongs to the Special Issue Molecular Basis of Pathogenesis in Autoimmune Diseases)
Show Figures

Figure 1

15 pages, 1991 KiB  
Review
Sotatercept: A Crosstalk Between Pathways and Activities in the Pulmonary Circulation and Blood
by Rosalinda Madonna and Sandra Ghelardoni
Int. J. Mol. Sci. 2025, 26(10), 4851; https://doi.org/10.3390/ijms26104851 - 19 May 2025
Viewed by 1750
Abstract
Sotatercept selectively binds free activins and growth differentiation factors by reproducing the binding domain of the activin receptor type IIA (ACTRIIA). The sequester of activins blunts the downstream signaling pathway, resulting in the reactivation of the bone morphogenic protein (BMP) receptor type 2 [...] Read more.
Sotatercept selectively binds free activins and growth differentiation factors by reproducing the binding domain of the activin receptor type IIA (ACTRIIA). The sequester of activins blunts the downstream signaling pathway, resulting in the reactivation of the bone morphogenic protein (BMP) receptor type 2 signaling and inhibition of pathological remodeling in pulmonary circulation. The balance between proliferative and antiproliferative pathways is restored, with a favorable impact on the progression of pulmonary arterial hypertension (PAH). Sotatercept, first approved for the treatment of hematological disorders such as anemia, has recently received approval as a drug in the treatment of group 1 PAH, either in United States or Europe. In this review, we will discuss the application of sotatercept and its cross reactivity in function alone or in combination with other drugs currently used for PAH. We will try also to further discuss what is known regarding the hematological effects of sotatercept, both from preclinical and clinical studies points of view, since they are the root of the side effects seen in PAH trials, such as bleeding and increased hemoglobin. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

Back to TopTop