Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,438)

Search Parameters:
Keywords = protocol layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2202 KB  
Article
The Effect of Implant Thread’s Pitch on Primary Stability: An In Vitro Polyurethane Study with Under-Preparation and Low-Speed Drilling
by Margherita Tumedei, Natalia Di Pietro, Tea Romasco, Adriano Piattelli and Luca Comuzzi
Appl. Sci. 2025, 15(20), 11245; https://doi.org/10.3390/app152011245 (registering DOI) - 20 Oct 2025
Abstract
Background: The morphology of implant threads plays a crucial role in achieving primary stability, which is essential for successful osseointegration and immediate loading of dental implants. This study aimed to evaluate how different implant thread pitches and an under-preparation drilling technique impact primary [...] Read more.
Background: The morphology of implant threads plays a crucial role in achieving primary stability, which is essential for successful osseointegration and immediate loading of dental implants. This study aimed to evaluate how different implant thread pitches and an under-preparation drilling technique impact primary stability using an in vitro model. Methods: The study was conducted on low-density polyurethane bone models with and without cortical layers. The following three different implant thread profiles were tested: CYROTH 0.40 (0.40 mm), CYROTH 0.45 (0.45 mm), and CYROTH T (0.35 mm). Two different drilling procedures were utilized, with diameters of 3.4 mm and 3.7 mm, at a low rotational speed of 30 rpm. Primary stability was assessed by measuring insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA). Results: The low rotational speed of 30 rpm was found to be effective for achieving favorable fixation parameters in all scenarios. The 0.45 mm thread consistently exhibited higher implant stability quotient (ISQ) values (from two to six points higher) compared to the 0.40 mm and standard 0.35 mm threads, while also requiring lower IT. The highest ISQ values were recorded in the 20 pounds per cubic foot (PCF) block with a cortical layer using the 0.45 mm thread and a 3.4 mm drill. The under-preparation using the 3.4 mm drill resulted in higher IT and RT values than the 3.7 mm drill. Conclusions: This study demonstrated that implant thread pitch and drilling technique are critical factors influencing primary stability. Utilizing a wider thread pitch (0.45 mm) along with an under-preparation drilling protocol can significantly improve implant stability, even in low-density bone, without the need for excessive IT. These findings suggest that selecting the appropriate implant macrogeometry and surgical technique can optimize the primary stability of dental implants. Full article
Show Figures

Figure 1

32 pages, 1067 KB  
Article
BMIT: A Blockchain-Based Medical Insurance Transaction System
by Jun Fei and Li Ling
Appl. Sci. 2025, 15(20), 11143; https://doi.org/10.3390/app152011143 - 17 Oct 2025
Viewed by 111
Abstract
The Blockchain-Based Medical Insurance Transaction System (BMIT) developed in this study addresses key issues in traditional medical insurance—information silos, data tampering, and privacy breaches—through innovative blockchain architectural design and technical infrastructure reconstruction. Built on a consortium blockchain architecture with FISCO BCOS (Financial Blockchain [...] Read more.
The Blockchain-Based Medical Insurance Transaction System (BMIT) developed in this study addresses key issues in traditional medical insurance—information silos, data tampering, and privacy breaches—through innovative blockchain architectural design and technical infrastructure reconstruction. Built on a consortium blockchain architecture with FISCO BCOS (Financial Blockchain Shenzhen Consortium Blockchain Open Source Platform) as the underlying platform, the system leverages FISCO BCOS’s distributed ledger, granular access control, and efficient consensus algorithms to enable multi-stakeholder on-chain collaboration. Four node roles and data protocols are defined: hospitals (on-chain data providers) generate 3D coordinate hashes of medical data via an algorithmically enhanced Bloom Filter for on-chain certification; patients control data access via blockchain private keys and unique parameters; insurance companies verify eligibility/claims using on-chain Bloom filters; the blockchain network stores encrypted key data (public keys, Bloom filter coordinates, and timestamps) to ensure immutability and traceability. A 3D-enhanced Bloom filter—tailored for on-chain use with user-specific hash functions and key control—stores only 3D coordinates (not raw data), cutting storage costs for 100 records to 1.27 KB and reducing the error rate to near zero (1.77% lower than traditional schemes for 10,000 entries). Three core smart contracts (identity registration, medical information certification, and automated verification) enable the automation of on-chain processes. Performance tests conducted on a 4-node consortium chain indicate a transaction throughput of 736 TPS (Transactions Per Second) and a per-operation latency of 181.7 ms, which meets the requirements of large-scale commercial applications. BMIT’s three-layer design (“underlying blockchain + enhanced Bloom filter + smart contracts”) delivers a balanced, efficient blockchain medical insurance prototype, offering a reusable technical framework for industry digital transformation. Full article
Show Figures

Figure 1

22 pages, 11896 KB  
Article
Atmospheric Corrosion Kinetics and QPQ Coating Failure of 30CrMnSiA Steel Under a Deposited Salt Film
by Wenchao Li, Shilong Chen, Hui Xiao, Xiaofei Jiao, Yurong Wang, Shuwei Song, Songtao Yan and Ying Jin
Corros. Mater. Degrad. 2025, 6(4), 53; https://doi.org/10.3390/cmd6040053 - 16 Oct 2025
Viewed by 169
Abstract
Atmospheric corrosion in sand dust environments is driven by deposits that bear chloride, which sustain thin electrolyte layers on metal surfaces. We established a laboratory protocol to replicate this by extracting, formulating, and depositing a preliminary layer of mixed salts from natural dust [...] Read more.
Atmospheric corrosion in sand dust environments is driven by deposits that bear chloride, which sustain thin electrolyte layers on metal surfaces. We established a laboratory protocol to replicate this by extracting, formulating, and depositing a preliminary layer of mixed salts from natural dust onto samples, with humidity precisely set using the salt’s deliquescence behavior. Degradation was tracked with SEM/EDS, 3D profilometry, XRD, and electrochemical analysis. Bare steel showed progressive yet decelerating attack as rust evolved from discrete islands to a lamellar network; while this densification limited transport, its internal cracks and interfacial gaps trapped chlorides, sustaining activity beneath the rust. In contrast, QPQ-treated steel remained largely protected, with damage localized at coating defects as raised rust nodules, while intact regions maintained low electrochemical activity. By coupling salt chemistries derived from the field with humidity control guided by deliquescence and diagnostics across multiple scales, this study provides a reproducible laboratory pathway to predict atmospheric corrosion. Full article
Show Figures

Figure 1

19 pages, 2480 KB  
Article
Matrix Optical Biosensor for Determining YKL-40/CHI3L1—A Biomarker Potentially Associated with Alzheimer’s Disease
by Zuzanna Zielinska, Abdulelah Ba Tarfi and Ewa Gorodkiewicz
Biosensors 2025, 15(10), 687; https://doi.org/10.3390/bios15100687 - 10 Oct 2025
Viewed by 314
Abstract
YKL-40 is a glycoprotein that may be present at elevated levels in many cancers and neurodegenerative diseases. It has been investigated in numerous studies as a potential biomarker for several conditions, including Alzheimer’s Disease (AD). In this study, a biosensor with Surface Plasmon [...] Read more.
YKL-40 is a glycoprotein that may be present at elevated levels in many cancers and neurodegenerative diseases. It has been investigated in numerous studies as a potential biomarker for several conditions, including Alzheimer’s Disease (AD). In this study, a biosensor with Surface Plasmon Resonance imaging (SPRi) detection, sensitive to YKL-40, was constructed for the detection of this analyte in the blood plasma of AD patients. Extensive validation of the biosensor was performed. This included the determination of analytical parameters such as the biosensor’s response characteristics, detection and quantification limits, precision, accuracy, repeatability, selectivity, stability, and performance in natural samples. Validation parameters were primarily tested using standard solutions, while natural samples were employed to evaluate repeatability, stability, and assay accuracy in three groups of samples from different patients. A YKL-40-specific antibody was used as the receptor layer, immobilized on a gold plate using the EDC/NHS protocol on thiol 11-MUA. The biosensor exhibited a wide operating range (1–200 ng/mL), a low detection limit (LOD) of 2 pg/mL, and a quantification limit (LOQ) of 7 pg/mL. High precision and accuracy were confirmed by the calculated standard deviations (SD) and coefficients of variation (CV), which ranged from 0.0009 to 7.02 ng/mL and from 0.12% to 9.24%, respectively. The sensor also demonstrated good repeatability (CV = 4.995%) and was capable of detecting the analyte of interest in complex biological matrices. Its applicability was confirmed in a study using plasma from AD patients and two selected control groups: plasma from smokers and patients with prostatitis. This allowed the assessment of YKL-40 levels across different groups. The results were consistent with literature values, and statistical analysis confirmed the significance of concentration differences between groups. Furthermore, ROC curve analysis confirmed the diagnostic usefulness of the constructed YKL-40 test in the context of Alzheimer’s disease. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

18 pages, 4337 KB  
Article
A Transformer-Based Multimodal Fusion Network for Emotion Recognition Using EEG and Facial Expressions in Hearing-Impaired Subjects
by Shuni Feng, Qingzhou Wu, Kailin Zhang and Yu Song
Sensors 2025, 25(20), 6278; https://doi.org/10.3390/s25206278 - 10 Oct 2025
Viewed by 366
Abstract
Hearing-impaired people face challenges in expressing and perceiving emotions, and traditional single-modal emotion recognition methods demonstrate limited effectiveness in complex environments. To enhance recognition performance, this paper proposes a multimodal fusion neural network based on a multimodal multi-head attention fusion neural network (MMHA-FNN). [...] Read more.
Hearing-impaired people face challenges in expressing and perceiving emotions, and traditional single-modal emotion recognition methods demonstrate limited effectiveness in complex environments. To enhance recognition performance, this paper proposes a multimodal fusion neural network based on a multimodal multi-head attention fusion neural network (MMHA-FNN). This method utilizes differential entropy (DE) and bilinear interpolation features as inputs, learning the spatial–temporal characteristics of brain regions through an MBConv-based module. By incorporating the Transformer-based multi-head self-attention mechanism, we dynamically model the dependencies between EEG and facial expression features, enabling adaptive weighting and deep interaction of cross-modal characteristics. The experiment conducted a four-classification task on the MED-HI dataset (15 subjects, 300 trials). The taxonomy included happy, sad, fear, and calmness, where ‘calmness’ corresponds to a low-arousal neutral state as defined in the MED-HI protocol. Results indicate that the proposed method achieved an average accuracy of 81.14%, significantly outperforming feature concatenation (71.02%) and decision layer fusion (69.45%). This study demonstrates the complementary nature of EEG and facial expressions in emotion recognition among hearing-impaired individuals and validates the effectiveness of feature layer interaction fusion based on attention mechanisms in enhancing emotion recognition performance. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 1084 KB  
Article
Adaptive Ensemble Machine Learning Framework for Proactive Blockchain Security
by Babatomiwa Omonayajo, Oluwafemi Ayotunde Oke and Nadire Cavus
Appl. Sci. 2025, 15(19), 10848; https://doi.org/10.3390/app151910848 - 9 Oct 2025
Viewed by 321
Abstract
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats [...] Read more.
Blockchain technology has rapidly evolved beyond cryptocurrencies, underpinning diverse applications such as supply chains, healthcare, and finances, yet its security vulnerabilities remain a critical barrier to safe adoption. However, attackers increasingly exploit weaknesses in consensus protocols, smart contracts, and network layers with threats such as Denial-of-Chain (DoC) and Black Bird attacks, posing serious challenges to blockchain ecosystems. We conducted anomaly detection using two independent datasets (A and B) generated from simulation attack scenarios including hash rate, Sybil, Eclipse, Finney, and Denial-of-Chain (DoC) attacks. Key blockchain metrics such as hash rate, transaction authorization status, and recorded attack consequences were collected for analysis. We compared both class-balanced and imbalanced datasets, applying Synthetic Minority Oversampling Technique (SMOTE) to improve representation of minority-class samples and enhance performance metrics. Supervised models such as Random Forest, Gradient Boosting, and Logistic Regression consistently outperformed unsupervised models, achieving high F1-scores (0.90), while balancing the training data had only a modest effect. The results are based on simulated environment and should be considered as preliminary until the experiment is performed in a real blockchain environment. Based on identified gaps, we recommend the exploration and development of multifaceted defense approaches that combine prevention, detection, and response to strengthen blockchain resilience. Full article
Show Figures

Figure 1

11 pages, 217 KB  
Article
Evaluation of Ganglion Cell–Inner Plexiform Layer Thickness in the Diagnosis of Preperimetric and Early Perimetric Glaucoma
by Ilona Anita Kaczmarek, Marek Edmund Prost and Radosław Różycki
J. Clin. Med. 2025, 14(19), 7117; https://doi.org/10.3390/jcm14197117 - 9 Oct 2025
Viewed by 350
Abstract
Background: Optical coherence tomography (OCT) is the main diagnostic technology used to detect damage to the retinal ganglion cells (RGCs) in glaucoma. However, it remains unclear which OCT parameter demonstrates the best diagnostic performance for eyes with early, especially preperimetric glaucoma (PPG). We [...] Read more.
Background: Optical coherence tomography (OCT) is the main diagnostic technology used to detect damage to the retinal ganglion cells (RGCs) in glaucoma. However, it remains unclear which OCT parameter demonstrates the best diagnostic performance for eyes with early, especially preperimetric glaucoma (PPG). We determined the diagnostic performance of ganglion cell–inner plexiform layer (GCIPL) parameters using spectral-domain OCT (SD-OCT) in primary open-angle preperimetric and early perimetric glaucoma and compared them with optic nerve head (ONH) and peripapillary retinal nerve fiber layer (pRNFL) parameters. Methods: We analyzed 101 eyes: 36 normal eyes, 33 with PPG, and 32 with early perimetric glaucoma. All patients underwent Topcon SD–OCT imaging using the Optic Disc and Macular Vertical protocols. The diagnostic abilities of the GCIPL, rim area, vertical cup-to-disc ratio (CDR), and pRNFL were assessed using the area under the receiver operating characteristic curve (AUC). Results: For PPG, the AUCs ranged from 0.60 to 0.63 (GCIPL), 0.82 to 0.86 (ONH), and 0.49 to 0.75 (pRNFL). For early perimetric glaucoma, the AUCs for GCIPL and pRNFL ranged from 0.81 to 0.88 and 0.57 to 0.91, respectively, whereas both ONH parameters demonstrated an AUC of 0.89. The GCIPL parameters were significantly lower than both ONH parameters in detecting preperimetric glaucoma (p < 0.05). For early perimetric glaucoma, comparisons between the AUCs of the best-performing mGCIPL parameters and those of the best-performing pRNFL and ONH parameters revealed no significant differences in their diagnostic abilities (p > 0.05). Conclusions: GCIPL parameters exhibited a diagnostic performance comparable to that of ONH and pRNFL parameters for early perimetric glaucoma. However, their ability to detect preperimetric glaucoma was significantly lower than the ONH parameters. Full article
(This article belongs to the Section Ophthalmology)
14 pages, 2513 KB  
Article
Long-Term Chemical Solubility of 2.3Y-TZP Dental Ceramics
by Lidija Ćurković, Sanja Štefančić, Irena Žmak, Vilko Mandić, Ivana Gabelica and Ketij Mehulić
J. Funct. Biomater. 2025, 16(10), 374; https://doi.org/10.3390/jfb16100374 - 8 Oct 2025
Viewed by 549
Abstract
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with [...] Read more.
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with inductively coupled plasma mass spectrometry (ICP-MS) and by analyzing phase composition with X-ray diffraction (XRD). While ISO 6872 prescribes chemical stability testing in a 4 wt.% aqueous acetic acid solution at 80 °C for 16 h, the exposure duration in this study was extended to 768 h (32 days) to allow a more accurate determination of long-term solubility behavior. Additionally, the surface roughness parameters (Ra, Rmax, Rz, Sa, Sq) were analyzed and evaluated before and after solubility testing. Kinetic analysis revealed that degradation followed a near-parabolic rate law, with power-law exponents of n = 2.261 for Group 1 and n = 1.935 for Group 2. The corresponding dissolution rate constants were 3.85 × 10−5 µgn·cm−2n·h−1 for Group 1 and 132.3 µgn·cm−2n·h−1 for Group 2. XRD results indicated that the long exposure to acetic acid induced a partial phase transformation of zirconia from the tetragonal to the monoclinic phase. Under prolonged acetic exposure, the glaze layer on 2.3Y-TZP exhibited significantly higher dissolution, whereas the zirconia (polished, unglazed) showed low ion release. The temporal change in the total amount of dissolved ions was statistically analyzed for Group 1 and Group 2. The samples showed a strong correlation, but ANOVA confirmed significant differences between them. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

19 pages, 1544 KB  
Article
Passivation Remediation of Cd-Contaminated Farmland in Yongkang, China by CaAl-LDH: A Mechanism and Application Study
by Xinzhe Lu, Nan Wei, Haochen Fang, Feng Hu, Jianjun Cheng, Rui Sun, Yining Chen, Jianyu Zhang, Yanfang Chen, Xuchuan Zhang, Kokyo Oh, Tetsushi Yonekura, Xiaochen Chen, Jia Niu and Xiaozhi Wang
Agronomy 2025, 15(10), 2354; https://doi.org/10.3390/agronomy15102354 - 7 Oct 2025
Viewed by 412
Abstract
The enrichment of cadmium (Cd) in farmland soil poses serious risks to agricultural safety and remains challenging to remediate. This study evaluated CaAl-layered double hydroxide (CaAl-LDH) as a highly efficient and stable passivator for Cd-contaminated soil. Laboratory adsorption tests demonstrated that Cd2+ [...] Read more.
The enrichment of cadmium (Cd) in farmland soil poses serious risks to agricultural safety and remains challenging to remediate. This study evaluated CaAl-layered double hydroxide (CaAl-LDH) as a highly efficient and stable passivator for Cd-contaminated soil. Laboratory adsorption tests demonstrated that Cd2+ adsorption on CaAl-LDH followed pseudo-second-order kinetics and the Langmuir model, indicating monolayer chemisorption, with a maximum capacity of 469.48 mg·g−1 at pH 6. The adsorption mechanisms include surface complexation, interlayer anion exchange, dissolution–precipitation, and isomorphic substitution. A three-year field trial in Yongkang City, China showed that CaAl-LDH promoted the transformation of Cd in rhizosphere soil from the ion exchange state (F2) to the residual state (F7) and Fe–Mn oxidized state (F5), reducing the exchangeable Cd content by 26.71%. Consequently, Cd content in rice grains decreased by 68.42% in the first year and remained over 37% lower in the second year, consistently below the national food safety limit. Future research should focus on the optimization of material’s stability and application protocol. The results demonstrate that CaAl-LDH provides a cost-effective and sustainable strategy for the in situ passivation remediation of Cd-contaminated farmland, contributing to food safety and sustainable agriculture. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Prevention in Agricultural Soils)
Show Figures

Figure 1

33 pages, 5338 KB  
Article
Evaluating Transport Layer Security 1.3 Optimization Strategies for 5G Cross-Border Roaming: A Comprehensive Security and Performance Analysis
by Jhury Kevin Lastre, Yongho Ko, Hoseok Kwon and Ilsun You
Sensors 2025, 25(19), 6144; https://doi.org/10.3390/s25196144 - 4 Oct 2025
Viewed by 335
Abstract
Cross-border Fifth Generation Mobile Communication (5G) roaming requires secure N32 connections between network operators via Security Edge Protection Proxy (SEPP) interfaces, but current Transport Layer Security (TLS) 1.3 implementations face a critical trade-off between connection latency and security guarantees. Standard TLS 1.3 optimization [...] Read more.
Cross-border Fifth Generation Mobile Communication (5G) roaming requires secure N32 connections between network operators via Security Edge Protection Proxy (SEPP) interfaces, but current Transport Layer Security (TLS) 1.3 implementations face a critical trade-off between connection latency and security guarantees. Standard TLS 1.3 optimization modes either compromise Perfect Forward Secrecy (PFS) or suffer from replay vulnerabilities, while full handshakes impose excessive latency penalties for time-sensitive roaming services. This research introduces Zero Round Trip Time Forward Secrecy (0-RTT FS), a novel protocol extension that achieves zero round-trip performance while maintaining comprehensive security properties, including PFS and replay protection. Our solution addresses the fundamental limitation where existing TLS 1.3 optimizations sacrifice security for performance in international roaming scenarios. Through formal verification using ProVerif and comprehensive performance evaluation, we demonstrate that 0-RTT FS delivers 195.0 μs handshake latency (only 17% overhead compared to insecure 0-RTT) while providing full security guarantees that standard modes cannot achieve. Security analysis reveals critical replay vulnerabilities in all existing standard TLS 1.3 optimization modes, which our proposed approach successfully mitigates. The research provides operators with a decision framework for configuring sub-millisecond secure handshakes in next-generation roaming services, enabling both optimal performance and robust security for global 5G connectivity. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

10 pages, 3506 KB  
Protocol
Indicator Tubes: A Novel Solution for Monitoring Temperature Excursions in Biobank Storage
by Patrick J. Catterson, Tyler T. Olson, Margaret B. Penno, Steven P. Callahan and Melissa V. Olson
Methods Protoc. 2025, 8(5), 120; https://doi.org/10.3390/mps8050120 - 3 Oct 2025
Viewed by 319
Abstract
Maintaining the integrity of cryogenically preserved biological materials is critical, as even brief, undetected temperature excursions in storage can compromise sample viability. Existing monitoring systems may miss transient thaw–refreeze events, posing serious quality risks. To address this, we developed and validated frozen indicator [...] Read more.
Maintaining the integrity of cryogenically preserved biological materials is critical, as even brief, undetected temperature excursions in storage can compromise sample viability. Existing monitoring systems may miss transient thaw–refreeze events, posing serious quality risks. To address this, we developed and validated frozen indicator tubes that visually signal deviations from the frozen state, serving as a cost-effective backup to electronic monitors. Our first method uses an aqueous dye solution that immobilizes the dye when frozen; any thawing causes the dye to disperse, providing a clear, external visual cue of a partial or complete thaw. For ultra-low-temperature storage (−80 °C), we introduced a second method using an ethanol-based solution calibrated to indicate thaw events. This system detects temperature rises of 10 °C or more sustained for at least fifteen minutes—conditions that may jeopardize sample stability. When paired with standard monitoring systems, these indicator tubes offer an added layer of protection by providing simple, reliable, and immediate visual confirmation of critical temperature breaches. This innovation enhances confidence in cryogenic storage protocols and supports the long-term preservation of sensitive biological materials. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Figure 1

22 pages, 1386 KB  
Article
Pharmacokinetic Profile of Extracts from the Chayote (Sechium edule) H387 07 Hybrid and Phytochemical Characterization of Its Segregant H387 M16 for Potential Therapeutic Applications
by Eugenia Elisa Delgado-Tiburcio, Ramón Marcos Soto-Hernández, Itzen Aguiñiga-Sánchez, Jorge Cadena-Iñiguez, Lucero del Mar Ruiz-Posadas, Cecilia B. Peña-Valdivia and Héctor Gómez-Yáñez
Molecules 2025, 30(19), 3948; https://doi.org/10.3390/molecules30193948 - 1 Oct 2025
Viewed by 457
Abstract
The hybrid Sechium edule H387 07, commonly known as chayote, has shown potential as an antiproliferative, cytotoxic, and pro-apoptotic agent in the murine leukemia cell lines P388 (macrophagic) and J774 (monocytic) and in the myelomonocytic leukemia cell line WEHI-3. However, despite these reported [...] Read more.
The hybrid Sechium edule H387 07, commonly known as chayote, has shown potential as an antiproliferative, cytotoxic, and pro-apoptotic agent in the murine leukemia cell lines P388 (macrophagic) and J774 (monocytic) and in the myelomonocytic leukemia cell line WEHI-3. However, despite these reported bioactivities, its pharmacokinetic profile remains largely unexplored. Understanding the absorption, distribution, and elimination of this hybrid is critical for addressing unmet therapeutic needs and for advancing the development of natural product-based therapies. These effects are attributed to the presence of phenols, flavonoids, and cucurbitacins in its organic extracts. In this study, the pharmacokinetic parameters of secondary metabolites from methanolic extracts of Sechium H387 07 were evaluated after oral administration in mice, while its segregant H387 M16 was subjected to complementary phytochemical characterization. Methanolic extracts of Sechium edule H387 07 were orally administered to mice at doses of 8, 125, and 250 mg/kg, and plasma, liver, and urine samples were collected at 1, 6, 24, and 48 h post-treatment. High-performance liquid chromatography (HPLC) identified polyphenols and cucurbitacins, notably cucurbitacin B (CuB) and cucurbitacin IIA (CuIIA), in the biological samples, and pharmacokinetic variables such as the maximum plasma concentration (Cmax), time to reach maximum concentration (Tmax), half-life (T1/2), and volume of distribution (Vd) were determined. For instance, CuB exhibited a Cmax of 37.56 µg/mL at 1 h post-dose after oral administration of 125 mg/kg, confirming its rapid absorption and systemic distribution. Notably, the presence of CuIIA in plasma was documented for the first time, along with the pharmacokinetic profiles of apigenin, phloretin, CuB, CuE, and CuI. In parallel, the segregant H387 M16 was characterized via colorimetric assays, thin-layer chromatography (TLC), HPLC, and antioxidant activity tests, which revealed high levels of flavonoids, phenols, and cucurbitacins, with an antioxidant activity of approximately 75% at the highest tested dose (1 mg/mL), supporting its suitability for future bioassays. Overall, these findings not only provide novel pharmacokinetic data for key metabolites of the H387 07 hybrid but also establish the phytochemical and antioxidant profile of its segregant H387 M16. This dual characterization strengthens the evidence of the therapeutic potential of Sechium genotypes and provides a valuable foundation for future studies aiming to develop standardized protocols and explore translational applications in drug development and natural product-based therapies. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

36 pages, 3753 KB  
Article
Energy Footprint and Reliability of IoT Communication Protocols for Remote Sensor Networks
by Jerzy Krawiec, Martyna Wybraniak-Kujawa, Ilona Jacyna-Gołda, Piotr Kotylak, Aleksandra Panek, Robert Wojtachnik and Teresa Siedlecka-Wójcikowska
Sensors 2025, 25(19), 6042; https://doi.org/10.3390/s25196042 - 1 Oct 2025
Viewed by 316
Abstract
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically [...] Read more.
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically focusing on selected technologies or specific layers of the communication stack, which has hindered the development of comparable quantitative metrics across protocols. The aim of this study is to design and validate a unified evaluation framework enabling consistent assessment of both wired and wireless protocols in terms of energy efficiency, reliability, and maintenance costs. The proposed approach employs three complementary research methods: laboratory measurements on physical hardware, profiling of SBC devices, and simulations conducted in the COOJA/Powertrace environment. A Unified Comparative Method was developed, incorporating bilinear interpolation and weighted normalization, with its robustness confirmed by a Spearman rank correlation coefficient exceeding 0.9. The analysis demonstrates that MQTT-SN and CoAP (non-confirmable mode) exhibit the highest energy efficiency, whereas HTTP/3 and AMQP incur the greatest energy overhead. Results are consolidated in the ICoPEP matrix, which links protocol characteristics to four representative RS-IoT scenarios: unmanned aerial vehicles (UAVs), ocean buoys, meteorological stations, and urban sensor networks. The framework provides well-grounded engineering guidelines that may extend node lifetime by up to 35% through the adoption of lightweight protocol stacks and optimized sampling intervals. The principal contribution of this work is the development of a reproducible, technology-agnostic tool for comparative assessment of IoT/IIoT communication protocols. The proposed framework addresses a significant research gap in the literature and establishes a foundation for further research into the design of highly energy-efficient and reliable IoT/IIoT infrastructures, supporting scalable and long-term deployments in diverse application environments. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
Show Figures

Figure 1

22 pages, 4897 KB  
Article
Fabrication of Next-Generation Skin Scaffolds: Integrating Human Dermal Extracellular Matrix and Microbiota-Derived Postbiotics via 3D Bioprinting
by Sultan Golpek Aymelek, Billur Sezgin, Ahmet Ceylan and Fadime Kiran
Polymers 2025, 17(19), 2647; https://doi.org/10.3390/polym17192647 - 30 Sep 2025
Viewed by 483
Abstract
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic [...] Read more.
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic surgical procedures were utilized. Following enzymatic treatment, the dermal layer was carefully separated from the epidermis and subjected to four different decellularization protocols. Among them, Protocol IV emerged as the most suitable, achieving significant DNA removal while maintaining the structural and biochemical integrity of the ECM, as confirmed by Fourier-transform infrared spectroscopy. Building on this optimized dECM-4, microbiota-derived postbiotics from Limosilactobacillus reuteri EIR/Spx-2 were incorporated to further enhance the scaffold’s bioactivity. Hybrid scaffolds were then fabricated using 7% Gel, 2% SA, 1% dECM-4, and 40 mg/mL postbiotics in five-layered grid structures via 3D bioprinting technology. Although this composition resulted in reduced mechanical strength, it exhibited improved hydrophilicity and biodegradability. Moreover, antimicrobial assays demonstrated inhibition zones of 16 mm and 13 mm against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) and Pseudomonas aeruginosa (ATCC 27853), respectively. Importantly, biocompatibility was confirmed through in vitro studies using human keratinocyte (HaCaT) cells, which adhered, proliferated, and maintained normal morphology over a 7-day culture period. Taken together, these findings suggest that the engineered hybrid scaffold provides both regenerative support and antimicrobial protection, making it a strong candidate for clinical applications, particularly in the management of chronic wounds. Full article
(This article belongs to the Special Issue Polymers for Aesthetic Purposes)
Show Figures

Graphical abstract

18 pages, 2031 KB  
Article
The Impact of Security Protocols on TCP/UDP Throughput in IEEE 802.11ax Client–Server Network: An Empirical Study
by Nurul I. Sarkar, Nasir Faiz and Md Jahan Ali
Electronics 2025, 14(19), 3890; https://doi.org/10.3390/electronics14193890 - 30 Sep 2025
Viewed by 418
Abstract
IEEE 802.11ax (Wi-Fi 6) technologies provide high capacity, low latency, and increased security. While many network researchers have examined Wi-Fi security issues, the security implications of 802.11ax have not been fully explored yet. Therefore, in this paper, we investigate how security protocols (WPA2, [...] Read more.
IEEE 802.11ax (Wi-Fi 6) technologies provide high capacity, low latency, and increased security. While many network researchers have examined Wi-Fi security issues, the security implications of 802.11ax have not been fully explored yet. Therefore, in this paper, we investigate how security protocols (WPA2, WPA3) affect TCP/UDP throughput in IEEE 802.11ax client–server networks using a testbed approach. Through an extensive performance study, we analyze the effect of security on transport layer protocol (TCP/UDP), internet protocol layer (IPV4/IPV6), and operating systems (MS Windows and Linux) on system performance. The impact of packet length on system performance is also investigated. The obtained results show that WPA3 offers greater security, and its impact on TCP/UDP throughput is insignificant, highlighting the robustness of WPA3 encryption in maintaining throughput even in secure environments. With WPA3, UDP offers higher throughput than TCP and IPv6 consistently outperforms IPv4 in terms of both TCP and UDP throughput. Linux outperforms Windows in all scenarios, especially with larger packet sizes and IPv6 traffic. These results suggest that WPA3 provides optimized throughput performance in both Linux and MS Windows in 802.11ax client–server environments. Our research provides some insights into the security issues in Gigabit Wi-Fi that can help network researchers and engineers to contribute further towards developing greater security for next-generation wireless networks. Full article
Show Figures

Figure 1

Back to TopTop