Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications
Abstract
1. Introduction
2. Cannabinoid Signaling in Oral Tissues
2.1. Expression and Distribution of CB1 and CB2 in Oral Tissues
2.2. Endogenous and Exogenous Cannabinoids in Oral Biology
2.3. Functional Outcomes of Cannabinoid Signaling in Oral Tissues
2.4. Interactions of Cannabinoid Receptors with Other Pathways
2.5. Clinical Implications
3. Autophagy Pathways Influenced by Cannabinoids
3.1. Core Autophagy Regulators Modulated by Cannabinoids
3.2. Oxidative Stress and Mitophagy
3.3. Lysosomal Biogenesis and Autophagic Dynamics
3.4. Contextual Function of Autophagy in Oral Pathologies
4. Therapeutic Implications in Oral Diseases
4.1. Oral Cancer
4.2. Periodontitis and Gingival Inflammation
4.3. Dental Pulp and Regeneration
5. Mechanistic Insights and Molecular Targets
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef]
- Farré, J.-C.; Subramani, S. Mechanistic insights into selective autophagy pathways: Lessons from yeast. Nat. Rev. Mol. Cell Biol. 2016, 17, 537–552. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shaikh, M.H.; Gupta, R.D.; Siddika, N.; Shaikh, M.S.; Zafar, M.S.; Kim, B.; Apu, E.H. Advancements in autophagy modulation for the management of oral disease: A focus on drug targets and therapeutics. Biomedicines 2024, 12, 2645. [Google Scholar] [CrossRef]
- Abd Elkader, H.-T.A.E.; El Idrissi, S.; Sellami, S.; Al-Shami, A.S. Cannabinoids as Potential Multitargeting Neuroprotectants in Neuropathic Pain: Exploring the Interplay Between Cannabinoid System and Autophagy; IntechOpen: London, UK, 2025. [Google Scholar]
- Rahman, A.; Jalouli, M.; Al-Zharani, M.; Hoque Apu, E.; Harrath, A.H. Mechanistic Insights into Autophagy-Dependent Cell Death (ADCD): A Novel Avenue for Cancer Therapy. Cells 2025, 14, 1072. [Google Scholar] [CrossRef]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U.; et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytotherapy Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef]
- Freeman, T.P.; Craft, S.; Wilson, J.; Stylianou, S.; ElSohly, M.; Di Forti, M.; Lynskey, M.T. Changes in delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations in cannabis over time: Systematic review and meta-analysis. Addiction 2021, 116, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghezi, Z.Z.; Busbee, P.B.; Alghetaa, H.; Nagarkatti, P.S.; Nagarkatti, M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav. Immun. 2019, 82, 25–35. [Google Scholar] [CrossRef]
- Melo, E.S.; Asevedo, E.A.; Duarte-Almeida, J.M.; Nurkolis, F.; Syahputra, R.A.; Park, M.N.; Kim, B.; Couto, R.O.D.; Ribeiro, R.I.M.d.A. Mechanisms of Cell Death Induced by Cannabidiol Against Tumor Cells: A Review of Preclinical Studies. Plants 2025, 14, 585. [Google Scholar] [CrossRef] [PubMed]
- Cretu, B.; Zamfir, A.; Bucurica, S.; Scheau, A.E.; Savulescu Fiedler, S.; Caruntu, C.; Caruntu, A.; Scheau, C. Role of cannabinoids in oral cancer. Int. J. Mol. Sci. 2024, 25, 969. [Google Scholar] [CrossRef] [PubMed]
- Carmona Rendón, Y.; Garzón, H.S.; Bueno-Silva, B.; Arce, R.M.; Suárez, L.J. Cannabinoids in periodontology: Where are we now? Antibiotics 2023, 12, 1687. [Google Scholar] [CrossRef]
- Uddin, M.S.; Rahman, M.A.; Kabir, M.T.; Behl, T.; Mathew, B.; Perveen, A.; Barreto, G.E.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease. IUBMB Life 2020, 72, 1843–1855. [Google Scholar] [CrossRef]
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants 2021, 10, 408. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rhim, H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep. 2017, 50, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Kiani, P.; Khodadadi, E.S.; Nikdasti, A.; Yarahmadi, S.; Gheibi, M.; Yousefi, Z.; Ehtiati, S.; Yahyazadeh, S.; Shafiee, S.M.; Taghizadeh, M.; et al. Autophagy and the peroxisome proliferator-activated receptor signaling pathway: A molecular ballet in lipid metabolism and homeostasis. Mol. Cell. Biochem. 2025, 480, 3477–3499. [Google Scholar] [CrossRef]
- Miguel Guaman-Ortiz, L.; Isabel Ramirez Orellana, M.; Ratovitski, E.A. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr. Genom. 2017, 18, 132–155. [Google Scholar] [CrossRef]
- Tazi, N.; Semlali, A.; Loubaki, L.; Alamri, A.; Rouabhia, M. Cannabis smoke condensate induces human gingival epithelial cell damage through apoptosis, autophagy, and oxidative stress. Arch. Oral Biol. 2022, 141, 105498. [Google Scholar] [CrossRef]
- Moses, J. Synergistic and Antagonistic: Investigating the Interaction Between Cannabinoids and Chemotherapy Agents in Breast Cancer Treatment. 2023. Available online: https://www.researchgate.net/publication/392401725_Synergistic_and_Antagonistic_Investigating_the_Interaction_Between_Cannabinoids_and_Chemotherapy_Agents_in_Breast_Cancer_Treatment (accessed on 1 December 2025).
- Alsherbiny, M.A.; Bhuyan, D.J.; Low, M.N.; Chang, D.; Li, C.G. Synergistic interactions of cannabidiol with chemotherapeutic drugs in mcf7 cells: Mode of interaction and proteomics analysis of mechanisms. Int. J. Mol. Sci. 2021, 22, 10103. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Kim, T.; Kwon, H.; Park, Y.N.; Kwon, T.-H.; Hong, M.; Choi, K.-C.; Ham, J.; Kim, Y.-J. Cannabidiol potentiates p53-driven autophagic cell death in non-small cell lung cancer following DNA damage: A novel synergistic approach beyond canonical pathways. Exp. Mol. Med. 2025, 57, 979–989. [Google Scholar] [CrossRef]
- Gildea, L.; Ayariga, J.A.; Xu, J.; Villafane, R.; Robertson, B.K.; Samuel-Foo, M.; Ajayi, O.S. Cannabis sativa CBD extract exhibits synergy with broad-spectrum antibiotics against Salmonella enterica subsp. Enterica serovar Typhimurium. Microorganisms 2022, 10, 2360. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Cavic, M.; Canela, E.I. Functional fine-tuning of metabolic pathways by the endocannabinoid system—implications for health and disease. Int. J. Mol. Sci. 2021, 22, 3661. [Google Scholar] [CrossRef]
- O’Brien, K.; Blair, P. Endocannabinoid system. In Medicinal Cannabis and CBD in Mental Healthcare; Springer: Cham, Switzerland, 2021; pp. 7–56. [Google Scholar]
- Avoseh, F.T.; Mtunzi, F.M.; Avoseh, O.N.; Takaidza, S. Cannabis sativa; Ethnobotanicals, Classifications, Pharmacology, and Phytochemistry. Nat. Prod. Commun. 2025, 20, 1934578X251334244. [Google Scholar] [CrossRef]
- Navarro-Saiz, L.M.; Bernal-Cepeda, L.J.; Castellanos, J.E. Immune challenges upregulate the expression of cannabinoid receptors in cultured human odontoblasts and gingival fibroblasts. Acta Odontoloógica Latinoam. 2022, 35, 80. [Google Scholar] [CrossRef]
- de Lorimier, L.-P.; Hazzah, T.; Amazonas, E.; Cital, S.; Amazonas, E. Cannabinoids in oncology and immune response. In Cannabis Therapy in Veterinary Medicine: A Complete Guide; Springer: Cham, Switzerland, 2021; pp. 231–269. [Google Scholar]
- Picciolo, G.; Pallio, G.; Altavilla, D.; Vaccaro, M.; Oteri, G.; Irrera, N.; Squadrito, F. β-Caryophyllene reduces the inflammatory phenotype of periodontal cells by targeting CB2 receptors. Biomedicines 2020, 8, 164. [Google Scholar] [CrossRef]
- Liu, C.; Qi, X.; Alhabeil, J.; Lu, H.; Zhou, Z. Activation of cannabinoid receptors promote periodontal cell adhesion and migration. J. Clin. Periodontol. 2019, 46, 1264–1272. [Google Scholar] [CrossRef]
- Ravi, J. Crosstalk Between Cannabinoid Receptors and Epidermal Growth Factor Receptor in Non-Small Cell Lung Cancer. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2015. [Google Scholar]
- Pete, D.D.; Narouze, S.N. Endocannabinoids: Anandamide and 2-arachidonoylglycerol (2-AG). In Cannabinoids and Pain; Springer: New York, NY, USA, 2021; pp. 63–69. [Google Scholar]
- Matheson, J.; Zhou, X.M.M.; Bourgault, Z.; Le Foll, B. Potential of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL) enzymes as targets for obesity treatment: A narrative review. Pharmaceuticals 2021, 14, 1316. [Google Scholar] [CrossRef] [PubMed]
- Bellocchio, L.; Patano, A.; Inchingolo, A.D.; Inchingolo, F.; Dipalma, G.; Isacco, C.G.; de Ruvo, E.; Rapone, B.; Mancini, A.; Lorusso, F.; et al. Cannabidiol for oral health: A new promising therapeutical tool in dentistry. Int. J. Mol. Sci. 2023, 24, 9693. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; Iriondo De-Hond, A.; Borrelli, F.; Capasso, R.; Del Castillo, M.D.; Abalo, R. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: Useful nutraceuticals? Int. J. Mol. Sci. 2020, 21, 3067. [Google Scholar] [CrossRef]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.M.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef]
- Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23, 101301. [Google Scholar] [CrossRef] [PubMed]
- Bullon, P.; Cordero, M.D.; Quiles, J.L.; Ramirez-Tortosa, M.d.C.; Gonzalez-Alonso, A.; Alfonsi, S.; García-Marín, R.; de Miguel, M.; Battino, M. Autophagy in periodontitis patients and gingival fibroblasts: Unraveling the link between chronic diseases and inflammation. BMC Med. 2012, 10, 122. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, H.; Qiao, X.; Li, D.; Zhu, Y.; Wu, Z.; Wang, W.; Ma, Z.; Liu, C. The activation of CB2 enhances bone remodeling in periodontitis. BMC Oral Health 2025, 25, 788. [Google Scholar] [CrossRef] [PubMed]
- Trigo, G.; Coelho, M.; Ferreira, C.B.; Melosini, M.; Lehmann, I.S.; Reis, C.P.; Gaspar, M.M.; Santos, S. Exploring the Biological Activity of Phytocannabinoid Formulations for Skin Health Care: A Special Focus on Molecular Pathways. Int. J. Mol. Sci. 2024, 25, 13142. [Google Scholar] [CrossRef]
- Fernández Puente, E.; Llanos, P.; Palomero Labajos, J. Biosensor HyPer2 to monitor intracellular hydrogen peroxide induced by insulin and interleukin 1 beta stimulation in isolated skeletal muscle fibres. Free. Radic. Biol. Med. 2019, 139, S10–S57. [Google Scholar]
- Huang, C.-C.; Chiu, S.-C.; Chao, S.-C.; Liao, H.-Y.; Lee, S.-P.; Huang, C.-C.; Cho, D.-Y. Real-Time Monitoring of the Cytotoxic and Antimetastatic Properties of Cannabidiol in Human Oral Squamous Cell Carcinoma Cells Using Electric Cell-Substrate Impedance Sensing. Int. J. Mol. Sci. 2022, 23, 15842. [Google Scholar] [CrossRef]
- Kornsuthisopon, C.; Chansaenroj, A.; Suwittayarak, R.; Phothichailert, S.; Usarprom, K.; Srikacha, A.; Vimolmangkang, S.; Phrueksotsai, C.; Samaranayake, L.P.; Osathanon, T. Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro. Int. Endod. J. 2024, 58, 449–466. [Google Scholar] [CrossRef]
- Yu, L.; Zeng, L.; Zhang, Z.; Zhu, G.; Xu, Z.; Xia, J.; Weng, J.; Li, J.; Pathak, J.L. Cannabidiol rescues TNF-α-inhibited proliferation, migration, and osteogenic/odontogenic differentiation of dental pulp stem cells. Biomolecules 2023, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Secondulfo, C.; Mazzeo, F.; Pastorino, G.M.G.; Vicidomini, A.; Meccariello, R.; Operto, F.F. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int. J. Mol. Sci. 2024, 25, 9407. [Google Scholar] [CrossRef]
- Colangeli, R.; Teskey, G.C.; Di Giovanni, G. Endocannabinoid-serotonin systems interaction in health and disease. Prog. Brain Res. 2021, 259, 83–134. [Google Scholar]
- Turcotte, C.; Blanchet, M.-R.; LaViolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. life Sci. 2016, 73, 4449–4470. [Google Scholar] [CrossRef]
- Ye, Z.-Q.; Meng, X.-H.; Fang, X.; Liu, H.-Y.; Mwindadi, H.H. MiR-126 regulates the effect of mesenchymal stem cell vascular repair on carotid atherosclerosis through MAPK/ERK signaling pathway. World J. Stem Cells 2025, 17, 106520. [Google Scholar] [CrossRef]
- Mujahid, K.; Rasheed, M.S.; Sabir, A.; Nam, J.; Ramzan, T.; Ashraf, W.; Imran, I. Cannabidiol as an immune modulator: A comprehensive review. Saudi Pharm. J. 2025, 33, 11. [Google Scholar] [CrossRef]
- Campana, M.D.; de Paolis, G.; Sammartino, G.; Bucci, P.; Aliberti, A.; Gasparro, R. Cannabinoids: Therapeutic Perspectives for Management of Orofacial Pain, Oral Inflammation and Bone Healing—A Systematic Review. Int. J. Mol. Sci. 2025, 26, 3766. [Google Scholar] [CrossRef]
- Gurley, S.N.; Abidi, A.H.; Allison, P.; Guan, P.; Duntsch, C.; Robertson, J.H.; Kosanke, S.D.; Keir, S.T.; Bigner, D.D.; Elberger, A.J.; et al. Mechanism of anti-glioma activity and in vivo efficacy of the cannabinoid ligand KM-233. J. Neuro-Oncol. 2012, 110, 163–177. [Google Scholar] [CrossRef]
- Moreno-Blas, D.; Adell, T.; González-Estévez, C. Autophagy in Tissue Repair and Regeneration. Cells 2025, 14, 282. [Google Scholar] [CrossRef]
- Dando, I.; Donadelli, M.; Costanzo, C.; Dalla Pozza, E.; D’Alessandro, A.; Zolla, L.; Palmieri, M. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis. 2013, 4, e664. [Google Scholar] [CrossRef]
- Fu, Z.; Zhao, P.-Y.; Yang, X.-P.; Li, H.; Hu, S.-D.; Xu, Y.-X.; Du, X.-H. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front. Pharmacol. 2023, 14, 1094020. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.; Werner, E.; Falasca, M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers 2021, 13, 1211. [Google Scholar] [CrossRef]
- Vallée, A.; Vallée, J.-N.; Lecarpentier, Y. Potential role of cannabidiol in Parkinson’s disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging 2021, 13, 10796–10813. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Xie, X.-H.; Chen, C.-H.; Peng, X.; Zhang, P.; Yang, C.; Wang, Y.-T. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol. 2019, 38, 10–22. [Google Scholar] [CrossRef]
- Yamashita, S.-I.; Sugiura, Y.; Matsuoka, Y.; Maeda, R.; Inoue, K.; Furukawa, K.; Fukuda, T.; Chan, D.C.; Kanki, T. Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species. Cell Death Differ. 2024, 31, 651–661. [Google Scholar] [CrossRef]
- Si, J.; Sun, L.; Qin, Y.; Peng, L.; Gong, Y.; Gao, C.; Shen, W.; Li, M. Cannabinoids improve mitochondrial function in skeletal muscle of exhaustive exercise training rats by inhibiting mitophagy through the PINK1/PARKIN and BNIP3 pathways. pathways. Chem. Interactions 2024, 389, 110855. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Z.; Xu, J.; Zhang, L.; Cui, H. Endoplasmic reticulum stress-induced cell death as a potential mechanism for targeted therapy in glioblastoma (Review). Int. J. Oncol. 2021, 59, 60. [Google Scholar] [CrossRef]
- Song, T.-T.; Cai, R.-S.; Hu, R.; Xu, Y.-S.; Qi, B.-N.; Xiong, Y.A. The important role of TFEB in autophagy-lysosomal pathway and autophagy-related diseases: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1641–1649. [Google Scholar] [CrossRef]
- Abd El-Aziz, Y.S.; Leck, L.Y.W.; Jansson, P.J.; Sahni, S. Emerging role of autophagy in the development and progression of oral squamous cell carcinoma. Cancers 2021, 13, 6152. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Pang, E.-K. Relationship between periodontitis and systemic health conditions: A narrative review. Ewha Med. J. 2025, 48, e27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Investigation of the Abilities of Cannabinoids to Alter Biomarker Production Involved in Inflammation and Periodontal Tissue Regeneration. Ph.D. Thesis, University of Leeds, Leeds, UK, 2023. [Google Scholar]
- Harsha, C.; Banik, K.; Ang, H.L.; Girisa, S.; Vikkurthi, R.; Parama, D.; Rana, V.; Shabnam, B.; Khatoon, E.; Kumar, A.P.; et al. Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. Int. J. Mol. Sci. 2020, 21, 3285. [Google Scholar] [CrossRef] [PubMed]
- Loubaki, L.; Rouabhia, M.; Al Zahrani, M.; Al Amri, A.; Semlali, A. Oxidative Stress and Autophagy Mediate Anti-Cancer Properties of Cannabis Derivatives in Human Oral Cancer Cells. Cancers 2022, 14, 4924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhou, P.; Yao, M. Clinical roles of autophagy-related proteins Beclin-1 and mTOR in smoking and non-smoking patients with oral leukoplakia. Afr. Health Sci. 2023, 23, 616–622. [Google Scholar] [CrossRef]
- Younes, M.; El Hage, M.; Shebaby, W.; Al Toufaily, S.; Ismail, J.; Naim, H.Y.; Mroueh, M.; Rizk, S. The molecular anti-metastatic potential of CBD and THC from Lebanese Cannabis via apoptosis induction and alterations in autophagy. Sci. Rep. 2024, 14, 25642. [Google Scholar] [CrossRef]
- Wu, J.S.; Li, L.; Wang, S.S.; Pang, X.; Wu, J.B.; Sheng, S.R.; Tang, Y.J.; Tang, Y.L.; Zheng, M.; Liang, X.H.; et al. Autophagy is positively associated with the accumulation of myeloid-derived suppressor cells in 4-nitroquinoline-1-oxide-induced oral cancer. Oncol. Rep. 2018, 40, 3381–3391. [Google Scholar] [CrossRef] [PubMed]
- Montalto, F.I.; De Amicis, F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020, 9, 2648. [Google Scholar] [CrossRef]
- Semlali, A.; Beji, S.; Ajala, I.; Rouabhia, M. Effects of tetrahydrocannabinols on human oral cancer cell proliferation, apoptosis, autophagy, oxidative stress, and DNA damage. Arch. Oral Biol. 2021, 129, 105200. [Google Scholar] [CrossRef]
- Pagano, C.; Navarra, G.; Coppola, L.; Bifulco, M.; Laezza, C. Molecular Mechanism of Cannabinoids in Cancer Progression. Int. J. Mol. Sci. 2021, 22, 3680. [Google Scholar] [CrossRef]
- Sawada, S.; Chosa, N.; Ishisaki, A.; Naruishi, K. Enhancement of gingival inflammation induced by synergism of IL-1β and IL-6. Biomed. Res. 2013, 34, 31–40. [Google Scholar] [CrossRef]
- Abidi, A.H.; Presley, C.S.; Dabbous, M.; Tipton, D.A.; Mustafa, S.M.; Moore, B.M., 2nd. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Arch. Oral Biol. 2018, 87, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jirasek, P.; Jusku, A.; Frankova, J.; Urbankova, M.; Diabelko, D.; Ruzicka, F.; Papouskova, B.; Chytilova, K.; Vrba, J.; Havlasek, J.; et al. Phytocannabinoids and gingival inflammation: Preclinical findings and a placebo-controlled double-blind randomized clinical trial with cannabidiol. J. Periodontal Res. 2024, 59, 468–479. [Google Scholar] [CrossRef]
- Kiełbratowski, M.; Kuśka-Kiełbratowska, A.; Mertas, A.; Bobela, E.; Wiench, R.; Kępa, M.; Trzcionka, A.; Korkosz, R.; Tanasiewicz, M. Evaluation of the Effectiveness of a Mouthwash Containing Spilanthol and Cannabidiol on Improving Oral Health in Patients with Gingivitis—Clinical Trial. J. Clin. Med. 2025, 14, 1641. [Google Scholar] [CrossRef] [PubMed]
- Umpreecha, C.; Bhalang, K.; Charnvanich, D.; Luckanagul, J. Efficacy and safety of topical 0.1% cannabidiol for managing recurrent aphthous ulcers: A randomized controlled trial. BMC Complement. Med. Ther. 2023, 23, 57. [Google Scholar] [CrossRef]
- Abidi, A.H.; Kassan, M.; Derefinko, K. Oral Cannabidiol for Acute Post-Extraction Pain: A Randomized Pilot Study. Pharmaceuticals 2025, 18, 1792. [Google Scholar] [CrossRef]
- Qi, X.; Liu, C.; Li, G.; Luan, H.; Li, S.; Yang, D.; Zhou, Z. Investigation of in vitro odonto/osteogenic capacity of cannabidiol on human dental pulp cell. J. Dent. 2021, 109, 103673. [Google Scholar] [CrossRef]
- Nabissi, M.; Morelli, M.B.; Amantini, C.; Liberati, S.; Santoni, M.; Ricci-Vitiani, L.; Pallini, R.; Santoni, G. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int. J. Cancer 2015, 137, 1855–1869. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Wu, Y.; Xu, L. Recent advancements in hydrogels as novel tissue engineering scaffolds for dental pulp regeneration. Int. J. Biol. Macromol. 2024, 264, 130708. [Google Scholar] [CrossRef]
- David, C.; de Souza, J.F.; Silva, A.F.; Grazioli, G.; Barboza, A.S.; Lund, R.G.; Fajardo, A.R.; Moraes, R.R. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. J. Mater. Sci. Mater. Med. 2024, 35, 14. [Google Scholar] [CrossRef]
- Liu, F.; Wu, Q.; Liu, Q.; Chen, B.; Liu, X.; Pathak, J.L.; Watanabe, N.; Li, J. Dental pulp stem cells-derived cannabidiol-treated organoid-like microspheroids show robust osteogenic potential via upregulation of WNT6. Commun. Biol. 2024, 7, 972. [Google Scholar] [CrossRef]
- Raouf, N.; Darwish, Z.E.; Ramadan, O.; Barakat, H.S.; Elbanna, S.A.; Essawy, M.M. The anticancer potential of tetrahydrocurcumin-phytosomes against oral carcinoma progression. BMC Oral Health 2024, 24, 1126. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta-Mol. Cell Res. 2021, 1868, 119041. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hong, Y.; Yan, J.; Brown, B.; Lin, X.; Zhang, X.; Shen, N.; Li, M.; Cai, J.; Gordon, M.; et al. Low-dose delta-9-tetrahydrocannabinol as beneficial treatment for aged APP/PS1 mice. Int. J. Mol. Sci. 2022, 23, 2757. [Google Scholar] [CrossRef] [PubMed]
- Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisogno, T.; Rammes, G.; Cascio, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgänsberger, W.; et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002, 418, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Burgos, E.; Pascual, D.; Martín, M.I.; Goicoechea, C. Antinociceptive effect of the cannabinoid agonist, WIN 55,212-2, in the orofacial and temporomandibular formalin tests. Eur. J. Pain 2010, 14, 40–48. [Google Scholar] [CrossRef]
- Qiao, L.; Si, B.; Xiao, J.; Song, X. Prognostic implications of autophagy and pyroptosis related genes in oral squamous cell carcinoma: Research on bioinformatics and experiments. Front. Oncol. 2025, 15, 1645670. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-C.; Tsai, C.-C.; Lin, Y.-H.; Kuo, C.-Y. Therapeutic Targeting of Apoptosis, Autophagic Cell Death, Necroptosis, Pyroptosis, and Ferroptosis Pathways in Oral Squamous Cell Carcinoma: Molecular Mechanisms and Potential Strategies. Biomedicines 2025, 13, 1745. [Google Scholar] [CrossRef] [PubMed]
- Kitdumrongthum, S.; Trachootham, D. An Individuality of Response to Cannabinoids: Challenges in Safety and Efficacy of Cannabis Products. Molecules 2023, 28, 2791. [Google Scholar] [CrossRef] [PubMed]
- Sarne, Y.; Asaf, F.; Fishbein, M.; Gafni, M.; Keren, O. The dual neuroprotective–neurotoxic profile of cannabinoid drugs. Br. J. Pharmacol. 2011, 163, 1391–1401. [Google Scholar] [CrossRef]
- Cohen, G.; Gover, O.; Schwartz, B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 14628. [Google Scholar] [CrossRef]
- Anderson, A.; O’sUllivan, J. The two faces of autophagy in oral squamous cell carcinoma. Arch. Oral Biol. 2022, 134, 105321. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, Y.; Wang, J.; He, M.; Qiu, J.; Huang, Y. Targeting autophagy to enhance chemotherapy and immunotherapy in oral cancer. Front. Immunol. 2024, 15, 1535649. [Google Scholar] [CrossRef]
- Sarafian, T.A.; Magallanes, J.A.M.; Shau, H.; Tashkin, D.; Roth, M.D. Oxidative stress produced by marijuana smoke. An adverse effect enhanced by cannabinoids. Am. J. Respir. Cell Mol. Biol. 1999, 20, 1286–1293. [Google Scholar] [CrossRef]
- Russo, C.; Ferk, F.; Mišík, M.; Ropek, N.; Nersesyan, A.; Mejri, D.; Holzmann, K.; Lavorgna, M.; Isidori, M.; Knasmüller, S. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 2019, 93, 179–188. [Google Scholar] [CrossRef]
- Reece, A.S.; Hulse, G.K. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci. Rep. 2021, 11, 13892. [Google Scholar] [CrossRef]
- Berthiller, J.; Lee, Y.C.; Boffetta, P.; Wei, Q.; Sturgis, E.M.; Greenland, S.; Morgenstern, H.; Zhang, Z.-F.; Lazarus, P.; Muscat, J.; et al. Marijuana smoking and the risk of head and neck cancer: Pooled analysis in the INHANCE consortium. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1544–1551. [Google Scholar] [CrossRef]
- Marks, M.A.; Chaturvedi, A.K.; Kelsey, K.; Straif, K.; Berthiller, J.; Schwartz, S.M.; Smith, E.; Wyss, A.; Brennan, P.; Olshan, A.F.; et al. Association of marijuana smoking with oropharyngeal and oral tongue cancers: Pooled analysis from the INHANCE consortium. Cancer Epidemiol. Biomark. Prev. 2014, 23, 160–171. [Google Scholar] [CrossRef] [PubMed]
- White, E. The role for autophagy in cancer. J. Clin. Investig. 2015, 125, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.M.; Thompson, J.C.; Griesinger, A.M.; Amani, V.; Donson, A.M.; Birks, D.K.; Morgan, M.J.; Mirsky, D.M.; Handler, M.H.; Foreman, N.K.; et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 2014, 4, 773–780. [Google Scholar] [CrossRef] [PubMed]




| Pathway | Cannabinoid Interaction | Main Effect in Oral Tissues | Reference |
|---|---|---|---|
| Opioid Pathway | CB1/CB2 interact with μ-opioid receptors via shared GPCR signaling | Analgesia; reduced oral and periodontal pain | [43] |
| Serotonin (5-HT) Pathway | CB1 regulates serotonin release; CB2 modulates inflammatory serotonin signaling | Modulation of mood, anxiety, orofacial pain; reduced inflammation | [44,45] |
| MAPK/ERK Pathway | CB1/CB2 attenuate sustained ERK activation | Growth arrest, differentiation, tissue repair | [46] |
| NF-κB Pathway | CB1/CB2 suppress NF-κB–mediated transcription | Decreased pro-inflammatory cytokines; reduced oxidative stress | [47] |
| Cannabinoid | Autophagy Target | Effect | Disease Context | Reference |
|---|---|---|---|---|
| CBD | mTOR, AKT | Inhibition → autophagy activation | OSCC, gingivitis | [64,88,89] |
| THC | ROS, LC3-II | ROS-induced autophagy | Oral carcinoma | [70,83,84] |
| WIN 55,212-2 | CB1-R, Beclin-1 | Induction of CB1-mediated autophagy | Nerve-associated inflammation | [86,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Munkhsaikhan, U.; Rahman, M.A.; Shasteen, A.; Ait-Aissa, K.; Sahyoun, A.M.; Gupta, R.D.; Kassan, M.; Hoque Apu, E.; Abidi, A.H. Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications. Int. J. Mol. Sci. 2026, 27, 525. https://doi.org/10.3390/ijms27010525
Munkhsaikhan U, Rahman MA, Shasteen A, Ait-Aissa K, Sahyoun AM, Gupta RD, Kassan M, Hoque Apu E, Abidi AH. Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences. 2026; 27(1):525. https://doi.org/10.3390/ijms27010525
Chicago/Turabian StyleMunkhsaikhan, Undral, Md Ataur Rahman, Alivia Shasteen, Karima Ait-Aissa, Amal M. Sahyoun, Rajat Das Gupta, Modar Kassan, Ehsanul Hoque Apu, and Ammaar H. Abidi. 2026. "Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications" International Journal of Molecular Sciences 27, no. 1: 525. https://doi.org/10.3390/ijms27010525
APA StyleMunkhsaikhan, U., Rahman, M. A., Shasteen, A., Ait-Aissa, K., Sahyoun, A. M., Gupta, R. D., Kassan, M., Hoque Apu, E., & Abidi, A. H. (2026). Cannabinoid Signaling and Autophagy in Oral Disease: Molecular Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 27(1), 525. https://doi.org/10.3390/ijms27010525

