Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = pseudo-rigid body

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5512 KB  
Article
Optimal Design for a Novel Compliant XY Platform Integrated with a Hybrid Double Symmetric Amplifier Comprising One-Lever and Scott–Russell Mechanisms Arranged in a Perpendicular Series Layout for Vibration-Assisted CNC Milling
by Minh Phung Dang, Anh Kiet Luong, Hieu Giang Le and Chi Thien Tran
Micromachines 2025, 16(7), 793; https://doi.org/10.3390/mi16070793 - 3 Jul 2025
Viewed by 824
Abstract
Compliant mechanisms are often utilized in precise positioning systems but have not been thoroughly examined in vibration-aided fine CNC machining. This study aims to develop a new 02-DOF flexure stage for vibration-aided fine CNC milling. A hybrid displacement amplifier, featuring a two-lever mechanism, [...] Read more.
Compliant mechanisms are often utilized in precise positioning systems but have not been thoroughly examined in vibration-aided fine CNC machining. This study aims to develop a new 02-DOF flexure stage for vibration-aided fine CNC milling. A hybrid displacement amplifier, featuring a two-lever mechanism, two Scott–Russell mechanisms, and a parallel leading mechanism, was integrated into a symmetric perpendicular series configuration to create an innovative design. The pseudo-rigid body model (PRBM), Lagrangian approach, finite element analysis (FEA), and Firefly optimization algorithm were employed to develop, verify, and optimize the quality response of the new positioner. The PRBM and Lagrangian methods were used to construct an analytical model, while finite element analysis was used to validate the theoretical solution. The primary natural frequency results from theoretical and FEM methods were 318.16 Hz and 308.79 Hz, respectively. The difference between these techniques was 3.04%, demonstrating a reliable modelling strategy. The Firefly optimization approach applied mathematical equations to enhance the key design factors of the mechanism. The prototype was then built, revealing an error of 7.23% between the experimental and simulated frequencies of 331.116 Hz and 308.79 Hz, respectively. The specimen was subsequently mounted on the fabricated optimization positioner, and vibration-assisted fine CNC milling was performed at 100–1000 Hz. At 400 Hz, the specimen achieved ideal surface roughness with a Ra value of 0.187 µm. The developed design is a potential structure that generates non-resonant frequency power for vibration-aided fine CNC milling. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

35 pages, 4434 KB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 619
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

30 pages, 5100 KB  
Article
Design and Optimization of a Novel Compliant Z-Positioner for the Nanoindentation Testing Device
by Minh Phung Dang, Thanh Dat Le, Hieu Giang Le and Chi Thien Tran
Machines 2025, 13(6), 485; https://doi.org/10.3390/machines13060485 - 3 Jun 2025
Viewed by 367
Abstract
Compliant mechanisms are extensively utilized in precise positioning systems. This work presents a novel compliant fine Z-positioner for directing the indenter in a nanoindentation testing positioning system. Initially, the suggested positioner consists of a novel hybrid symmetric compliant displacement amplifier of four-lever and [...] Read more.
Compliant mechanisms are extensively utilized in precise positioning systems. This work presents a novel compliant fine Z-positioner for directing the indenter in a nanoindentation testing positioning system. Initially, the suggested positioner consists of a novel hybrid symmetric compliant displacement amplifier of four-lever and Scott Russell structures combined with a parallel guiding mechanism. Subsequently, a static–dynamic characteristic of the proposed positioner is modeled by the pseudo-rigid body method and the Lagrange technique. Based on the FEA results, the parasitic motion error of the developed fine Z-positioner was 0.0956%. Thirdly, the analytical result was verified by FEA analysis, and the error between the two methods was 0.5869%. Therefore, the proposed analytical approach was reliable for quickly assessing the output response of the proposed positioner. Finally, to enhance the quality of the proposed structure’s response, the main design variables of the fine Z-positioner are optimized using the Firefly algorithm. The optimal findings indicated that the first natural frequency occurs at around 220.16 Hz. The imprecision between the optimal result and the FEA result was 9.67%. The analytical results are in close agreement with the confirmed FEA result. The prototype was manufactured by the computerized numerical milling method. The inexactness between the FEA outcome and the experimentation outcome was 11.04%. Based on the FEA and experiment results, displacement amplification proportions were 6.8725 and 8, respectively. In addition, the experimental results demonstrated a good linear relationship for guiding mechanisms in nanoindentation testing positioning systems. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

27 pages, 11054 KB  
Article
Preliminary Design and Simulation Analysis of a Novel Large-Stroke 3-DOF Parallel Micro-Positioning Platform
by Chunyu Li and Shengzheng Kang
Machines 2025, 13(5), 404; https://doi.org/10.3390/machines13050404 - 12 May 2025
Viewed by 474
Abstract
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their [...] Read more.
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their limited output displacement restricts the platform’s operational workspace. To simplify the complexity of traditional coarse–fine composite systems and avoid the interference and cost burden introduced by coarse adjustment systems, a novel large-range parallel micro-positioning platform is proposed in this paper. Through a modular configuration, lever-type, Z-shaped, and L-shaped three-stage amplification mechanisms are connected in series to achieve large-stroke motion with three degrees of freedom (DOFs), effectively compensating for the limited output displacement of the piezoelectric actuators. The structure employs three symmetric support branches in parallel to the end-effector, significantly enhancing the system’s structural symmetry, thereby improving the stability and precision of the operation. Furthermore, based on the pseudo-rigid-body model theory and the Lagrangian method, the kinematic and dynamic models of the micro-positioning platform are established. Finite element simulations are conducted to validate performance parameters such as the single-branch amplification ratio, parallel amplification ratio, and natural frequency. In addition, the platform’s operational workspace is also calculated and analyzed. The results indicate that the designed micro-positioning platform achieves a high amplification ratio of 17.5, with output motions approximately decoupled (coupling ratio less than 1.25%) in each DOF, and the operational workspace is significantly improved. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

19 pages, 1424 KB  
Article
Development and Testing of a Dual-Driven Piezoelectric Microgripper with High Amplification Ratio for Cell Micromanipulation
by Boyan Lu, Shengzheng Kang, Luyang Zhou, Dewen Hua, Chengdu Yang and Zimeng Zhu
Machines 2024, 12(10), 722; https://doi.org/10.3390/machines12100722 - 12 Oct 2024
Cited by 2 | Viewed by 1192
Abstract
Cell micromanipulation is an important technique in the field of biomedical engineering. Microgrippers play a crucial role in connecting macroscopic and microscopic objects in micromanipulation systems. However, since the operated biological cells are deformable, vulnerable, and typically distributed in sizes ranging from micrometers [...] Read more.
Cell micromanipulation is an important technique in the field of biomedical engineering. Microgrippers play a crucial role in connecting macroscopic and microscopic objects in micromanipulation systems. However, since the operated biological cells are deformable, vulnerable, and typically distributed in sizes ranging from micrometers to millimeters, it poses a huge challenge to microgripper performance. To solve this problem, this paper develops a dual-driven piezoelectric microgripper with a high displacement amplification ratio, large stroke, and parallel gripping. By adopting modular configuration, three kinds of flexure-based mechanisms, including the lever mechanism, Scott–Russell mechanism, and parallelogram mechanism are connected in series to realize three-stage amplification, which effectively makes up for the shortage of small output displacement of the piezoelectric actuator. At the same time, the use of the parallelogram mechanism also isolates the parasitic rotation movement, and realizes the parallel movement of the gripping jaws. In addition, the kinematics, statics, and dynamics models of the microgripper are established by using the pseudo-rigid body and Lagrange methods, and the key geometric parameters are also optimized. Finite element simulation and experimental tests verify the effectiveness of the developed microgripper. The results show that the developed microgripper allows an amplification ratio of 46.4, a clamping stroke of 2180 μm, and a natural frequency of 203.1 Hz. Based on the developed microgripper, the nondestructive micromanipulation of zebrafish embryos is successfully realized. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

19 pages, 5913 KB  
Article
Advancing Biomechanical Simulations: A Novel Pseudo-Rigid-Body Model for Flexible Beam Analysis
by Yannis Hahnemann, Manuel Weiss, Markus Bernek, Ivo Boblan and Sebastian Götz
Biomechanics 2024, 4(3), 566-584; https://doi.org/10.3390/biomechanics4030040 - 11 Sep 2024
Cited by 1 | Viewed by 1948
Abstract
This paper explores the adaptation of pseudo-rigid-body models (PRBMs) for simulating large geometric nonlinear deflections in passive exoskeletons, expanding upon their traditional application in small compliant systems. Utilizing the AnyBody modeling system, this study employs force-dependent kinematics to reverse the conventional simulation process, [...] Read more.
This paper explores the adaptation of pseudo-rigid-body models (PRBMs) for simulating large geometric nonlinear deflections in passive exoskeletons, expanding upon their traditional application in small compliant systems. Utilizing the AnyBody modeling system, this study employs force-dependent kinematics to reverse the conventional simulation process, enabling the calculation of forces from the deformation of PRBMs. A novel approach, termed “Constraint Force”, is introduced to facilitate this computation. The approach is thoroughly validated through comparative analysis with laboratory trials involving a beam under bending loads. To demonstrate the functionality, the final segment of this study conducts a biomechanical simulation incorporating motion capture data from a lifting test, employing a novel passive exoskeleton equipped with flexible spring elements. The approach is meticulously described to enable easy adaptation, with an example code for practical application. The findings present a user-friendly and visually appealing simulation solution capable of effectively modeling complex mechanical load cases. However, the validation process highlights significant systematic errors in the direction and amplitude of the calculated forces (20% and 35%, respectively, in the worst loading case) compared to the laboratory results. These discrepancies emphasize the inherent accuracy challenges of the “Constraint Force” approach, pointing to areas for ongoing research and enhancement of PRBM methods. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

20 pages, 10148 KB  
Article
Modelling and Design Optimization of a Novel Compliant XY Positioner for Vibration-Assisted CNC Milling
by Minh Phung Dang, Chi Thien Tran, Hieu Giang Le, Vo Quoc Anh Tran and Hong Van Tran
Machines 2024, 12(8), 534; https://doi.org/10.3390/machines12080534 - 6 Aug 2024
Cited by 3 | Viewed by 1486
Abstract
Vibration-assisted machining, known as hybrid processing technology, offers several benefits over conventional machining methods. However, developing mechanical structure designs to generate a non-resonant frequency source remains challenging. The objective of this study is to propose a novel design for an XY flexure positioner [...] Read more.
Vibration-assisted machining, known as hybrid processing technology, offers several benefits over conventional machining methods. However, developing mechanical structure designs to generate a non-resonant frequency source remains challenging. The objective of this study is to propose a novel design for an XY flexure positioner by combining the pseudo-rigid-body model with the Lagrange technique, finite element analysis and Crayfish optimization algorithm. Firstly, the mechanism was designed by combining a hybrid amplifier and parallel driving mechanism integrated with right circular hinges to increase the natural frequency and precision for potential application to VAM CNC milling. Then, the analytical model was established by the pseudo-rigid-body and Lagrange method. Next, the theoretical result was verified by finite element analysis. The first natural frequency results of theory and FEM methods were found at 990.74 Hz and 1058.5 Hz, respectively. The error between the two methods was 6.4%, demonstrating a reliable modeling approach. Based on the analytical equations, the Crayfish optimization algorithm was utilized for optimizing the main design variables of the mechanism. Next, the prototype was fabricated. The results showed that the experimental and simulated frequencies were 1127.62 Hz and 1216.6 Hz, with an error between the two methods of 7.31%. Finally, the workpiece was installed on the prototype and a real vibration-assisted CNC milling process was carried out in the frequency range [700 Hz, 1000 Hz]. The best surface roughness of the specimen was achieved at a frequency of 900 Hz with a Ra of 0.287 µm. This demonstrates that the proposed XY mechanism is an effective structure for generating a non-resonant frequency source for vibration-assisted machining. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

28 pages, 9007 KB  
Article
Towards Design Optimization of Compliant Mechanisms: A Hybrid Pseudo-Rigid-Body Model–Finite Element Method Approach and an Accurate Empirical Compliance Equation for Circular Flexure Hinges
by Masoud Kabganian and Seyed M. Hashemi
Biomimetics 2024, 9(8), 471; https://doi.org/10.3390/biomimetics9080471 - 3 Aug 2024
Cited by 6 | Viewed by 2472
Abstract
Innovative designs such as morphing wings and terrain adaptive landing systems are examples of biomimicry and innovations inspired by nature, which are actively being investigated by aerospace designers. Morphing wing designs based on Variable Geometry Truss Manipulators (VGTMs) and articulated helicopter robotic landing [...] Read more.
Innovative designs such as morphing wings and terrain adaptive landing systems are examples of biomimicry and innovations inspired by nature, which are actively being investigated by aerospace designers. Morphing wing designs based on Variable Geometry Truss Manipulators (VGTMs) and articulated helicopter robotic landing gear (RLG) have drawn a great deal of attention from industry. Compliant mechanisms have become increasingly popular due to their advantages over conventional rigid-body systems, and the research team led by the second author at Toronto Metropolitan University (TMU) has set their long-term goal to be exploiting these systems in the above aerospace applications. To gain a deeper insight into the design and optimization of compliant mechanisms and their potential application as alternatives to VGTM and RLG systems, this study conducted a thorough analysis of the design of flexible hinges, and single-, four-, and multi-bar configurations as a part of more complex, flexible mechanisms. The investigation highlighted the flexibility and compliance of mechanisms incorporating circular flexure hinges (CFHs), showcasing their capacity to withstand forces and moments. Despite a discrepancy between the results obtained from previously published Pseudo-Rigid-Body Model (PRBM) equations and FEM-based analyses, the mechanisms exhibited predictable linear behavior and acceptable fatigue testing results, affirming their suitability for diverse applications. While including additional linkages perpendicular to the applied force direction in a compliant mechanism with N vertical linkages led to improved factors of safety, the associated increase in system weight necessitates careful consideration. It is shown herein that, in this case, adding one vertical bar increased the safety factor by 100N percent. The present study also addressed solutions for the precise modeling of CFHs through the derivation of an empirical polynomial torsional stiffness/compliance equation related to geometric dimensions and material properties. The effectiveness of the presented empirical polynomial compliance equation was validated against FEA results, revealing a generally accurate prediction with an average error of 1.74%. It is expected that the present investigation will open new avenues to higher precision in the design of CFHs, ensuring reliability and efficiency in various practical applications, and enhancing the optimization design of compliant mechanisms comprised of such hinges. A specific focus was put on ABS plastic and aluminum alloy 7075, as they are the materials of choice for non-load-bearing and load-bearing structural components, respectively. Full article
Show Figures

Graphical abstract

14 pages, 3204 KB  
Article
Modeling and Analysis of Stable Contact States in the Anthropomorphic Robotic Hand with Soft Materials and Rigid Structures
by Yongyao Li, Yufei Liu, Qingzhan Li, Yi Zeng, Chengxin Yin, Zeyuan Sun, Dongdong Zheng, Yu Du, Ming Cong and Lei Jiang
Electronics 2024, 13(7), 1319; https://doi.org/10.3390/electronics13071319 - 1 Apr 2024
Viewed by 1638
Abstract
Conducting contact state analysis enhances the stability of object grasping by an anthropomorphic robotic hand. The incorporation of soft materials grants the anthropomorphic robotic hand a compliant nature during interactions with objects, which, in turn, poses challenges for accurate contact state analysis. According [...] Read more.
Conducting contact state analysis enhances the stability of object grasping by an anthropomorphic robotic hand. The incorporation of soft materials grants the anthropomorphic robotic hand a compliant nature during interactions with objects, which, in turn, poses challenges for accurate contact state analysis. According to the characteristic of the anthropomorphic robotic hand’s compliant contact, a kinetostatic modeling method based on the pseudo-rigid-body model is proposed. It can realize the mapping between contact force and driving torque. On this basis, the stable contact states of the anthropomorphic robotic hand under the envelope grasping mode are further analyzed, which are used to reasonably plan the contact position of the anthropomorphic robotic hand before grasping an object. Experimental results validate the efficacy of the proposed approach during grasping and ensure stable contact in the initial grasping stage. It significantly contributes to enhancing the reliability of the anthropomorphic robotic hand’s ability to securely grasp objects. Full article
(This article belongs to the Special Issue Perception and Control in Mobile Robots)
Show Figures

Figure 1

18 pages, 1396 KB  
Article
A Rigid-Flexible Coupling Dynamic Model for Robotic Manta with Flexible Pectoral Fins
by Yilin Qu, Xiao Xie, Shucheng Zhang, Cheng Xing, Yong Cao, Yonghui Cao, Guang Pan and Baowei Song
J. Mar. Sci. Eng. 2024, 12(2), 292; https://doi.org/10.3390/jmse12020292 - 6 Feb 2024
Cited by 10 | Viewed by 2069
Abstract
The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide excellent maneuverability. However, due to [...] Read more.
The manta ray, exemplifying an agile swimming mode identified as the median and paired fin (MPF) mode, inspired the development of underwater robots. Robotic manta typically comprises a central rigid body and flexible pectoral fins. Flexible fins provide excellent maneuverability. However, due to the complexity of material mechanics and hydrodynamics, its dynamics are rarely studied, which is crucial for the advanced control of robotic manta (such as trajectory tracking, obstacle avoidance, etc.). In this paper, we develop a multibody dynamic model for our novel manta robot by introducing a pseudo-rigid body (PRB) model to consider passive deformation in the spanwise direction of the pectoral fins while avoiding intricate modeling. In addressing the rigid-flexible coupling dynamics between flexible fins and the actuation mechanism, we employ a sequential coupling technique commonly used in fluid-structure interaction (FSI) problems. Numerical examples are provided to validate the MPF mode and demonstrate the effectiveness of the dynamic model. We show that our model performs well in the rigid-flexible coupling analysis of the manta robot. In addition to the straight-swimming scenario, we elucidate the viability of tailoring turning gaits through systematic variations in input parameters. Moreover, compared with finite element and CFD methods, the PRB method has high computational efficiency in rigid-flexible coupling problems. Its potential for real-time computation opens up possibilities for future model-based control. Full article
(This article belongs to the Special Issue Advances in Marine Vehicles, Automation and Robotics—2nd Edition)
Show Figures

Graphical abstract

17 pages, 1688 KB  
Article
Modelling and Control of Longitudinal Vibrations in a Radio Frequency Cavity
by Mahsa Keikha, Jalal Taheri Kahnamouei and Mehrdad Moallem
Vibration 2024, 7(1), 129-145; https://doi.org/10.3390/vibration7010007 - 31 Jan 2024
Viewed by 1761
Abstract
Radio frequency (RF) cavities hold a crucial role in Electron Linear Accelerators, serving to provide precisely controlled accelerating fields. However, the susceptibility of these cavities to microphonic interference necessitates the development of effective controllers to mitigate vibration due to interference and disturbances. This [...] Read more.
Radio frequency (RF) cavities hold a crucial role in Electron Linear Accelerators, serving to provide precisely controlled accelerating fields. However, the susceptibility of these cavities to microphonic interference necessitates the development of effective controllers to mitigate vibration due to interference and disturbances. This paper undertakes an investigation into the modeling of RF cavities, treating them as cylindrical beams. To this end, a pseudo-rigid body model is employed to represent the translational vibration of the beam under various boundary conditions. The model is systematically analyzed using ANSYS software (from Ansys, Inc., Canonsburg, PA, USA, 2022). The study further delves into the controllability and observability of the proposed model, laying the foundation for the subsequent design of an observer-based controller geared towards suppressing longitudinal vibrations. The paper presents the design considerations and methodology for the controller. The performance of the proposed controller is evaluated via comprehensive simulations, providing valuable insights into its effectiveness in mitigating microphonic interference and enhancing the stability of RF cavities in Electron Linear Accelerators. Full article
Show Figures

Figure 1

30 pages, 11314 KB  
Article
Coupled Aerodynamics–Structure Analysis and Wind Tunnel Experiments on Passive Hinge Oscillation of Wing-Tip-Chained Airplanes
by Yoichi Suenaga and Kojiro Suzuki
Aerospace 2024, 11(1), 53; https://doi.org/10.3390/aerospace11010053 - 4 Jan 2024
Cited by 1 | Viewed by 2351
Abstract
This study examines the wing hinge oscillations in an aircraft concept that employs multiple wings, or small aircraft, chained at the wing tips through freely rotatable hinges with minimal structural damping and no mechanical position-locking system. This creates a single pseudo long-span aircraft [...] Read more.
This study examines the wing hinge oscillations in an aircraft concept that employs multiple wings, or small aircraft, chained at the wing tips through freely rotatable hinges with minimal structural damping and no mechanical position-locking system. This creates a single pseudo long-span aircraft that resembles a flying chain oriented perpendicular to the flight direction. Numerical calculations were conducted using the vortex lattice method and modified equations for a multi-link rigid body pendulum. The calculations demonstrated good agreement with small-scale wind tunnel experiments, where the motion of the chained wings was tracked through color tracking, and the forces were measured using six-axis force sensors. The total CL/CD increased for the chained wings, even in the presence of hinge joint oscillations. Furthermore, numerical simulations assuming an unmanned airplane size corroborated the theoretical attainment of passive stability with high chained numbers (9 wings), without any structural damping and relying solely on aerodynamic forces. Guidelines for appropriate hinge axis angle δ and angle-of-attack regions for different chained wing numbers to maximize passive oscillation stability were obtained. The results showed that wing-tip-chained airplanes could successfully provide substantially large wing spans while retaining flexibility, light weight and CL/CD, without requiring active hinge rotation control. Full article
Show Figures

Figure 1

15 pages, 4249 KB  
Article
Towards Robust and Effective Passive Compliance Design of End-Effectors for Robotic Train Fluid Servicing
by Kourosh Eshraghi, Mingfeng Wang and Cristinel Mares
Machines 2023, 11(11), 997; https://doi.org/10.3390/machines11110997 - 27 Oct 2023
Viewed by 2473
Abstract
Without mechanical compliance robots rely on controlled environments and precision equipment to avoid clashes and large contact forces when interacting with an external workpiece, e.g., a peg-in-hole (PiH) task. In such cases, passive compliance devices are used to reduce the insertion force (and [...] Read more.
Without mechanical compliance robots rely on controlled environments and precision equipment to avoid clashes and large contact forces when interacting with an external workpiece, e.g., a peg-in-hole (PiH) task. In such cases, passive compliance devices are used to reduce the insertion force (and in turn the robot payload) while guiding corrective motions. Previous studies in this field are limited to small misalignments and basic PiH geometries inapplicable to prevalent robotic and autonomous systems (RASs). In addition to these issues, our work argues that there is a lack of a unified approach to the development of passive compliance systems. To this end, we propose a higher-level design approach using robust engineering design (RED) methods. In a case study, we demonstrated this general approach with a Taguchi design framework, developing a remote centre compliant (RCC) end-effector for robotic train fluid servicing. For this specific problem, a pseudo-rigid-body model (PRBM) is suggested in order to save enormous computation time in design, modelling, and optimisation. Our results show that the compliant end-effector is capable of significantly reducing the insertion force for large misalignments up to 15 mm and 6 degrees. Full article
(This article belongs to the Special Issue Railway Vehicle Maintenance 4.0)
Show Figures

Figure 1

16 pages, 5851 KB  
Article
Numerical and Machine-Aided Experimental Models for Simulating the 3D Compliance of a Toothbrush
by Marco Cirelli, Alessio Cellupica, Luca D’Angelo, Marta Mazur and Pier Paolo Valentini
Machines 2023, 11(8), 783; https://doi.org/10.3390/machines11080783 - 28 Jul 2023
Cited by 1 | Viewed by 1974
Abstract
One of the most discussed topics in toothbrush design is identifying the contact force exerted by the bristles on the teeth. Each bristle must generate a contact force to ensure tooth cleaning without damaging it. Numerical simulation is a very powerful tool for [...] Read more.
One of the most discussed topics in toothbrush design is identifying the contact force exerted by the bristles on the teeth. Each bristle must generate a contact force to ensure tooth cleaning without damaging it. Numerical simulation is a very powerful tool for understanding the influence of design parameters (bristle shape and materials). This paper proposes a flexible multibody model to efficiently simulate the 3D compliance of a toothbrush. Each bristle is modeled using a discrete, flexible approach. The contact between the bristles and the target surface is established using the penalty contact method. An experimental test bench with a Universal Robot and a flat, transparent surface is set up. Validation is provided by comparing the reaction forces of the toothbrush with the reaction forces acquired by the load cells mounted on the end effector of the Robot. The results demonstrate the accuracy of estimating normal and tangential forces in various operating situations. The discrete flexible multibody technique has also demonstrated its viability in evaluating the displacement of the bristles when the toothbrush’s base body is put through a specified motion, even when it is exposed to a sudden change in direction. As a result, the model can be effectively utilized to assess how well various brush classes remove dental plaque. Therefore, the suggested model could provide guidance for holistic modeling and advancements in toothbrush design to boost their effectiveness for thorough cleaning. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 7470 KB  
Article
Vibration Response Law of Aircraft Taxiing under Random Roughness Excitation
by Tianxin Hou, Shifu Liu, Jianming Ling, Yu Tian, Peilin Li and Jie Zhang
Appl. Sci. 2023, 13(13), 7386; https://doi.org/10.3390/app13137386 - 21 Jun 2023
Cited by 6 | Viewed by 2283
Abstract
Understanding the vibration response patterns of aircraft taxiing under runway roughness excitation is crucial for aircraft design and runway performance evaluation. In this paper, we establish pavement roughness models for both asphalt and concrete surfaces, taking into account their unique structural characteristics. We [...] Read more.
Understanding the vibration response patterns of aircraft taxiing under runway roughness excitation is crucial for aircraft design and runway performance evaluation. In this paper, we establish pavement roughness models for both asphalt and concrete surfaces, taking into account their unique structural characteristics. We construct a six-degrees-of-freedom aircraft model using multi-rigid-body system dynamics theory and employ the pseudo-excitation method to examine the influence of pavement roughness types on the steady vibration response of aircraft taxiing at constant speeds. Furthermore, we analyze the non-stationary vibration response patterns of aircraft during takeoff and landing taxiing using the method of instantaneous frequency response function with space frequency. Lastly, we explore the effect of stochastic structural parameters on aircraft vibration response using the Monte Carlo method. Our findings reveal that the roughness power spectrum differs between asphalt and concrete pavements, and the established roughness models in this paper demonstrate a strong fit (R2 > 0.95). The type of pavement roughness has a relatively minor impact on the power spectral density distribution of the aircraft vibration response, suggesting that the same roughness model can be used for both asphalt and concrete pavements when high accuracy is not required. The power spectral density distribution of aircraft vibration response varies across different motion attitudes, with the vibration response during landing being significantly larger than that during takeoff. Among the aircraft structural parameters, the randomness of the sprung mass has the most substantial effect on the aircraft vibration response, potentially causing the variation coefficient of dynamic load on the front landing gear to exceed 0.11. Tire stiffness comes next, which can lead to the variation coefficient of dynamic load on the main landing gear reaching 0.07. The results have a guiding role in optimizing aircraft structure design and ensuring pavement performance. Full article
Show Figures

Figure 1

Back to TopTop