Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = protein thiol oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 258
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 1446 KiB  
Review
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology
by Cengiz Kaya and Francisco J. Corpas
Int. J. Mol. Sci. 2025, 26(14), 6925; https://doi.org/10.3390/ijms26146925 - 18 Jul 2025
Viewed by 302
Abstract
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. [...] Read more.
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Viewed by 239
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1359 KiB  
Article
Dysregulation of Purinergic Signaling Sustains Chronic Inflammation and Oxidative Imbalance in Patients After PitNET Surgical Resection
by Geile Fistarol, Luiz A. de Oliveira, Gilnei B. da Silva, Daiane Manica, Marceli C. Hanauer, Paula Dallagnol, Rafael A. Narzetti, Maria L. Bergamini, Vitória C. de Melo, Tais Vidal, Micheli M. Pillat, Jussara de Lima, Marcelo L. V. da Cunha, Marielle L. Makiyama, Filomena Marafon, Aniela P. Kempka, Ariane Zamoner and Margarete D. Bagatini
Int. J. Mol. Sci. 2025, 26(14), 6890; https://doi.org/10.3390/ijms26146890 - 17 Jul 2025
Viewed by 234
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study [...] Read more.
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial tumors. Evidence suggests that these types of tumors may have high recurrence rates. In this context, the purinergic system, oxidative stress, and inflammation are important signaling pathways involved in the cancer’s pathophysiology. This study aimed to evaluate the sociodemographic and diagnostic profiles, as well as assess the purinergic signaling, immunological, and redox profiles, of patients after PitNET resection. We collected sociodemographic data and the patients’ diagnostic profiles. We also collected blood samples to analyze glycemia, triglycerides, albumin, and ATP levels. The ectonucleotidase activity was determined in peripheral blood mononuclear cells (PBMCs). In addition, we evaluated their redox and immunological profiles. There was a prevalence of gonadotropic macroadenoma derived from PIT-1 cells. We found that patients included in the PitNET group had increased glycemia, serum ATP levels, and ATP hydrolysis in PBMCs. Analyzing their immunological profiles, we found that patients had increased levels of IL-6, IL-10, and TNF, while the IL-27 level was decreased. Regarding their redox profiles, PitNET patients had increased levels of ROS and protein carbonylation. Unexpectedly, patients also showed increased levels of non-protein thiols (NPSHs), total thiols (PSHs), and ascorbic acid. Thus, the dysregulation of purinergic signaling sustained chronic inflammation and oxidative imbalance in PitNET patients for a long time after surgical resection. These data suggest that patients with PitNETs require long-term accompanying to prevent cancer recurrence prognosis. The biomarkers highlighted in this study may be good tools to help the medical approaches. Full article
(This article belongs to the Special Issue Advances in the Purinergic System)
Show Figures

Figure 1

20 pages, 4345 KiB  
Article
Identification of Peroxiredoxin (PRX) Genes from Pepper Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO)
by Fátima Ramírez-Mellado, Salvador González-Gordo, José M. Palma and Francisco J. Corpas
Antioxidants 2025, 14(7), 817; https://doi.org/10.3390/antiox14070817 - 2 Jul 2025
Viewed by 439
Abstract
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available [...] Read more.
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available pepper plant genome, eight PRX genes were identified and named CaPRX1, CaPRX1-Cys, CaPRX2B, CaPRX2E, CaPRX2F, CaPRX2-CysBAS1, CaPRX2-CysBAS2, and CaPRX Q. Among these, only CaPRX1-Cys was not detected in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study analyzes the modulation of these seven CaPRX genes during ripening and after treating fruits with nitric oxide (NO) gas. A time-course expression analysis of sweet pepper fruit during ripening revealed that two genes were upregulated (CaPRX1 and CaPRX2E), two were downregulated (CaPRX2B and PRX Q), and three were unaffected (CaPRX2F, CaPRX2-CysBAS1, and CaPRX2-CysBAS2). Gene expression was also studied in three hot pepper varieties with varying capsaicin contents (Piquillo < Padrón < Alegría riojana), showing a differential expression pattern during ripening. Furthermore, NO treatment of sweet pepper fruits triggered the upregulation of CaPRX2B and CaPRXQ genes and the downregulation of CaPRX1 and CaPRX2-CysBAS1 genes, while the other three remained unaffected. Among the CaPrx proteins, four (CaPrx2B, CaPrx2-CysBAS1, CaPrx2-CysBAS2, and CaPrx2E) were identified as susceptible to S-nitrosation, as determined by immunoprecipitation assays with an antibody against S-nitrocysteine and further mass spectrometry analyses. These findings indicate the diversification of PRX genes in pepper fruits and how some of them are regulated by NO, either at the level of gene expression or through protein S-nitrosation, a NO-promoting post-translational modification (PTM). Given that Prxs play a crucial role in stress tolerance, these data suggest that Prxs are vital components of the antioxidant system during pepper fruit ripening, an event that is accompanied by physiological nitro-oxidative stress. Full article
(This article belongs to the Special Issue Reactive Oxygen and Nitrogen Species in Plants―2nd Edition)
Show Figures

Figure 1

29 pages, 2376 KiB  
Review
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease
by Chika Onochie, Keturah Evi and Cristian O’Flaherty
Antioxidants 2025, 14(6), 720; https://doi.org/10.3390/antiox14060720 - 12 Jun 2025
Viewed by 769
Abstract
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them [...] Read more.
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them particularly vulnerable to oxidative damage. Reversible oxidative modifications regulate enzymatic activity, signaling cascades, and structural stability, supporting normal sperm function, whereas irreversible oxidative damage impairs motility, acrosome reaction, and DNA integrity, contributing to male infertility. The intricate balance between physiological redox signaling and pathological oxidative stress demonstrates the potential of redox modifications as biomarkers for infertility diagnosis and as targets for antioxidant-based therapeutic interventions. This review explores the role of redox-induced protein modifications in sperm function, focusing on thiol oxidation, S-nitrosylation, sulfhydration, glutathionylation, CoAlation, and protein carbonylation. By uncovering the mechanisms of these redox modifications, we provide a framework for their modulation in the development of targeted redox interventions to improve male fertility. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

14 pages, 1521 KiB  
Article
Recovery from Resistance Exercise with or Without Blood Flow Restriction Results in an Early Biphasic Pattern of Change in Albumin Cys34 Oxidation in Untrained Males
by Zi Xiang Lim, Jackson Peos, Stefan Ostojic, Peter G. Arthur and Paul A. Fournier
Antioxidants 2025, 14(6), 667; https://doi.org/10.3390/antiox14060667 - 30 May 2025
Viewed by 667
Abstract
Background: Oxidative stress contributes to the activation of muscle protein synthesis after high-intensity resistance exercise (HIRE) or low-intensity resistance exercise combined with blood flow restriction (LIBFR), but it is unclear if this oxidative stress response post-exercise is monophasic or multiphasic. We aimed to [...] Read more.
Background: Oxidative stress contributes to the activation of muscle protein synthesis after high-intensity resistance exercise (HIRE) or low-intensity resistance exercise combined with blood flow restriction (LIBFR), but it is unclear if this oxidative stress response post-exercise is monophasic or multiphasic. We aimed to answer this question using albumin Cys34 oxidation as an oxidative stress marker. Methods: Seven untrained individuals completed HIRE and LIBFR on separate days. Albumin Cys34 oxidation (total and reversibly and irreversibly oxidized fractions), muscle oxygenation, oxygen consumption (V˙O2), lactate, and heart rate (HR) were measured before and up to 5 h post-exercise. Results: Both HIRE and LIBFR induced a biphasic increase in total oxidized albumin Cys34, with a transient peak in irreversibly oxidized albumin Cys34 immediately post-exercise (p < 0.001) before a delayed sustained increase in reversibly oxidized albumin Cys34, which peaked at 90–120 min and lasted ≥5 h post-exercise (p < 0.05). Muscle oxygenation decreased immediately post-exercise (p < 0.001) before rising above baseline (p < 0.05). V˙O2, HR, and blood lactate peaked post-exercise (p < 0.001) and returned to baseline within 15–90 min. Irreversibly oxidized albumin Cys34 was positively correlated with lactate and V˙O2 post-exercise (p < 0.001). Conclusion: Here, we show that resistance exercise, with or without blood flow restriction, results in an early biphasic oxidative stress response after exercise. Full article
Show Figures

Graphical abstract

22 pages, 2363 KiB  
Article
Modulation of the Antioxidant System of Caco-2 Cells in the Presence of Aflatoxin B1, Ochratoxin A, and Ferulic Acid
by Andreea-Luminița Rădulescu, Roua Gabriela Popescu, Mihaela Balas, George Cătălin Marinescu and Anca Dinischiotu
Toxins 2025, 17(6), 274; https://doi.org/10.3390/toxins17060274 - 30 May 2025
Viewed by 670
Abstract
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as [...] Read more.
Food security and food safety are major aspects for human and animal health, yet mycotoxins contaminate 60–80% of food crops before and after harvest, elevating the risk of chronic toxicity and cancer development. This study investigates the potential of ferulic acid (FA) as an antioxidant against mycotoxin-induced oxidative stress in Caco-2 cells exposed to aflatoxin B1 (AFB1) and ochratoxin A (OTA) for 24 and 48 h. The effects on the degree of lipid peroxidation and non-enzymatic and enzymatic mechanisms against oxidative stress were evaluated. FA appears to mitigate oxidative stress by modulating lipid and protein oxidation, decreasing the level of 4-hydroxy-2-nonenal (4-HNE), increasing superoxide dismutase (SOD) activity, and preserving thiol groups by scavenging reactive oxygen species (ROS). Additionally, the reduction in polyubiquitinated Nrf2 level, and higher SOD activity, suggest that FA stabilizes Nrf2, delaying its degradation and reinforcing its antioxidant role. These findings indicate that FA partially counteracts mycotoxin-induced oxidative damage, highlighting the need for further investigation into its long-term effects. Full article
(This article belongs to the Special Issue Co-Occurrence of Mycotoxins and Their Combined Toxicity)
Show Figures

Figure 1

19 pages, 1045 KiB  
Article
Prickly Pear and Pomegranate Peel Extracts as Natural Antioxidants: Effects on Colour, Lipid, and Protein Oxidation in Refrigerated Cooked Chicken Models
by Guadalupe Lavado and Ramón Cava
Foods 2025, 14(9), 1568; https://doi.org/10.3390/foods14091568 - 29 Apr 2025
Viewed by 470
Abstract
This study investigates the antioxidative potential of pomegranate peel extract (PPE) and prickly pear peel extract (HPE) as natural preservatives in cooked chicken models. The extracts were characterized for their phenolic and tannin content, and their antioxidant activity was measured through in vitro [...] Read more.
This study investigates the antioxidative potential of pomegranate peel extract (PPE) and prickly pear peel extract (HPE) as natural preservatives in cooked chicken models. The extracts were characterized for their phenolic and tannin content, and their antioxidant activity was measured through in vitro chemical assays using ABTS, DPPH, and FRAP assays. Cooked chicken samples were formulated with different concentrations of PPE or HPE and compared to sodium nitrite (NaNO2) treatment. The effects on lipid and protein oxidation, instrumental colour parameters, and aldehyde formation were evaluated during storage. The results demonstrated that PPE exhibited higher antioxidant activity compared to HPE, particularly at higher concentrations. PPE_300 had the highest phenolic content, exhibited the strongest radical scavenging activity, and significantly reduced lipid oxidation markers such as malondialdehyde and lipid hydroperoxides. PPE also preserved protein integrity by reducing carbonyl formation and maintaining thiol levels. Colour stability was improved in both PPE- and HPE-treated samples, although nitrite remained the most effective in maintaining redness (a*-values). These findings suggest that PPE, particularly at 300 mg/kg, is a promising natural alternative to synthetic antioxidants for improving oxidative stability and shelf life in meat products. Further research should explore sensory attributes and consumer acceptance to facilitate industrial applications. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
Redox Mechanisms Driving Skin Fibroblast-to-Myofibroblast Differentiation
by Marzieh Aminzadehanboohi, Manousos Makridakis, Delphine Rasti, Yves Cambet, Karl-Heinz Krause, Antonia Vlahou and Vincent Jaquet
Antioxidants 2025, 14(4), 486; https://doi.org/10.3390/antiox14040486 - 18 Apr 2025
Viewed by 760
Abstract
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix [...] Read more.
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix components. Numerous studies have identified hydrogen peroxide (H2O2) as a key downstream effector of TGF-β1 in this pathway. H2O2 functions as a signalling molecule, regulating various cellular processes mostly through post-translational redox modifications of cysteine thiol groups of specific proteins. In this study, we used primary human skin fibroblast cultures to investigate the oxidative mechanisms triggered by TGF-β1. We analyzed the expression of redox-related genes, evaluated the effects of the genetic and pharmacological inhibition of H2O2-producing enzymes, and employed an unbiased redox proteomics approach (OxICAT) to identify proteins undergoing reversible cysteine oxidation. Our findings revealed that TGF-β1 treatment upregulated the expression of oxidant-generating genes while downregulating antioxidant genes. Low concentrations of diphenyleneiodonium mitigated myofibroblast differentiation and mitochondrial oxygen consumption, suggesting the involvement of a flavoenzyme in this process. Furthermore, we identified the increased oxidation of highly conserved cysteine residues in key proteins such as the epidermal growth factor receptor, filamin A, fibulin-2, and endosialin during the differentiation process. Collectively, this study provides insights into the sources of H2O2 in fibroblasts and highlights the novel redox mechanisms underpinning fibroblast-to-myofibroblast differentiation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 3227 KiB  
Review
Oxidation-Induced Mixed Disulfide and Cataract Formation: A Review
by Marjorie F. Lou and Robert C. Augusteyn
Antioxidants 2025, 14(4), 425; https://doi.org/10.3390/antiox14040425 - 1 Apr 2025
Viewed by 2193
Abstract
The major function of eye lens is to transmit light onto retina and form an image. This relies on the crystallin proteins, which are tightly packed to achieve a high refractive index and transparency. The proteins are protected and maintained in a reduced [...] Read more.
The major function of eye lens is to transmit light onto retina and form an image. This relies on the crystallin proteins, which are tightly packed to achieve a high refractive index and transparency. The proteins are protected and maintained in a reduced state with intrinsic antioxidants, such as glutathione (GSH), and redox-regulating enzyme systems, such as thioltransferase to maintain the SH/-S-S-balance. When the protective systems are impaired or reduced due to aging, oxidative stress can lead to SH/S-S imbalance, protein modification, protein–protein aggregation and loss of transparency (cataract). Oxidative stress is considered the major culprit in senile cataract formation since cataractous lenses are typically low in GSH content and have elevated levels of GS-protein mixed disulfide (PSSG). This review will examine PSSG accumulation with age and cataracts and explore the possible role of oxidants such as H2O2. It will also discuss the hypothesis that PSSG formation is not simply a consequence of cataract formation but can trigger the cascade of events leading to loss of lens transparency. The hypothesis is supported by the findings that cataract formation is more rapid with increasing age due to weaker TTase activity and, in animal model systems, when the TTase gene is deleted. Full article
(This article belongs to the Special Issue Oxidative Stress in Cataracts: Mechanisms and Therapies)
Show Figures

Figure 1

19 pages, 1892 KiB  
Article
Prometastatic Potential of Non-Functionalized Multiwalled Carbon Nanotubes in the MDA-MB-436 Breast Cancer Cell Line Model
by Magdalena Matysiak-Kucharek, Krzysztof Sawicki, Marcin Kruszewski, Jacek Kurzepa and Lucyna Kapka-Skrzypczak
Int. J. Mol. Sci. 2025, 26(6), 2777; https://doi.org/10.3390/ijms26062777 - 19 Mar 2025
Cited by 1 | Viewed by 573
Abstract
Multiwalled carbon nanotubes (MWCNTs) are used in many areas of industry and medicine. However, there is evidence suggesting profibrogenic action of MWCNTs, probably via the epithelial–mesenchymal transition mechanism (EMT). The aim of this study was to evaluate the prometastatic activity of 5–20 nm [...] Read more.
Multiwalled carbon nanotubes (MWCNTs) are used in many areas of industry and medicine. However, there is evidence suggesting profibrogenic action of MWCNTs, probably via the epithelial–mesenchymal transition mechanism (EMT). The aim of this study was to evaluate the prometastatic activity of 5–20 nm and 50–80 nm MWCNTs against cells of the MDA-MB-436 line. We used MTT and NR assays to determine MWCNTs’ cytotoxicity and the level of malonylodialdehyde and thiol compounds as indicators of oxidative stress. qRT-PCR was used to examine the expression of EMT markers. The QCM Chemotaxis Cell Migration Assay was used to assess cell migration, while the Cytokine Array Kit and Apoptosis Array Kit were used to determine cytokine expression and induction of apoptosis. The interleukin 6, C-X-C motif chemokine ligand 8, and tumor growth factor beta 1 (TGFB1) secretion was determined by ELISA. MWCNTs were toxic to MDA-MB-436 cells and induced cell death via the apoptosis pathway. MWCNTs induced a low level of oxidative stress and were associated with increased secretion of pro-inflammatory cytokines and chemokines, including proteins important in breast cancer metastasis. Cells incubated with MWCNTs showed increased expression of mesenchymal EMT markers. However, in contrast to these results, the migration of MWCNT-treated cells increased only modestly relative to untreated cells. Also, the secretion of TGFB1, a key inducer and regulator of EMT, increased only slightly. In summary, the multifaceted effect of MWCNTs on cancer cells encourages further work on the safety of nanomaterials. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

41 pages, 1650 KiB  
Review
The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease
by Philip I. Aaronson
Antioxidants 2025, 14(3), 341; https://doi.org/10.3390/antiox14030341 - 14 Mar 2025
Viewed by 1013
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2 [...] Read more.
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans. Full article
(This article belongs to the Special Issue Role of Redox in Pulmonary Vascular Diseases)
Show Figures

Figure 1

10 pages, 1248 KiB  
Review
A Narrative Review of the Role of S-Glutathionylation in Bacteria
by Luca Federici, Michele Masulli, Vincenzo De Laurenzi and Nerino Allocati
Microorganisms 2025, 13(3), 527; https://doi.org/10.3390/microorganisms13030527 - 27 Feb 2025
Viewed by 570
Abstract
Protein glutathionylation is defined as a reversible, ubiquitous post-translational modification, resulting in the formation of mixed disulfides between glutathione and proteins’ cysteine residues. Glutathionylation has been implicated in several cellular mechanisms ranging from protection from oxidative stress to the control of cellular homeostasis [...] Read more.
Protein glutathionylation is defined as a reversible, ubiquitous post-translational modification, resulting in the formation of mixed disulfides between glutathione and proteins’ cysteine residues. Glutathionylation has been implicated in several cellular mechanisms ranging from protection from oxidative stress to the control of cellular homeostasis and the cell cycle. A significant body of research has examined the multifaceted effects of this post-translational modification under physiological conditions in eukaryotes, with a particular focus on its impact on the development of various diseases in humans. In contrast, the role of glutathionylation in prokaryotic organisms remains to be extensively investigated. However, there has been a recent increase in the number of studies investigating this issue, providing details about the role of glutathione and other related thiols as post-translational modifiers of selected bacterial proteins. It can be concluded that in addition to the classical role of such thiols in protecting against cysteine oxidation and consequent protein inactivation, many more specialized roles of glutathionylation in bacterial pathogenicity, virulence, interspecies competition and survival, and control of gene expression are emerging, and new ones may emerge in the future. In this short review, we aim to summarize the current state-of-the-art in this field of research. Full article
(This article belongs to the Topic Redox in Microorganisms, 2nd Edition)
Show Figures

Figure 1

15 pages, 5734 KiB  
Article
Trp31 Residue of Trx-1 Is Essential for Maintaining Antioxidant Activity and Cellular Redox Defense Against Oxidative Stress
by Zongmao He, Yi Yan, Xijun Guo, Tong Wang, Xinqiao Liu, Ren-Bo Ding, Yuanfeng Fu, Jiaolin Bao and Xingzhu Qi
Antioxidants 2025, 14(3), 257; https://doi.org/10.3390/antiox14030257 - 24 Feb 2025
Viewed by 624
Abstract
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 [...] Read more.
Thioredoxin-1 (Trx-1) is an important redox protein found in almost all prokaryotic and eukaryotic cells, which has a highly conserved active site sequence: Trp-Cys-Gly-Pro-Cys. To investigate whether the Trp31 residue is essential for the antioxidant activity of human Trx-1 (hTrx-1), we mutated Trx-1 by replacing Trp31 with Ala31 (31Ala) or deleting Trp31 residue (31Del). We introduced 31Ala and 31Del mutations into prokaryotic cells for hTrx-1 protein expression, protein purification and evaluation of antioxidant activity. The results showed that neither the replacing mutation to Ala31 nor the deletion of Trp31 residue affected the efficient expression of hTrx-1 protein in prokaryotic cells, indicating that neither form of Trp31 mutation would disrupt the folded structure of the Trx-1 protein. Comparison of the antioxidant activity of purified hTrx-1 proteins of wild-type, 31Ala and 31Del forms revealed that both mutant forms significantly decreased the antioxidant capacity of hTrx-1. Further investigations on eukaryotic cells showed that H2O2 treatment caused massive cell death in EA.Hy926 human endothelial cells with 31Ala and 31Del mutations compared to wild-type cells, which was associated with increased ROS production and downregulation of antioxidant Nrf2 and HO-1 expression in the mutant cells. These results suggested that mutations in the Trp31 residue of hTrx-1 remarkably disrupted cellular redox defense against oxidative stress. The antioxidant activity of hTrx-1 relies on the thiol–disulfide exchange reaction, in which the content of thiol groups forming disulfide bonds in hTrx-1 is critical. We found that the content of free thiol groups specifically participating in disulfide bond formation was significantly lower in Trp31 mutant hTrx-1 than in wild-type hTrx-1; that was speculated to affect the formation of disulfide bonds between Cys32 and Cys35 by virtual analysis, thus abolishing the antioxidant activity of hTrx-1 in cleaving oxidized groups and defending against oxidative stress. The present study provided valuable insights towards understanding the importance of Trp31 residue of hTrx-1 in maintaining the correct conformation of the Trx fold structure, the antioxidant functionality of hTrx-1 and the cellular redox defense capability against oxidative stress. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

Back to TopTop