Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (710)

Search Parameters:
Keywords = protein phosphatase 2C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1898 KiB  
Article
Screening of qPCR Reference Genes in Quinoa Under Cold, Heat, and Drought Gradient Stress
by Qiuwei Lu, Xueying Wang, Suxuan Dong, Jinghan Fu, Yiqing Lin, Ying Zhang, Bo Zhao and Fuye Guo
Plants 2025, 14(15), 2434; https://doi.org/10.3390/plants14152434 - 6 Aug 2025
Abstract
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to [...] Read more.
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to 45 °C), and drought (DR group: 7 to 13 days). Through multi-algorithm evaluation (GeNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder) of eleven candidates, condition-specific optimal genes were established as ACT16 (Actin), SAL92 (IT4 phosphatase-associated protein), SSU32 (Ssu72-like family protein), and TSB05 (Tryptophan synthase beta-subunit 2) for the LT group; ACT16 and NRP13 (Asparagine-rich protein) for the HT group; and ACT16, SKP27 (S-phase kinase), and NRP13 for the DR group, with ACT16, NRP13, WLIM96 (LIM domain-containing protein), SSU32, SKP27, SAL92, and UBC22 (ubiquitin-conjugating enzyme E2) demonstrating cross-stress stability (global group). DHDPS96 (dihydrodipicolinate synthase) and EF03 (translation elongation factor) showed minimal stability. Validation using stress-responsive markers—COR72 (LT), HSP44 (HT), COR413-PM (LT), and DREB12 (DR)—confirmed reliability; COR72 and COR413-PM exhibited oscillatory cold response patterns, HSP44 peaked at 43 °C before declining, and DREB12 showed progressive drought-induced upregulation. Crucially, normalization with unstable genes (DHDPS96 and EF03) distorted expression profiles. This work provides validated reference standards for quinoa transcriptomics under abiotic stresses. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 412
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 173
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

21 pages, 7017 KiB  
Article
Chronic Heat Stress Caused Lipid Metabolism Disorder and Tissue Injury in the Liver of Huso dauricus via Oxidative-Stress-Mediated Ferroptosis
by Yining Zhang, Yutao Li, Ruoyu Wang, Sihan Wang, Bo Sun, Dingchen Cao, Zhipeng Sun, Weihua Lv, Bo Ma and Ying Zhang
Antioxidants 2025, 14(8), 926; https://doi.org/10.3390/antiox14080926 - 29 Jul 2025
Viewed by 208
Abstract
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts [...] Read more.
High-temperature stress has become an important factor that has restricted the aquaculture industry. Huso dauricus is a high-economic-value fish that has faced the threat of thermal stress. Based on this point, our investigation aimed to explore the detailed mechanism of the negative impacts of heat stress on the liver metabolism functions in Huso dauricus. In this study, we set one control group (19 °C) and four high-temperature treatment groups (22 °C, 25 °C, 28 °C, 31 °C) with 40 fish in each group for continuous 53-day heat exposure. Histological analysis, biochemical detection, and transcriptome technology were used to explore the effects of heat stress on the liver structure and functions of juvenile Huso dauricus. It suggested heat-stress-induced obvious liver injury and reactive oxygen species accumulation in Huso dauricus with a time/temperature-dependent manner. Serum total protein, transaminase, and alkaline phosphatase activities showed significant changes under heat stress (p < 0.05). In addition, 6433 differentially expressed genes (DEGs) were identified based on the RNA-seq project. Gene Ontology enrichment analysis showed that various DEGs could be mapped to the lipid-metabolism-related terms. KEGG enrichment and immunohistochemistry analysis showed that ferroptosis and FoxO signaling pathways were significantly enriched (p < 0.05). These results demonstrated that thermal stress induced oxidative stress damage in the liver of juvenile Huso dauricus, which triggered lipid metabolism disorder and hepatocyte ferroptosis to disrupt normal liver functions. In conclusion, chronic thermal stress can cause antioxidant capacity imbalance in the liver of Huso dauricus to mediate the ferroptosis process, which would finally disturb the lipid metabolism homeostasis. In further research, it will be necessary to verify the detailed cellular signaling pathways that are involved in the heat-stress-induced liver function disorder response based on the in vitro experiment, while the multi-organ crosswalk mode under the thermal stress status is also essential for understanding the comprehensive mechanism of heat-stress-mediated negative effects on fish species. Full article
Show Figures

Figure 1

16 pages, 8263 KiB  
Article
Genome-Wide Identification of PP2C Gene Family in Oat (Avena sativa L.) and Its Functional Analyses in Response to ABA and Abiotic Stresses
by Panpan Huang, Kuiju Niu, Jikuan Chai, Wenping Wang, Yanming Ma, Yanan Cao and Guiqin Zhao
Plants 2025, 14(13), 2062; https://doi.org/10.3390/plants14132062 - 5 Jul 2025
Viewed by 476
Abstract
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene [...] Read more.
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene family in oat (Avena sativa L.) has remained unexplored. Leveraging the recently published oat genome, we identified 194 AsaPP2C genes, which were unevenly distributed across all 21 chromosomes. A phylogenetic analysis of PP2C classified these genes into 13 distinct subfamilies (A-L), with conserved motif compositions and exon-intron structures within each subfamily, suggesting evolutionary functional specialization. Notably, a promoter analysis revealed an abundance of stress-responsive cis-regulatory elements (e.g., MYB, MYC, ARE, and MBS), implicating AsaPP2Cs in hormones and biotic stress adaptation. To elucidate their stress-responsive roles, we analyzed transcriptomic data and identified seven differentially expressed AsaPP2C (Asa_chr6Dg00217, Asa_chr6Ag01950, Asa_chr3Ag01998, Asa_chr5Ag00079, Asa_chr4Cg03270, Asa_chr6Cg02197, and Asa_chr7Dg02992) genes, which were validated via qRT-PCR. Intriguingly, these genes exhibited dynamic expression patterns under varying stress conditions, with their transcriptional responses being both time-dependent and stress-dependent, highlighting their regulatory roles in oat stress adaptation. Collectively, this study provides the first comprehensive genomic and functional characterization of the PP2C family in oat, offering valuable insights into their evolutionary diversification and functional specialization. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

11 pages, 222 KiB  
Article
Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks
by Shoupei Zhao, Lianghao Lu, Yuanyuan Chen, Huaming Yang, Bao Zhang, Mingyu Cao, Wenju Chao, Wanchao Xue, Xiaorong Fan, Jianxin Xiao, Rui Hu, Quanhui Peng, Lizhi Wang, Zhisheng Wang and Bai Xue
Animals 2025, 15(13), 1929; https://doi.org/10.3390/ani15131929 - 30 Jun 2025
Viewed by 371
Abstract
The present study evaluated the effects of dietary rumen-protected taurine (RPT) supplementation on ruminal fermentation, hematological parameters, liver function, stress-related hormones, and immune responses in yaks. Eighteen yaks were randomly allocated to three groups: a control group receiving no RPT (CON), a low-dose [...] Read more.
The present study evaluated the effects of dietary rumen-protected taurine (RPT) supplementation on ruminal fermentation, hematological parameters, liver function, stress-related hormones, and immune responses in yaks. Eighteen yaks were randomly allocated to three groups: a control group receiving no RPT (CON), a low-dose group receiving 20 g/day (RPT20), and a high-dose group receiving 40 g/day (RPT40). Supplementation with RPT did not significantly affect ruminal pH, microbial protein concentration, ammonia nitrogen, total volatile fatty acids, or the individual volatile fatty acid profiles (p > 0.05). A decreasing trend in red blood cell count was observed (p = 0.050), while no significant changes were detected in white blood cell or platelet indices (p > 0.05). Liver function markers, including albumin, alanine transaminase, aspartate transaminase, and total protein, remained unchanged, although a trend toward altered alkaline phosphatase activity was noted (p = 0.074). No significant effects were observed on acute-phase proteins (serum amyloid A, C-reactive protein) or stress-related hormones (epinephrine, adrenocorticotropic hormone, cortisol) (p > 0.05). Importantly, serum immunoglobulin A and immunoglobulin G levels were significantly increased in response to RPT supplementation (p = 0.029 and p = 0.043, respectively), suggesting enhanced humoral immunity. These findings indicate that RPT may improve immune function in yaks without negatively affecting rumen fermentation or liver health. Full article
18 pages, 3115 KiB  
Article
Comparative Analysis of Different Body Composition, Mucus Biochemical Indices, and Body Color in Five Strains of Larimichthys crocea
by Hongjin Deng, Quanyou Guo, Banghong Wei, Jiehui Zhong, Mengyao Zheng, Yao Zheng, Na Lin and Shengyang Zheng
Fishes 2025, 10(7), 305; https://doi.org/10.3390/fishes10070305 - 25 Jun 2025
Viewed by 290
Abstract
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow [...] Read more.
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow croakers (body weight: 347.01 ± 5.86 g). To conduct genetic diversity analyses of the populations, a total of 50 tailfin samples were randomly chosen from the following populations of large yellow croakers: wild (LYC1), Dai-qu population (LYC2), Yongdai 1 (LYC3), Min-yuedong population (LYC4), and Fufa 1 (LYC5). The findings demonstrated that the LYC3 group’s pigment contents, crude protein, crude lipid, and chromatic values were comparable to those of the LYC1 group (p > 0.05). There was no significant difference between the LYC1 and LYC5 groups’ mucus superoxide dismutase (SOD) and catalase (CAT) activities (p > 0.05). The alkaline phosphatases (ALP), acid phosphatases (ACP), and lysozyme (LYS) activities of the mucus in the LYC1 group were not significantly different from the LYC3 group (p > 0.05). The back skin mRNA expressions of tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), dopachrome tautomerase (dct), microphtalmia-associated transcription factor (mitf), and melanocortin 1 receptor (mc1r) were significantly up-regulated in the LYC2 and LYC4 groups compared to the LYC1, LYC3, and LYC5 groups (p < 0.05). Forkhead box d3 (foxd3), paired box 3 (pax3), purine nucleoside phosphorylase 4a (pnp4a), aristaless-like homeobox 4a (alx4a), cAMP dependent protein kinase (pka), anaplastic lymphoma kinase (alk), leukocyte receptor tyrosine kinase (ltk), and colony stimulating factor (fms) were among the mRNA expressions of the abdominal skin in the LYC1, LYC3, and LYC5 groups significantly higher than those in the LYC2 and LYC4 groups (p < 0.05). In conclusion, the LYC3 group’s crude protein, crude lipid, carotenoid, and lutein contents were most similar to those of the large yellow croaker found in the wild. Furthermore, the molecular mechanism underlying the variations in body color among the various strains of large yellow croakers was supplied for additional research. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

17 pages, 4805 KiB  
Article
Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins
by María Serrano-Albal, Jon Romero-Aguirregomezcorta, Sebastián Cánovas, Sonia Heras, Joaquín Gadea, Pilar Coy and Raquel Romar
Animals 2025, 15(12), 1763; https://doi.org/10.3390/ani15121763 - 14 Jun 2025
Viewed by 449
Abstract
Assisted reproductive technologies are vital in cattle breeding to improve genetic selection and productivity. While early-life differences between artificially inseminated (AI) and in vitro-produced (IVP) cattle have been studied, long-term physiological, haematological, and biochemical effects remain unclear. This observational study assessed AI and [...] Read more.
Assisted reproductive technologies are vital in cattle breeding to improve genetic selection and productivity. While early-life differences between artificially inseminated (AI) and in vitro-produced (IVP) cattle have been studied, long-term physiological, haematological, and biochemical effects remain unclear. This observational study assessed AI and IVP cattle from 1.5 to 5 years of age to determine if early differences persist. IVP cattle were produced after the transfer of the embryo produced by supplementing (RF-IVP group) or not supplementing (C-IVP) the embryo culture with oviductal and uterine fluids. Physical evaluations showed body mass index increased until 3.5 years, while temperature and respiratory rate declined with age, with no significant differences between AI and IVP groups. Haematological analysis revealed age-related changes, including decreased red and white blood cell counts and increased mean corpuscular volume and haemoglobin. AI cattle had higher white blood cell counts than IVP groups. Sex significantly influenced many haematological variables. Biochemical analysis showed age-related increases in total protein, creatinine, and urea, and decreases in glucose and alkaline phosphatase. AI cattle had lower cholesterol and creatinine than IVP groups. Despite group differences, all values remained within normal ranges. Sex affected albumin, cholesterol, triglycerides, and creatine kinase. This study provides the first long-term haematological and biochemical reference values for cattle from different reproductive methods, showing that age is the main influencing factor and supporting IVP cattle as a viable alternative to AI in breeding programs. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

24 pages, 2487 KiB  
Review
Targeting WEE1 Kinase for Breast Cancer Therapeutics: An Update
by Zhao Zhang, Ritika Harish, Naveed Elahi, Sawanjit Saini, Aamir Telia, Manjit Kundlas, Allexes Koroleva, Israel N. Umoh, Manpreet Lota, Meha Bilkhu, Aladdin Kawaiah, Manogna R. Allala, Armelle Leukeu, Emmanuel Nebuwa, Nadiya Sharifi, Anthony W. Ashton, Xuanmao Jiao and Richard G. Pestell
Int. J. Mol. Sci. 2025, 26(12), 5701; https://doi.org/10.3390/ijms26125701 - 13 Jun 2025
Viewed by 1677
Abstract
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between [...] Read more.
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between WEE family kinases and CDC25C phosphatases restricts CDK1/CycB activity. The WEE kinase family consists of WEE1, PKMYT1, and WEE2 (WEE1B). WEE1 and PKMYT1 regulate entry into mitosis during cell cycle progression, whereas WEE2 governs cell cycle progression during meiosis. Recent studies have identified WEE1 as a potential therapeutic target in several cancers, including therapy-resistant triple-negative breast cancer. Adavosertib’s clinical promise was challenged by inter-individual variations in response and side effects. Because of these promising preclinical outcomes, other WEE1 kinase inhibitors (Azenosertib, SC0191, IMP7068, PD0407824, PD0166285, WEE1-IN-5, Zedoresertib, WEE1-IN-8, and ATRN-1051) are being developed, with several currently being evaluated in clinical trials or as an adjuvant to chemotherapies. Preclinical studies show WEE1 inhibitors induce MHC class 1 antigens and STING when given as combination therapies, suggesting potential additional therapeutic opportunities. Reliable predictors of clinical responses based on mechanistic insights remain an important unmet need. Herein, we review the role of WEE1 inhibition therapy in breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

15 pages, 747 KiB  
Article
Influence of Eucommia ulmoides Extract on the Growth, Glucose Metabolism, and Antioxidant Capacity of Largemouth Bass (Micropterus salmoides)
by Shengqi Zhao, Dongyu Huang, Mingchun Ren, Jiaze Gu and Hualiang Liang
Fishes 2025, 10(6), 269; https://doi.org/10.3390/fishes10060269 - 3 Jun 2025
Viewed by 390
Abstract
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on [...] Read more.
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on fish metabolism and especially to enhance the metabolism of M. salmoides towards glucose metabolism, especially in high and low starch formulations, we designed six experimental feed groups: PC (high-starch control), NC (low-starch control), and four groups supplemented with EE on the basis of PC, with EE concentrations of 0.05%, 0.10%, 0.15%, and 0.20%, respectively. Each feed was administered to fish with an average weight of 36.98 ± 0.08 g, which were cultured for seven weeks, and the water temperature was 31–33 °C. The results demonstrated that increasing the EE concentration in the feed significantly influenced fish growth without affecting the body composition. Regarding the antioxidant activity, the highest CAT (catalase) enzyme activity in the intestine was recorded in the 0.15% EE group. Additionally, the mRNA expression of the antioxidant gene keap1 (kelch-like ECH-associated protein1) increased with higher EE supplementation, and sod (superoxide dismutase) mRNA expression was significantly elevated in the 0.10% EE group compared to that in the PC group. A plasma biochemical analysis revealed a significant increase in the ALP (alkaline phosphatase) activity in the 0.05% EE group relative to the PC group, while the TG (triglycerides) levels progressively decreased as the EE levels increased. Furthermore, the GLU (glucose) levels were significantly reduced in both the EE-supplemented and NC groups compared to those in the PC group. Among the genes associated with glucose metabolism, both gk (glucokinase) and pepck (phosphoenol pyruvate carboxykinase) exhibited a pattern of initially decreasing, followed by an increase, as the EE levels rose, with the pepck (phosphoenol pyruvate carboxykinase) expression being lowest in the 0.10% EE group. In conclusion, appropriate EE supplementation in the diet may promote growth performance, enhance antioxidant capacity, and support the expression of genes related to glucose metabolism of M.salmoides in response to different starch levels. Full article
(This article belongs to the Special Issue Largemouth Bass Aquaculture)
Show Figures

Graphical abstract

14 pages, 1425 KiB  
Article
Earthing as a Supportive Therapy for Post-Spinal Surgery Recovery
by Paweł Sokal, Maciej Broda, Magdalena Zając and Julia Sokal
J. Clin. Med. 2025, 14(11), 3844; https://doi.org/10.3390/jcm14113844 - 29 May 2025
Viewed by 566
Abstract
Background/Objectives: Spinal surgery often results in injury to the paraspinal muscles and postoperative pain, which is associated with an elevated inflammatory response and increased creatine kinase (CK) levels. Earthing, a practice involving direct or indirect contact with the Earth, facilitates the movement [...] Read more.
Background/Objectives: Spinal surgery often results in injury to the paraspinal muscles and postoperative pain, which is associated with an elevated inflammatory response and increased creatine kinase (CK) levels. Earthing, a practice involving direct or indirect contact with the Earth, facilitates the movement of electric charge between the body and the Earth, thereby stabilizing electrical potentials and influencing biochemical and bioelectrical processes. This study aimed to investigate the effects of earthing on postoperative pain and biochemical parameters. Materials and Methods: The study included an earthing group (EG) of 42 patients (18 females) who underwent spinal surgery and were earthed during nighttime postoperative rest. Blood samples were collected to measure serum concentrations of sodium, potassium, urea, glucose, C-reactive protein (CRP), alkaline phosphatase (ALP), calcium, phosphates, CK, iron, ferritin, and transferrin. These parameters were assessed on the day after surgery and the day following earthing. A control group (CG) of 42 patients (25 females) who underwent surgery for lumbar spondylosis did not receive earthing. Results: The median reduction in the EG was significantly greater than in the CG (for CK 45.0 and 20.0 U/L; for ALP 6.0 and 1.0; for transferrin 0.17 and 0.08, respectively). The median CRP difference in the EG was 0.05 mg/dL, significantly lower than in the CG, 17.2 mg/dL. The median reduction in pain intensity in VAS score was greater in the EG–2.0 compared to the CG-1.0, acknowledging a strong analgesic effect of earthing (p < 0.01). Conclusions: Earthing after spinal surgery seems to promote recovery by reducing inflammation and pain, and accelerating general healing, suggesting its potential as a supportive postoperative therapy. Full article
Show Figures

Figure 1

17 pages, 3438 KiB  
Article
Genome-Wide Identification and Expression Analysis of PP2C Gene Family in Eelgrass
by Chang Liu, Xu Dong, Dazuo Yang, Qingchao Ge, Jiaxin Dai, Zhi Ma, Rongna Wang and Huan Zhao
Genes 2025, 16(6), 657; https://doi.org/10.3390/genes16060657 - 29 May 2025
Viewed by 529
Abstract
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, [...] Read more.
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, which are model organisms adapted to complex marine environments. Methods: In this study, we systematically analyzed the PP2C gene family in eelgrass using bioinformatic methods and performed a qPCR experiment to verify the expression of a few members in their response to salt stress. Results: The eelgrass PP2C gene family comprises 52 members, categorized into 13 subfamilies. Most PP2C genes exhibit a differential expression across various organs, with some members showing significant organ specificity. For instance, 12 members are specifically highly expressed in male flowers, suggesting that PP2Cs may function in male flower development. Additionally, four members (ZosmaPP2C-04, ZosmaPP2C-07, ZosmaPP2C-15, and ZosmaPP2C-18) in eelgrass are up-regulated under salt stress, with a qPCR confirming their response. The syntenic genes of ZosmaPP2C-15 and ZosmaPP2C-18 were identified across multiple species, indicating their evolutionary conservation. Numerous response elements associated with plant hormones and stress were identified within the promoter sequences of eelgrass PP2C genes. Notably, the promoter regions of salt-responsive genes are rich in the ABRE, implying that ABA may participate in regulating the expression of these PP2Cs. Furthermore, the predictive analysis of protein interactions suggests the potential existence of the ABA core signaling module PYL-PP2C-SnRK2 in eelgrass. Conclusions: This study provides a new insight for understanding the biological functions of the PP2C family in eelgrass, which is important for elucidating the mechanisms of its growth, development, and environmental adaptability. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3712 KiB  
Article
PtrSAUR32 Interacts with PtrPP2C.Ds to Regulate Root Growth in Citrus
by Xiaoli Wang, Xiaoya Li, Saihang Zheng, Fusheng Wang, Shiping Zhu and Xiaochun Zhao
Plants 2025, 14(11), 1579; https://doi.org/10.3390/plants14111579 - 22 May 2025
Viewed by 481
Abstract
Small auxin-up-regulated RNA (SAUR) genes are involved in the regulation of dynamic and adaptive growth in higher plants. However, their function and mode of action in citrus root growth are still unknown. Here, we demonstrate that in Poncirus trifoliata, PtrSAUR32 [...] Read more.
Small auxin-up-regulated RNA (SAUR) genes are involved in the regulation of dynamic and adaptive growth in higher plants. However, their function and mode of action in citrus root growth are still unknown. Here, we demonstrate that in Poncirus trifoliata, PtrSAUR32 acted downstream of the auxin response factor PtrARF8 to regulate root growth by interacting with PtrPP2C.Ds, subfamily type 2C protein phosphatases which interacted with H-ATPase and PtrHA. In this study, several members of SAUR family in Poncirus trifoliata are identified to be associated with the growth and development of the roots. Among them, PtrSAUR32 was found to be highly expressed in the RT (root tip), and the level of its expression was significantly positively corelated to the length of primary roots (p < 0.01). The overexpression of PtrSAUR32 in citrus significantly promoted the growth of primary roots. In PtrSAUR32 transgenic citrus plants, the expressions of several auxin biosynthesis and transport genes were altered in accordance with the expression of PtrSAUR32. Y1H and dual-luciferase reporter assays proved that the expression of PtrSUAR32 is regulated by PtrARF8. Y2H and BiFC assay results indicated that PtrSAUR32 interacted with PtrPP2C.Ds subfamily members PtrPP2C.D1, PtrPP2C.D6, and PtrPP2C.D7, of which PtrPP2C.D7 could interact with PtrHA in vivo. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 4541 KiB  
Article
Environment-Associated Variations in Blood Metabolism of Mongolian Cattle Grazing in the Alxa Desert of China
by Chao Hai, Dongchao Pei, Yuqing Yang, Lishuang Song, Xuefei Liu, Chunling Bai, Guanghua Su, Lei Yang and Guangpeng Li
Vet. Sci. 2025, 12(5), 506; https://doi.org/10.3390/vetsci12050506 - 21 May 2025
Viewed by 547
Abstract
Desert environments pose severe challenges to livestock survival. This study examined climate-driven physiological and metabolic adaptations in 258 Mongolian cattle from six regions of the Alxa Desert, China. Serum biochemical indices were measured and analyzed using linear models to assess the effects of [...] Read more.
Desert environments pose severe challenges to livestock survival. This study examined climate-driven physiological and metabolic adaptations in 258 Mongolian cattle from six regions of the Alxa Desert, China. Serum biochemical indices were measured and analyzed using linear models to assess the effects of climate, sex, and age. Climate significantly affected key blood parameters, including glucose (p < 0.001), creatinine (p < 0.001), alkaline phosphatase (p < 0.001), and lactate (p = 0.034). Additionally, sex significantly influenced lactate dehydrogenase (p = 0.049), bicarbonate (p = 0.0061), urea (p = 0.0055), and triglycerides (p = 0.039), while age affected total protein (p = 0.020), LDL-C (p = 0.0097), and cholesterol (p < 0.001). Glucose levels were negatively correlated with body size traits. Metabolomic profiling showed that cattle in arid, high-radiation areas exhibited reduced TCA cycle and fatty acid metabolism, with concurrent carbohydrate accumulation, including glucose, fructose, and mannose. Enhanced amino acid metabolism increased proline, valine, tyrosine, and tryptophan levels, potentially supporting physiological stability under heat and drought stress. These findings reveal how Mongolian cattle modulate metabolism in response to desert climates, offering insights into livestock adaptation and informing breeding strategies for resilience in harsh environments. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

10 pages, 1086 KiB  
Article
A Comparative Kinetic Study on Alkaline Phosphatase Thermal Inactivation in Different Milk Types
by Anastasia Tzereme, Michalis Koureas, Athanasios Manouras, Eleni Malissiova, Georgia Soultani, Konstantina Poulianiti and Eleni Gogou
Kinases Phosphatases 2025, 3(2), 11; https://doi.org/10.3390/kinasesphosphatases3020011 - 16 May 2025
Viewed by 701
Abstract
The European Food Safety Authority (EFSA) has raised concerns regarding the use of alkaline phosphatase (ALP) as a pasteurization marker in non-cow milk due to compositional differences. This study investigates the thermal inactivation kinetics of ALP in six milk species (cow, sheep, goat, [...] Read more.
The European Food Safety Authority (EFSA) has raised concerns regarding the use of alkaline phosphatase (ALP) as a pasteurization marker in non-cow milk due to compositional differences. This study investigates the thermal inactivation kinetics of ALP in six milk species (cow, sheep, goat, donkey, buffalo and camel) to assess its reliability as an indicator. The thermal inactivation of ALP in different milk types was evaluated by heating samples at 63–75 °C at various times, then measuring residual enzyme activity using a spectrophotometric method. The results revealed a sharp increase in ALP inactivation with rising temperatures, consistent with previous findings on the enzyme’s thermal sensitivity. Notably, donkey milk exhibited the highest ALP inactivation at 72 °C, probably due to lower fat content compared to the rest of milk types studied, while camel milk showed the lowest inactivation rate constant (kT) at 75 °C, highlighting its higher heat resistance compared to bovine milk. These findings highlight potential limitations of using the ALP test to verify pasteurization in non-bovine milk, which is directly linked to microbial safety, as well as the preservation of nutritional and sensory characteristics. This study reinforces the importance of considering milk composition, particularly fat and protein structures, in optimizing pasteurization conditions for diverse milk varieties. Full article
Show Figures

Figure 1

Back to TopTop