Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,845)

Search Parameters:
Keywords = protein secretion pathways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2873 KB  
Article
Inhibition of the T2R/α-Defensin Pathway Mediates Nauclea officinalis-Induced Intestinal Barrier Dysfunction and Microbiota Alterations
by Xiaoman Li, Yao Yi, Tegele Si, Lianqian Wang, Zhiyong Hu, Jiayue Xiong, Xuemei Bao, Jun Jun, Sachurula Bao, Xiaoping Ji and Minghai Fu
Toxics 2026, 14(1), 99; https://doi.org/10.3390/toxics14010099 - 21 Jan 2026
Abstract
Clinical reports have shown that administration of Nauclea officinalis (Danmu in Chinese, DM) preparations may cause significant gastrointestinal discomfort. This study aimed to systematically evaluate the adverse effects of DM and its primary active constituent, strictosamide, on gastrointestinal motility, intestinal barrier integrity, and [...] Read more.
Clinical reports have shown that administration of Nauclea officinalis (Danmu in Chinese, DM) preparations may cause significant gastrointestinal discomfort. This study aimed to systematically evaluate the adverse effects of DM and its primary active constituent, strictosamide, on gastrointestinal motility, intestinal barrier integrity, and gut microbiota homeostasis. Furthermore, we sought to investigate the potential role of the bitter taste receptor (T2R) signaling pathway in mediating these effects. In vitro cell cultures and ex vivo intestinal tissues were employed to assess cell viability and molecular alterations. In vivo studies involved short-term (2 weeks) gavage of DM (0.54 and 1.08 g/kg) and long-term (16 weeks) intervention (0.4, 0.8, and 1.2 g/kg) in rodents. Evaluations included histopathological examination, serum levels of cytokines and oxidative stress markers (ELISA), expression of tight junction proteins (Western blot and qPCR), and 16S rDNA sequencing of cecal microbiota. Mechanistic analyses focused on α-defensin secretion and T2R-associated gene and protein expression. Administration of DM resulted in significant gastrointestinal dysfunction, characterized by delayed intestinal propulsion and increased gastric retention. Dose-dependent histopathological damage, disruption of the intestinal barrier (reduced occludin and claudin-1 expression), and elevated levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β), oxidative stress markers (MDA, SOD, and GSH-Px), and immune mediators (IFN-γ) were observed. Gut microbiota analysis revealed dysbiosis, marked by a decline in beneficial genera (e.g., Mucispirillum, Butyricicoccus, Roseburia) and an increase in potentially pathogenic bacteria (e.g., Citrobacter, Helicobacter). Mechanistically, DM suppressed α-defensin secretion and downregulated the expression of TAS2R108, TAS2R138, and Gα-gustducin both in vitro and in vivo. DM and strictosamide disrupt gut microbiota composition and compromise intestinal barrier function, likely through inhibition of the T2R/α-defensin pathway. These findings provide important mechanistic insights into drug-induced gastrointestinal toxicity and underscore the potential risks associated with prolonged use of DM-containing preparations. Full article
(This article belongs to the Special Issue Mechanisms of Toxicity of Chemical Compounds and Natural Compounds)
0 pages, 3309 KB  
Article
Microcystin-LR-Induced Oxidative Stress, Transcriptome Changes, Intestinal Microbiota, and Histopathology in Rana chensinensis Tadpoles
by You Wang, Bingjie Wang, Zhuolin He, Jiaxin Chen, Chenyang Liu, Zhanqi Wang, Muhammad Irfan and Lixia Zhang
Animals 2026, 16(2), 316; https://doi.org/10.3390/ani16020316 - 20 Jan 2026
Abstract
Microcystin-LR (MC-LR), produced by Cyanobacteria, is being detected in many types of waters, posing a universal threat to aquatic animals. However, there have been few comprehensive endpoints assessed, including oxidative stress, transcriptome changes, intestinal microbiota, and histopathology, in anurans exposed to MC-LR. In [...] Read more.
Microcystin-LR (MC-LR), produced by Cyanobacteria, is being detected in many types of waters, posing a universal threat to aquatic animals. However, there have been few comprehensive endpoints assessed, including oxidative stress, transcriptome changes, intestinal microbiota, and histopathology, in anurans exposed to MC-LR. In this study, all these effects of MC-LR on Chinese brown frog (Rana chensinensis David, 1875) tadpoles were investigated by exposing the tadpoles to MC-LR at different concentrations (0, 0.1, 1.0, 5.0, and 10.0 μg/L) for 7 days. Our results revealed that treatment of tadpoles with the high MC-LR dosage (10.0 μg/L) induced a significant increase in malondialdehyde (MDA) content and decreases in superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, and total antioxidant capacity (TAC). RNA-seq analysis of the liver showed that the number of differentially expressed genes (DEGs) was 2361 under lower MC-LR stress (1.0 μg/L), while the number of DEGs increased to 3185 under higher MC-LR stress (10.0 μg/L). Gene Ontology analysis showed that several biological processes and molecular functions related to digestion were enriched in both MC-LR treated groups, such as digestion, serine-type endopeptidase activity, and serine-type peptidase activity. KEGG enrichment analysis also indicated that the digestion for pancreatic secretion, protein digestion and absorption, and fat digestion and absorption pathways were significantly enriched in the treatment groups. Additionally, the bacterial richness was elevated by MC-LR exposure. At the phylum level, treatment with MC-LR changed the relative abundances of Desulfobacterota, Fusobacteriota, and Actinobacteriota. At the genus level, MC-LR caused significant alterations in the abundances of 23 genera. Furthermore, examination of sections obtained from the livers and intestines of tadpoles in the treatment groups showed damaged histological structure. The knowledge from this study will have potential value for understanding the mechanisms related to MC-LR toxicity in anurans. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

22 pages, 3006 KB  
Review
Molecular Crosstalk Underlying Pre-Colonization Signaling and Recognition in Ectomycorrhizal Symbiosis
by Rosario Ramírez-Mendoza, Magdalena Martínez-Reyes, Yanliang Wang, Yunchao Zhou, Arturo Galvis-Spinola, Juan José Almaraz-Suárez, Fuqiang Yu and Jesus Perez-Moreno
Forests 2026, 17(1), 134; https://doi.org/10.3390/f17010134 - 19 Jan 2026
Viewed by 8
Abstract
Ectomycorrhizal (ECM) symbiosis is a fundamental mutualism crucial for forest eco-system health. Its establishment is governed by sophisticated molecular dialogue preceding physical colonization. This review synthesizes this pre-colonization crosstalk, beginning with reciprocal signal exchange where root exudates trigger fungal growth, and fungal lipochitooligosaccharides [...] Read more.
Ectomycorrhizal (ECM) symbiosis is a fundamental mutualism crucial for forest eco-system health. Its establishment is governed by sophisticated molecular dialogue preceding physical colonization. This review synthesizes this pre-colonization crosstalk, beginning with reciprocal signal exchange where root exudates trigger fungal growth, and fungal lipochitooligosaccharides activate host symbiotic programming, often via the common symbiosis pathway. Successful colonization requires fungi to navigate plant immunity. They employ effectors, notably mycorrhiza-induced small secreted proteins (MiSSPs), to suppress defenses, e.g., by stabilizing jasmonate signaling repressors or inhibiting apoplastic proteases, establishing a localized “mycorrhiza-induced resistance.” Concurrent structural adaptations, including fungal hydrophobins, expansins, and cell wall-modifying enzymes like chitin deacetylase, facilitate adhesion and apoplastic penetration. While this sequential model integrates immune suppression with structural remodeling, current understanding is predominantly derived from a limited set of model systems. Significant knowledge gaps persist regarding species-specific determinants in non-model fungi and hosts, the influence of environmental variability and microbiome interactions, and methodological challenges in capturing early signaling in situ. This review’s main contributions are: providing a synthesized sequential model of molecular crosstalk; elucidating the dual fungal strategy of simultaneous immune suppression and structural remodeling; and identifying crucial knowledge gaps regarding non-model systems and species-specific determinants, establishing a research roadmap with implications for forest management and ecosystem sustainability. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Graphical abstract

27 pages, 2844 KB  
Article
Extracellular Vesicles from Probiotic and Beneficial Escherichia coli Strains Exert Multifaceted Protective Effects Against Rotavirus Infection in Intestinal Epithelial Cells
by Cecilia Cordero, Aitor Caballero-Román, Sergio Martínez-Ruiz, Yenifer Olivo-Martínez, Laura Baldoma and Josefa Badia
Pharmaceutics 2026, 18(1), 120; https://doi.org/10.3390/pharmaceutics18010120 - 18 Jan 2026
Viewed by 97
Abstract
Background/Objectives: Rotavirus remains a major cause of severe acute gastroenteritis
in infants worldwide. The suboptimal efficacy of current vaccines underscores the need
for alternative microbiome-based interventions, including postbiotics. Extracellular
vesicles (EVs) from probiotic and commensal E. coli strains have been shown [...] Read more.
Background/Objectives: Rotavirus remains a major cause of severe acute gastroenteritis
in infants worldwide. The suboptimal efficacy of current vaccines underscores the need
for alternative microbiome-based interventions, including postbiotics. Extracellular
vesicles (EVs) from probiotic and commensal E. coli strains have been shown to mitigate
diarrhea and enhance immune responses in a suckling-rat model of rotavirus infection.
Here, we investigate the regulatory mechanisms activated by EVs in rotavirus-infected
enterocytes. Methods: Polarized Caco-2 monolayers were used as a model of mature
enterocytes. Cells were pre-incubated with EVs from the probiotic E. coli Nissle 1917 (EcN)
or the commensal EcoR12 strain before rotavirus infection. Intracellular Ca2+
concentration, ROS levels, and the expression of immune- and barrier-related genes and
proteins were assessed at multiple time points post-infection. Results: EVs from both
strains exerted broad protective effects against rotavirus-induced cellular dysregulation,
with several responses being strain-specific. EVs interfered with viral replication by
counteracting host cellular processes essential for rotavirus propagation. Specifically, EV
treatment significantly reduced rotavirus-induced intracellular Ca2+ mobilization, ROS
production, and COX-2 expression. In addition, both EV types reduced virus-induced
mucin secretion and preserved tight junction organization, thereby limiting viral access
to basolateral coreceptors. Additionally, EVs enhanced innate antiviral defenses via
distinct, strain-dependent pathways: EcN EVs amplified IL-8-mediated responses,
whereas EcoR12 EVs preserved the expression of interferon-related signaling genes.
Conclusions: EVs from EcN and EcoR12 act through multiple complementary
mechanisms to restrict rotavirus replication, spread, and immune evasion. These findings
support their potential as effective postbiotic candidates for preventing or treating
rotavirus infection. Full article
23 pages, 2620 KB  
Article
Secretome Profiling of Lactiplantibacillus plantarum CRL681 Predicts Potential Molecular Mechanisms Involved in the Antimicrobial Activity Against Escherichia coli O157:H7
by Ayelen Antonella Baillo, Leonardo Albarracín, Eliana Heredia Ojeda, Mariano Elean, Weichen Gong, Haruki Kitazawa, Julio Villena and Silvina Fadda
Antibiotics 2026, 15(1), 96; https://doi.org/10.3390/antibiotics15010096 - 17 Jan 2026
Viewed by 203
Abstract
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface [...] Read more.
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface and in the extracellular environment, the characterization of the bacterial secretome is essential for elucidating these mechanisms. In this study, the secretome of L. plantarum CRL681 was comprehensively characterized using an integrated in silico and in vitro approach. Methods. The exoproteome and surfaceome were analyzed by LC-MS/MS under pure culture conditions and during co-culture with E. coli O157:H7. Identified proteins were functionally annotated, classified according to subcellular localization and secretion pathways, and evaluated through protein–protein interaction network analysis. Results. A total of 275 proteins were proposed as components of the CRL681 secretome, including proteins involved in cell surface remodeling, metabolism and nutrient transport, stress response, adhesion, and genetic information processing. Co-culture with EHEC induced significant changes in the expression of proteins associated with energy metabolism, transport systems, and redox homeostasis, indicating a metabolic and physiological adaptation of L. plantarum CRL681 under competitive conditions. Notably, several peptidoglycan hydrolases, ribosomal proteins with reported antimicrobial activity, and moonlighting proteins related to adhesion were identified. Conclusions. Overall, these findings suggest that the antagonistic activity of L. plantarum CRL681 against E. coli O157:H7 would be mediated by synergistic mechanisms involving metabolic adaptation, stress resistance, surface adhesion, and the production of non-bacteriocin antimicrobial proteins, supporting its potential application as a bioprotective and functional probiotic strain. Full article
Show Figures

Figure 1

22 pages, 16881 KB  
Article
Venom-Derived Proteins from Lonomia obliqua Modulate Cytoskeletal Regulators and Inflammatory Responses in Human Chondrocytes
by Miryam Paola Alvarez-Flores, Amanda Teixeira de Melo, Renata Nascimento Gomes, Thatiana Corrêa de Melo, Douglas Souza Oliveira, Marcelo Medina de Souza, Carlos DeOcesano-Pereira, Mauricio Barbugiani Goldfeder, Fernanda Faria and Ana Marisa Chudzinski-Tavassi
Int. J. Mol. Sci. 2026, 27(2), 934; https://doi.org/10.3390/ijms27020934 - 17 Jan 2026
Viewed by 88
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage loss, extracellular matrix degradation, chondrocyte apoptosis, and elevated inflammatory mediators. Chondrocytes respond to IL-1β and other inflammatory signals by secreting cytokines and activating transcriptional pathways that perpetuate inflammation. Because current therapies do [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage loss, extracellular matrix degradation, chondrocyte apoptosis, and elevated inflammatory mediators. Chondrocytes respond to IL-1β and other inflammatory signals by secreting cytokines and activating transcriptional pathways that perpetuate inflammation. Because current therapies do not prevent OA progression, bioactive compounds with cytoprotective and immunomodulatory activity are of considerable interest. Lonomia obliqua bristle extract (LOCBE) and its recombinant proteins rLOPAP and rLOSAC exhibit cytoprotective, proliferative, and antioxidant effects in mammalian cells, as well as the ability to influence cytoskeletal dynamics. Given the importance of Rac-1, RhoA, Rab9, and β-catenin in chondrocyte function and cartilage homeostasis, we evaluated LOCBE, rLOPAP, and rLOSAC in human chondrocytes stimulated or not with IL-1β. LOCBE and rLOPAP induced IL-6 and IL-8 secretion, although at lower levels than IL-1β. LOCBE exerts a cytoprotective effect in IL-1β-treated chondrocytes and reduces β-catenin, RhoA, and Rab9 expression without affecting NF-κB p65 translocation. rLOPAP increased mitochondrial activity, cytokine secretion, Rab9 expression, and membrane-associated β-catenin, and under inflammatory conditions, enhanced Rac-1 levels. In contrast, rLOSAC did not induce inflammatory cytokines and decreased RhoA and Rac-1 expression while increasing membrane-associated β-catenin. These findings suggest that L. obliqua extract and its derived-proteins rLOPAP and rLOSAC modulate cytoskeletal regulatory pathways and inflammatory responses in chondrocytes, supporting their potential as therapeutic leads for targeting mechanisms relevant to OA progression. Full article
Show Figures

Figure 1

42 pages, 4524 KB  
Article
Pharmacologic Modulation of the PAR-2–ERK Axis by Statins Converts Inflammatory Survival Signalling into Apoptosis in Colorectal Cancer Cells
by Layla Amiri, Rajashree Patnaik, Riah Lee Varghese, Bintul Huda and Yajnavalka Banerjee
Int. J. Mol. Sci. 2026, 27(2), 916; https://doi.org/10.3390/ijms27020916 - 16 Jan 2026
Viewed by 94
Abstract
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells [...] Read more.
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells in a manner consistent with targeted interference with the protease-activated receptor 2 (PAR-2)–extracellular signal-regulated kinase (ERK)–tumour necrosis factor-α (TNF-α) signalling axis. Using lipopolysaccharide-stimulated HT-29 and Caco-2 cells as complementary models of inflammatory colorectal malignancy, we show that both statins selectively attenuate PAR-2 expression at the protein and transcript levels while leaving structurally related PAR-1 unaffected. This pattern of receptor modulation is accompanied by suppression of total ERK1/2 expression, ERK1/2 phosphorylation, and the transcriptional target DUSP6, together with attenuation of TNF-α secretion. Importantly, these signaling shifts are associated with dual apoptotic programs; the extrinsic pathway, reflected by transcriptional upregulation and proteolytic activation of caspase-8; and the intrinsic mitochondrial pathway, evidenced by reciprocal modulation of Bcl-2 family proteins favoring Bax over Bcl-2. Both pathways converge upon activation of executioner caspase-3 and an increase in Annexin V-defined apoptotic fractions, indicating re-engagement of programmed cell death under inflammatory stress. Notably, rosuvastatin consistently demonstrates superior potency across signaling endpoints, achieving comparable biological effects at lower concentrations than atorvastatin. Collectively, these data indicate that clinically deployed statins target the PAR-2–ERK axis and are associated with re-activation of apoptotic pathways in inflammatory colorectal cancer models, while leaving open the possibility that additional statin-responsive networks contribute to their pro-apoptotic effects. This mechanistic framework provides biological plausibility for epidemiologic observations linking statin use with reduced colorectal cancer risk and improved outcomes, and supports further translational evaluation of PAR-2-directed statin strategies in colorectal malignancy. Full article
(This article belongs to the Special Issue Colorectal Cancer—Emerging Trends and Treatment Strategies)
Show Figures

Figure 1

13 pages, 5789 KB  
Article
Porcine FRZB (sFRP3) Negatively Regulates Myogenesis via the Wnt Signaling Pathway
by Jingru Nie, Yu Fu, Xin Hao, Dawei Yan, Bo Zhang and Hao Zhang
Animals 2026, 16(2), 276; https://doi.org/10.3390/ani16020276 - 16 Jan 2026
Viewed by 94
Abstract
Secreted frizzled-related protein 3 (sFRP3/FRZB) is a soluble Wnt antagonist with established roles in skeletal development, however, its specific function in myogenesis remains underexplored. This study investigated the regulatory role of FRZB in muscle development, hypothesizing that it contributes to breed-specific [...] Read more.
Secreted frizzled-related protein 3 (sFRP3/FRZB) is a soluble Wnt antagonist with established roles in skeletal development, however, its specific function in myogenesis remains underexplored. This study investigated the regulatory role of FRZB in muscle development, hypothesizing that it contributes to breed-specific growth differences in pigs. We examined FRZB expression in fetal tissues of slow-growing (Tibetan and Wujin) and fast-growing (Large White) pigs, and assessed its function in C2C12 myoblasts via siRNA-mediated knockdown. FRZB was widely expressed across porcine fetal tissues, with significantly higher abundance in the longissimus dorsi of slow-growing breeds. In vitro, FRZB silencing significantly enhanced myoblast proliferation and migration. Furthermore, knockdown accelerated differentiation and promoted the formation of longer, thicker multinucleated myotubes, accompanied by the upregulation of myogenic (MyoD, MyoG, MyHC) and fusion (β1-integrin, Myomaker) markers. Transcriptional profiling revealed a shift toward hypertrophy (Fst and Nog upregulation) and away from atrophy (Atrogin1 downregulation). These findings identify FRZB as a negative regulator of myogenesis via the Wnt signaling pathway. The elevated expression in indigenous breeds suggests FRZB may impose a molecular constraint on muscle development, highlighting its potential as a candidate gene for regulating carcass traits. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 5696 KB  
Article
The Candidate Effector Cgmas2 Orchestrates Biphasic Infection of Colletotrichum graminicola in Maize by Coordinating Invasive Growth and Suppressing Host Immunity
by Ziwen Gong, Jinai Yao, Yuqing Ma, Xinyao Xia, Kai Zhang, Jie Mei, Tongjun Sun, Yafei Wang and Zhiqiang Li
Int. J. Mol. Sci. 2026, 27(2), 845; https://doi.org/10.3390/ijms27020845 - 14 Jan 2026
Viewed by 161
Abstract
Maize (Zea mays L.) is a major economic crop highly susceptible to Colletotrichum graminicola, the causal agent of anthracnose leaf blight, which causes substantial annual yield losses. This fungal pathogen employs numerous effectors to manipulate plant immunity, yet the functions of [...] Read more.
Maize (Zea mays L.) is a major economic crop highly susceptible to Colletotrichum graminicola, the causal agent of anthracnose leaf blight, which causes substantial annual yield losses. This fungal pathogen employs numerous effectors to manipulate plant immunity, yet the functions of many secreted proteins during biphasic infection remain poorly characterized. In this study, we identified CgMas2, a candidate secreted protein in C. graminicola and a homolog of Magnaporthe oryzae MoMas2. Deletion of CgMAS2 in the wild-type strain CgM2 did not affect fungal vegetative growth or conidial morphology but significantly impaired virulence on maize leaves. Leaf sheath infection assays revealed that CgMas2 is required for biotrophic invasive hyphal growth, as the mutant showed defective spreading of invasive hyphae to adjacent cells. Subcellular localization analysis indicated that CgMas2 localizes to the cytoplasm of conidia and to the primary infection hyphae. Furthermore, DAB staining demonstrated that disrupt of CgMAS2 leads to host reactive oxygen species (ROS) accumulation. Comparative transcriptome analysis of maize infected with ΔCgmas2 versus CgM2 revealed enrichment of GO terms related to peroxisome and defense response, along with up-regulation of benzoxazinoid biosynthesis genes (benzoxazinone biosynthesis 3, 4 and 5) at 60 h post-inoculation (hpi). Conversely, six ethylene-responsive transcription factors (ERF2, ERF3, ERF56, ERF112, ERF115 and ERF118) involved in ethylene signaling pathways were down-regulated at 96 hpi. These expression patterns were validated by RT-qPCR. Collectively, our results demonstrate that CgMas2 not only promotes invasive hyphal growth during the biotrophic stage but may also modulate phytohormone signaling and defense compound biosynthesis during the necrotrophic phase of infection. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2793 KB  
Article
Exploring the Anti-Inflammatory Effects of Aloe vera Flower (AVF) and Its Active Ingredients in a Skin Inflammation Model Induced by Glyoxal-Derived Advanced Glycation End Products (GO-AGEs)
by Eun Yoo Lee, Seong-Min Hong, Sun Yeou Kim and Razia Sultana
Pharmaceuticals 2026, 19(1), 121; https://doi.org/10.3390/ph19010121 - 9 Jan 2026
Viewed by 432
Abstract
Objective: Advanced glycation end-products (AGEs) contribute to oxidative stress and inflammation, leading to various disorders, including skin inflammation. Here, we investigated the anti-inflammatory effects of Aloe vera flower (AVF) extract and its active constituents, vitexin (V) and isovitexin (IV), in a glyoxal-derived [...] Read more.
Objective: Advanced glycation end-products (AGEs) contribute to oxidative stress and inflammation, leading to various disorders, including skin inflammation. Here, we investigated the anti-inflammatory effects of Aloe vera flower (AVF) extract and its active constituents, vitexin (V) and isovitexin (IV), in a glyoxal-derived AGE (GO-AGE)-induced skin inflammaging model. Methods: We evaluated the effects of AVF, V, and IV in epidermal keratinocytes (HaCaT cells) using enzyme-linked immunosorbent assay, Western blotting, quantitative real-time polymerase chain reaction, and in silico molecular docking. Results: Treatment of HaCaT cells with AVF, V, or IV significantly suppressed the secretion and expression of interleukins (IL-6 and IL-8) at both the mRNA and protein level, and reduced the expression of key inflammatory proteins, including kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2), and phosphorylation of mitogen-activated protein kinase (MAPK) pathway proteins. Notably, the inhibitory effects of V and IV on COX-2 expression were more comparable to or exceeded those of the positive control (Epigallocatechin gallate), even at a lower concentration. Conversely, the expression of sirtuin 1 (SIRT1) was upregulated by AVF, V, and IV, with IV showing 1.5-fold upregulation. Molecular docking analyses supported these findings, with IV displaying a particularly high binding affinity for COX-2 (−11.0 kcal/mol). Conclusions: These findings highlight the potential of AVF, V, and IV as novel therapeutic agents for managing skin inflammaging by modulating inflammatory pathways. Full article
Show Figures

Graphical abstract

20 pages, 1606 KB  
Review
The Vaginal Microbiome and Host Health: Implications for Cervical Cancer Progression
by María del Carmen Lagunas-Cruz, Arturo Valle-Mendiola and Isabel Soto-Cruz
Int. J. Mol. Sci. 2026, 27(2), 640; https://doi.org/10.3390/ijms27020640 - 8 Jan 2026
Viewed by 562
Abstract
The vaginal microbiome plays a crucial role in maintaining host health by preserving a balanced microenvironment. Nevertheless, the definition of a “normal” vaginal microbiome remains controversial, as its composition varies depending on factors such as ethnicity and geographical origin. In most cases, members [...] Read more.
The vaginal microbiome plays a crucial role in maintaining host health by preserving a balanced microenvironment. Nevertheless, the definition of a “normal” vaginal microbiome remains controversial, as its composition varies depending on factors such as ethnicity and geographical origin. In most cases, members of the genus Lactobacillus predominate in healthy vaginal microbiomes, protecting against potential pathogens through specific mechanisms such as the secretion of lactic acid and bacteriocins, among others. A reduction in Lactobacillus abundance, accompanied by an increase in anaerobic organisms, predisposes the host to the development of various pathologies. Among these pathologies is infection with human papillomavirus (HPV) and the subsequent development of cervical cancer. A progressive decline in Lactobacillus has been observed as the lesion advances in different populations worldwide. In the case of the Mexican population, several Lactobacillus have been reported in healthy microbiomes: L. gasseri, L. fermentum, L. rhamnosus, L. jensenii, L. crispatus, L. delbrueckii, L. acidophilus, and L. brevis. In contrast, genera reported in dysbiosis include Sneathia, while Brevibacterium aureum and Brachybacterium conglomeratum have been associated with HPV16 infection and/or SIL. The mere presence of some bacteria is not sufficient to modulate the cellular activity of host cells; therefore, the expression, production and activity of different proteins could be affected by the vaginal microbiome. The impact of the microbiome on host cell function is the result of different metabolites produced by the bacteria, which suppress or activate different signaling and metabolic pathways. The molecular interactions between the host and microbiome, as well as their role in cervical carcinogenesis, are still unknown. In this review, we focus on the vaginal microbiome, HPV, and the impact that the interaction of the microbiome with HPV has in cervical cancer development. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

24 pages, 3255 KB  
Review
Molecular Mechanisms Underlying Atherosclerosis and Current Advances in Targeted Therapeutics
by Bo Zhu
Int. J. Mol. Sci. 2026, 27(2), 634; https://doi.org/10.3390/ijms27020634 - 8 Jan 2026
Viewed by 367
Abstract
Atherosclerosis is a chronic, multifactorial vascular disease and the leading global cause of cardiovascular morbidity. Its development reflects interconnected disturbances in lipid metabolism, endothelial function, inflammation, smooth muscle cell (SMC) phenotypic switching, and extracellular matrix remodeling. Genetic predisposition, including monogenic disorders such as [...] Read more.
Atherosclerosis is a chronic, multifactorial vascular disease and the leading global cause of cardiovascular morbidity. Its development reflects interconnected disturbances in lipid metabolism, endothelial function, inflammation, smooth muscle cell (SMC) phenotypic switching, and extracellular matrix remodeling. Genetic predisposition, including monogenic disorders such as familial hypercholesterolemia and polygenic risk variants, modulates disease susceptibility by altering lipid homeostasis as well as inflammatory and thrombotic pathways. Epigenetic regulators and noncoding RNAs, such as histone modifications, microRNAs, and long noncoding RNAs, further shape gene expression and link environmental cues to vascular pathology. Endothelial injury promotes lipoprotein retention and oxidation, triggering monocyte recruitment and macrophage-driven foam cell formation, cytokine secretion, and necrotic core development. Persistent inflammation, macrophage heterogeneity, and SMC plasticity collectively drive plaque growth and destabilization. Emerging insights into immune cell metabolism, intracellular signaling networks, and novel regulatory RNAs are expanding therapeutic possibilities beyond lipid-lowering. Current and evolving treatments include statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, anti-inflammatory agents targeting interleukin-1 beta (IL-1β) or NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), and advanced approaches such as gene editing, siRNA, and nanoparticle-based delivery. Integrating multi-omics, biomarker-guided therapy, and precision medicine promises improved risk stratification and next-generation targeted interventions. This review summarizes recent molecular advances and highlights translational opportunities for enhancing atherosclerosis prevention and treatment. Full article
(This article belongs to the Special Issue Molecular Insights and Therapeutic Advances in Atherosclerosis)
Show Figures

Figure 1

15 pages, 2917 KB  
Article
Marine Bromophenol Derivatives as a Novel Class of Potent Small-Molecule STING Agonists
by Manqing Tang, Qiuhui Guo, Ping Wang, Yunfei Li and Bo Jiang
Curr. Issues Mol. Biol. 2026, 48(1), 61; https://doi.org/10.3390/cimb48010061 - 5 Jan 2026
Viewed by 231
Abstract
Activation of the stimulator of interferon genes (STING) pathway has emerged as a promising strategy for cancer immunotherapy. However, the initial cyclic dinucleotide (CDN) analogs developed as STING agonists have shown limited efficacy in clinical trials, prompting interest in non-CDN small-molecule alternatives. In [...] Read more.
Activation of the stimulator of interferon genes (STING) pathway has emerged as a promising strategy for cancer immunotherapy. However, the initial cyclic dinucleotide (CDN) analogs developed as STING agonists have shown limited efficacy in clinical trials, prompting interest in non-CDN small-molecule alternatives. In this study, we identified a novel series of bromophenol derivatives as effective STING agonists. Among these derivatives, OSBP63 robustly activated the STING signaling pathway, resulting in enhanced phosphorylation of interferon regulatory factor 3 (p-IRF3) and increased secretion of interferon-β (IFN-β). Co-administration of Marine Bromophenol Derivative (OSBP63) with paclitaxel (PTX), a conventional anticancer drug, significantly suppressed B-cell lymphoma-2 (BCL-2) expression and protein kinase B (AKT) phosphorylation, thereby demonstrating pronounced anti-tumor activity in a mouse model of breast cancer. These findings suggest that OSBP63 represents a promising non-CDN small-molecule STING agonist candidate, offering a valuable lead for future anticancer therapeutic development. Full article
(This article belongs to the Special Issue Innovations in Marine Biotechnology and Molecular Biology)
Show Figures

Figure 1

20 pages, 2378 KB  
Article
Phosphomimetic Thrombospondin-1 Modulates Integrin β1-FAK Signaling and Vascular Cell Functions
by Assala Raya, Bálint Bécsi and Anita Boratkó
Biomolecules 2026, 16(1), 84; https://doi.org/10.3390/biom16010084 - 4 Jan 2026
Viewed by 369
Abstract
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional [...] Read more.
Thrombospondin-1 (TSP1) is a multifunctional glycoprotein that plays a crucial role in angiogenesis and vascular remodeling. Ser93 of TSP1 has recently been identified as a novel phosphorylation site, influencing angiogenic properties; however, the underlying signaling mechanism remains unclear. Here, we investigated the functional impact of Ser93 phosphorylation using phosphomimetic (TSP1S93D) and phosphonull (TSP1S93A) mutants. Endothelial cell (EC) migration was analyzed using scratch assay and electric cell-substrate impedance sensing. Activation of key pathways (Akt, p38, ERK, and FAK) was analyzed by immunoblotting. TSP1 secretion was quantified by ELISA. Downstream effects on smooth muscle cells were examined by Western blot using conditioned media of endothelial cells. Expression of TSP1S93D significantly impaired endothelial migration and wound closure, associated with reduced phosphorylation of FAK and paxillin. Upstream of FAK signaling, TSP1S93D showed enhanced binding to integrin β1 and promoted its clustering. In contrast, TSP1S93D stimulated smooth muscle cell proliferation, migration, cytoskeletal remodeling, and phenotypic switching toward a synthetic, pro-inflammatory state characterized by elevated marker protein expression. Together, these findings demonstrate that the impaired angiogenic properties induced by TSP1S93D result from the modulation of integrin β1-FAK pathways in ECs, suppressing endothelial motility while promoting smooth muscle activation, suggesting a role in early vascular remodeling and inflammation. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 1443 KB  
Review
Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications
by Undral Munkhsaikhan, Md Ataur Rahman, Alivia Shasteen, Karima Ait-Aissa, Amal M. Sahyoun, Rajat Das Gupta, Modar Kassan, Ehsanul Hoque Apu and Ammaar H. Abidi
Int. J. Mol. Sci. 2026, 27(1), 525; https://doi.org/10.3390/ijms27010525 - 4 Jan 2026
Viewed by 413
Abstract
Autophagy is a well-preserved biological mechanism that is essential for sustaining homeostasis by degradation and recycling damaged organelles, misfolded proteins, and other cytoplasmic detritus. Cannabinoid signaling has emerged as a prospective regulator of diverse cellular functions, including immunological modulation, oxidative stress response, apoptosis, [...] Read more.
Autophagy is a well-preserved biological mechanism that is essential for sustaining homeostasis by degradation and recycling damaged organelles, misfolded proteins, and other cytoplasmic detritus. Cannabinoid signaling has emerged as a prospective regulator of diverse cellular functions, including immunological modulation, oxidative stress response, apoptosis, and autophagy. Dysregulation of autophagy contributes to pathogenesis and treatment resistance of several oral diseases, including oral squamous cell carcinoma (OSCC), periodontitis, and gingival inflammation. This review delineates the molecular crosstalk between cannabinoid receptor type I (CB1) and type II (CB2) activation and autophagic pathways across oral tissues. Cannabinoids, including cannabidiol (CBD) and tetrahydrocannabinol (THC), modulate key regulators like mTOR, AMPK, and Beclin-1, thereby influencing autophagic flux, inflammation, and apoptosis. Experimental studies indicate that cannabinoids inhibit the PI3K/AKT/mTOR pathway, promote reactive oxygen species (ROS)-induced autophagy, and modulate cytokine secretion, mechanisms that underline their dual anti-inflammatory and anti-cancer capabilities. In addition, cannabinoid-induced autophagy has been shown to enhance stem cell survival and differentiation, offering promise for dental pulp regeneration. Despite these promising prospects, several challenges remain, including receptor selectivity, dose-dependent variability, limited oral bioavailability, and ongoing regulatory constraints. A deeper understanding of the context-dependent regulation of autophagy by cannabinoid signaling could pave the way for innovative therapeutic interventions in dentistry. Tailored cannabinoid-based formulations, engineered for receptor specificity, tissue selectivity, and optimized delivery, hold significant potential to revolutionize oral healthcare by modulating autophagy-related molecular pathways involved in disease resolution and tissue regeneration. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop