Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = prostate LNCaP cancer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 12089 KB  
Article
Polydopamine-Coated Surfaces Promote Adhesion, Migration, Proliferation, Chemoresistance, Stemness, and Epithelial–Mesenchymal Transition of Human Prostate Cancer Cell Lines In Vitro via Integrin α2β1–FAK–JNK Signaling
by Won Hoon Song, Ji-Eun Kim, Lata Rajbongshi, Su-Rin Lee, Yuna Kim, Seon Yeong Hwang, Sae-Ock Oh, Byoung Soo Kim, Dongjun Lee and Sik Yoon
Int. J. Mol. Sci. 2026, 27(2), 655; https://doi.org/10.3390/ijms27020655 - 8 Jan 2026
Viewed by 262
Abstract
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in [...] Read more.
Polydopamine (PDA) surface coatings are widely used in biomedical engineering to enhance cell–substrate interactions; however, their effects on cancer-cell behavior remain unclear. In this study, we investigated how PDA-coated two-dimensional (2D) culture surfaces influence oncogenic traits of human prostate cancer (PC) cells in vitro. Using LNCaP, DU145, and PC3 cell lines, we found that PDA-coated substrates markedly increased the adhesion, migration, invasion, proliferation, and colony formation in a dose- and time-dependent manner. PDA exposure also induced epithelial–mesenchymal transition (EMT), upregulated cancer stem cell markers (CD44, CD117, CD133, Sox2, Oct4, and Nanog), and elevated expression of metastasis- and chemoresistance-associated molecules (MMP-2, MMP-9, MDR1, and MRP1). Mechanistically, PDA coatings enhanced integrin α2β1-associated cell adhesion, accompanied by increased focal adhesion kinase (FAK) phosphorylation and downstream activation of JNK signaling. Pharmacological inhibition of integrin α2β1 (BTT-3033), FAK (PF573228) and JNK (SP600125) effectively abrogated PDA-induced malignant phenotypes and restored chemosensitivity to cabazitaxel, cisplatin, docetaxel, curcumin, and enzalutamide. Collectively, these findings identify PDA-coated surfaces as a simple, efficient, and reductionist in vitro platform for studying adhesion-mediated signaling and phenotypic plasticity in PC cells, while acknowledging that further validation in three-dimensional (3D) and patient-derived models will be required to establish in vivo relevance. Full article
(This article belongs to the Special Issue Breakthroughs in Anti-Cancer Agents Discovery)
Show Figures

Graphical abstract

31 pages, 4856 KB  
Article
PEGylated Zein Micelles for Prostate Cancer Therapy: Influence of PEG Chain Length and Transferrin Targeting on Docetaxel Delivery
by Khadeejah Maeyouf, Jitkasem Meewan, Hawraa Ali-Jerman, Musa Albatsh, Sukrut Somani, Partha Laskar, Margaret Mullin, Craig Irving, Graeme MacKenzie and Christine Dufès
Pharmaceutics 2026, 18(1), 68; https://doi.org/10.3390/pharmaceutics18010068 - 4 Jan 2026
Viewed by 369
Abstract
Background/Objectives: Docetaxel is a widely used chemotherapeutic agent for several malignancies and is an established treatment for castration-resistant prostate cancer. However, its poor aqueous solubility, systemic toxicity, and the emergence of drug resistance limit its clinical benefit. Zein, a prolamin, forms micelles that [...] Read more.
Background/Objectives: Docetaxel is a widely used chemotherapeutic agent for several malignancies and is an established treatment for castration-resistant prostate cancer. However, its poor aqueous solubility, systemic toxicity, and the emergence of drug resistance limit its clinical benefit. Zein, a prolamin, forms micelles that enhance the solubility and delivery of hydrophobic drugs. As PEG length and ligand presentation govern micelle behavior, we investigated transferrin-functionalized PEGylated zein micelles as docetaxel nanocarriers and examined how PEG chain length (5 K vs. 10 K) and transferrin-mediated targeting affect delivery to prostate cancer cells. Methods: Docetaxel-loaded zein micelles bearing 5 K or 10 K PEG chains were prepared and conjugated to transferrin. Formulations were characterized for size, charge, morphology, critical micelle concentration, colloidal stability, drug loading and transferrin density. Cellular uptake and mechanisms were assessed in PC-3-Luc, DU145 and LNCaP cells by confocal microscopy, flow cytometry and pharmacological inhibition. Anti-proliferative activity was determined by MTT assays. Results: Both PEG5K and PEG10K micelles formed micellar dispersions with low polydispersity and high encapsulation efficiency. PEG5K micelles achieved higher transferrin conjugation and drug loading. Transferrin-functionalized PEG5K micelles showed enhanced uptake in DU145 and LNCaP cells but lower internalization in PC-3-Luc cells. Inhibitor studies indicated receptor-dependent uptake via clathrin- and caveolae-mediated endocytosis. Free docetaxel remained the most potent. However, among nanocarriers, transferrin-targeted PEG5K micelles showed the greatest anti-proliferative efficacy relative to their non-targeted counterparts, whereas transferrin-targeted PEG10K micelles were less potent than the non-targeted PEG10K micelles across all three cell lines. Conclusions: PEG chain length and ligand presentation are key determinants of uptake and cytotoxicity of docetaxel-loaded zein micelles. Shorter PEG chains favor effective transferrin display and receptor engagement, whereas longer PEG likely induces steric hindrance and reduces targeting, supporting transferrin-conjugated PEG5K zein micelles (the lead formulation in this study) as a targeted delivery platform that improves performance relative to matched non-targeted micelles in vitro, while free docetaxel remains more potent in 2D monolayer assays. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

15 pages, 1145 KB  
Article
Constitutive NF-kB Activation Is Amplified by VSV in Aggressive PC3 Prostate Cancer Cells That Resist Viral Oncolysis
by Alaa A. Abdelmageed, Jack F. Smerczynski, Mukul Kandwal, Lute J. Douglas, Tori L. Russell, Matthew C. Morris, Stephen Dewhurst and Maureen C. Ferran
Viruses 2026, 18(1), 67; https://doi.org/10.3390/v18010067 - 1 Jan 2026
Viewed by 610
Abstract
Cancer cells often have defects in antiviral pathways, making them susceptible to oncolytic viruses like vesicular stomatitis virus (VSV). However, some cancer cells resist viral infection through the constitutive expression of interferon-stimulated genes. This study examined whether NF-κB activation and NF-κB-dependent antiviral signaling [...] Read more.
Cancer cells often have defects in antiviral pathways, making them susceptible to oncolytic viruses like vesicular stomatitis virus (VSV). However, some cancer cells resist viral infection through the constitutive expression of interferon-stimulated genes. This study examined whether NF-κB activation and NF-κB-dependent antiviral signaling contribute to resistance to VSV infection in the PC3 cell line, derived from an aggressive metastatic prostate cancer (PrCa) tumor. We found that NF-κB localized to the nucleus in VSV-infected PC3 cells, but not in the VSV-susceptible LNCaP PrCa cell line. Analysis of the upstream NF-κB inhibitor IκB-α revealed higher levels of both total and phosphorylated IκB-α in PC3 cells compared to LNCaP cells, indicating constitutive activation of the NF-κB pathway via an IκB-α-dependent mechanism. Notably, VSV infection did not alter IκB-α phosphorylation in PC3 cells, suggesting that VSV may amplify NF-κB signaling through an IκB-α–independent pathway. Furthermore, PC3 cells displayed elevated levels of the NF-κB p65 protein subunit compared to LNCaP cells, with its phosphorylated form significantly increased upon VSV infection. These results from phosphorylation assays confirm that multiple steps in the NF-κB pathway are differentially activated in PC3 and LNCaP cells. Finally, the expression of several NF-κB-dependent cytokines and proinflammatory genes, including IL12 and IL6, was upregulated following VSV infection in PC3 cells, as compared to LNCaP cells. Collectively, these findings suggest that enhanced NF-κB signaling may underlie the resistance of PC3 cells to VSV oncolysis, potentially offering new insights into therapeutic strategies targeting NF-κB in resistant prostate cancers. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

21 pages, 4292 KB  
Article
Intermethod Characterization of Commercially Available Extracellular Vesicles as Reference Materials
by Sumeet Poudel, Diane L. Nelson, James H. Yen, Yuefan Wang, Hui Zhang, Zhiyong He, Ashley Beasley Green, Wyatt N. Veerland, Thomas E. Cleveland IV, Sean E. Lehman, Kurt D. Benkstein, Bryant C. Nelson and Lili Wang
Biomolecules 2026, 16(1), 66; https://doi.org/10.3390/biom16010066 - 31 Dec 2025
Viewed by 538
Abstract
The National Institute of Standards and Technology (NIST) is developing analytical methods to characterize extracellular vesicles (EVs) to support the urgent need for standardized EV reference materials (RMs). This study used orthogonal techniques, cryogenic electron microscopy (Cryo-EM), particle tracking analysis (PTA), asymmetrical flow [...] Read more.
The National Institute of Standards and Technology (NIST) is developing analytical methods to characterize extracellular vesicles (EVs) to support the urgent need for standardized EV reference materials (RMs). This study used orthogonal techniques, cryogenic electron microscopy (Cryo-EM), particle tracking analysis (PTA), asymmetrical flow field-flow fractionation (AF4), and microfluidic resistive pulse sensing (MRPS), to evaluate particle size distributions (PSDs) and particle number concentrations (PNCs) of human mesenchymal stem cells (MSCs) and LNCaP prostate cancer cell EVs. Proteomic profiles were assessed by mass spectrometry (MS), and microRNA (miRNA) content of LNCaP EVs was evaluated by small RNA-seq at two independent laboratories. A commercial green fluorescent protein exosome served as a control, except in Cryo-EM, proteomic, and miRNA analyses. Cryo-EM, regarded as the gold standard for morphological resolution, served as PSD reference. PSDs from all methods skewed larger than Cryo-EM, with MRPS closest, AF4 most divergent, and PTA intermediate with broader distributions. All techniques reported broad PSDs (30 nm to >350 nm) with PNCs decreasing with increasing particle size, except for AF4. Quantitative discrepancies in PNCs reached up to two orders of magnitude across methods and cell sources. MS identified global and EV-specific proteins, including syntenin-1 and tetraspanins CD9, CD63, and CD81. RNA-seq revealed notable inter-laboratory variation. These findings highlight the variability across measurement platforms and emphasize the need for reproducible methods to support NIST’s mission of developing reliable EV reference materials. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

17 pages, 2353 KB  
Article
Differential Expression of Key Oncogenic and Tumor Suppressor MicroRNAs Induced by Andrographolide in Androgen-Independent PC3 and Androgen-Dependent LNCaP Prostate Cancer Cells
by Padmavati Sahare, Luis Alberto Bravo-Vázquez, Diego Antonio Veloz-Briones, Daniela Bernal-Vázquez, Ignacio Bolaños-Fernández, Brenda Anguiano, Gabriel Luna-Bárcenas and Sujay Paul
Genes 2025, 16(12), 1514; https://doi.org/10.3390/genes16121514 - 17 Dec 2025
Viewed by 539
Abstract
Background: Prostate cancer remains a major contributor to cancer-related morbidity and mortality worldwide, emphasizing the need for safer and more effective therapeutic options. Andrographolide, a diterpenoid lactone derived from Andrographis paniculata, has shown promising anticancer activity, yet its effects on microRNA (miRNA) [...] Read more.
Background: Prostate cancer remains a major contributor to cancer-related morbidity and mortality worldwide, emphasizing the need for safer and more effective therapeutic options. Andrographolide, a diterpenoid lactone derived from Andrographis paniculata, has shown promising anticancer activity, yet its effects on microRNA (miRNA) regulation in prostate cancer remain insufficiently explored. Methods: In this study, we evaluated the cytotoxic and molecular effects of andrographolide on two human prostate cancer cell lines, PC3 and LNCaP, along with HEK-293 cells as a noncancerous model. Results: Cell viability assessment using the MTT assay revealed dose-dependent cytotoxicity, with 24 h IC50 values of 82.31 µM for PC3, 68.79 µM for LNCaP, and 133.9 µM for HEK-293 cells. Subsequent expression analysis of key oncogenic and tumor suppressor miRNAs demonstrated that andrographolide induced the upregulation of miR-16-5p, miR-34a-5p, and miR-200a-5p miRNAs implicated in apoptosis, proliferation control, and androgen receptor signaling. In contrast, the expression of oncomiRs miR-21-5p and miR-221-5p showed minimal or nonsignificant changes, reflecting the complex and context-specific roles of miRNAs in prostate cancer. Gene expression profiling further indicated differential transcriptional responses between the two prostate cancer cell lines, consistent with their distinct molecular backgrounds. Conclusions: Although HEK-293 cytotoxicity and previously reported nephrotoxic effects warrant caution, these results support the potential of andrographolide as an adjuvant phytochemical capable of modulating clinically relevant miRNAs in prostate cancer. Future studies investigating optimized delivery systems and validating direct miRNA targets may help advance andrographolide toward safer and more targeted therapeutic applications. Full article
(This article belongs to the Section Pharmacogenetics)
Show Figures

Figure 1

27 pages, 7079 KB  
Article
Enhancing Cytosolic Internalization of [177Lu]Lu–iPSMA in Prostate Cancer Cells: The Effect of Conjugating a GRP78 Inhibitor to the Radiotherapeutic Molecule
by Erika Azorín-Vega, Daniel García-Arce, Myrna Luna-Gutiérrez, Blanca Ocampo-García, Diana Trujillo-Benítez, Abraham Vidal-Limon, Griselda Rodríguez-Martínez, María Luisa Durán-Pastén, Laura Meléndez-Alafort and Guillermina Ferro-Flores
Int. J. Mol. Sci. 2025, 26(24), 11783; https://doi.org/10.3390/ijms262411783 - 5 Dec 2025
Viewed by 508
Abstract
Castration-resistant prostate cancer presents radiotherapeutic challenges, especially in optimizing the cytosolic internalization of therapeutic radiopharmaceuticals. This research aimed to design and evaluate in vitro, a new dimeric radiopharmaceutical, [177Lu]Lu–iPSMA–iGRP78, which combines PSMA and GRP78 inhibitors in a heterodimeric radioligand to improve [...] Read more.
Castration-resistant prostate cancer presents radiotherapeutic challenges, especially in optimizing the cytosolic internalization of therapeutic radiopharmaceuticals. This research aimed to design and evaluate in vitro, a new dimeric radiopharmaceutical, [177Lu]Lu–iPSMA–iGRP78, which combines PSMA and GRP78 inhibitors in a heterodimeric radioligand to improve the radionuclide internalization and cytotoxicity efficacy. Molecular docking showed that the dimer iPSMA–iGRP78 presents a higher affinity for GRP78 (CNN-docking score: −14.0 kcal·mol−1, pKi: 10) and for PSMA (CNN-docking score: −17.0 kcal·mol−1, pKi: 11.5) compared to the monomers iGRP78 (CNN-docking score: −11.0 kcal·mol−1, pKi: 9.4) and iPSMA (CNN-docking score: −13.9 kcal·mol−1, pKi: 10.2). The saturation binding assay using LNCaP cells (PSMA+, CS-GRP78+) showed an affinity (Kd) of 1.883 nM for [177Lu]Lu–iPSMA–iGRP78 and 2.245 nM for [177Lu]Lu–iPSMA. The dimeric radiopharmaceutical achieved 10.44 ± 2.43% cytosolic internalization and 4.81 ± 0.94% nuclear internalization, while the [177Lu]Lu–iPSMA monomer showed 6.45 ± 0.60% cytosolic internalization and no uptake in the cell nucleus. In PC3 cells (PSMA–, CS-GRP78–), [177Lu]Lu–iPSMA–iGRP78 uptake was negligible, demonstrating specificity. Treatment with the dimeric radiopharmaceutical reduced cell viability (69.93 ± 4.85% of dead cells) significantly more than [177Lu]Lu–iPSMA (38.63 ± 6.13% of dead cells). In conclusion, conjugation of a GRP78 inhibitor to [177Lu]Lu–iPSMA improves the radionuclide internalization and cytotoxicity in prostate cancer cells, suggesting that the bispecific radiopharmaceutical is a promising strategy in prostate cancer treatment. Full article
Show Figures

Figure 1

18 pages, 1354 KB  
Article
Development and In Vitro Evaluation of [64Cu]Cu-NOTA-TP-PSMA, a Novel Radiotheranostic Agent Against Prostate Cancer
by Hoda Talebian, Samia Ait-Mohand, Prenitha Mercy Ignatius Arokia Doss, Léon Sanche and Brigitte Guérin
Int. J. Mol. Sci. 2025, 26(23), 11651; https://doi.org/10.3390/ijms262311651 - 1 Dec 2025
Viewed by 440
Abstract
Prostate cancer (PCa), particularly in its metastatic form, remains a major clinical challenge due to limited diagnostic and therapeutic options. To address this, we developed a novel radiotheranostic agent, [64Cu]Cu-NOTA-TP-PSMA, by conjugating a prostate-specific membrane antigen (PSMA) ligand to a 64 [...] Read more.
Prostate cancer (PCa), particularly in its metastatic form, remains a major clinical challenge due to limited diagnostic and therapeutic options. To address this, we developed a novel radiotheranostic agent, [64Cu]Cu-NOTA-TP-PSMA, by conjugating a prostate-specific membrane antigen (PSMA) ligand to a 64Cu-radiolabeled terpyridine-platinum (TP) compound previously shown to exert selective cytotoxicity against cancer cells. In this study, the biological performance of [64Cu]Cu-NOTA-TP-PSMA was compared with the monomeric analogs [64Cu]Cu-NOTA-PSMA and [64Cu]Cu-NOTA-TP through in vitro studies in PSMA-positive LNCaP prostate cancer cells and non-malignant HEK-293 cells. [64Cu]Cu-NOTA-TP-PSMA showed high stability, PSMA binding affinity and exhibited substantially enhanced uptake, internalization, retention, and nuclear localization in LNCaP cells relative to the monomers, whereas uptake and nuclear accumulation in HEK-293 cells were negligible. Cytotoxicity assays further demonstrated potent and selective activity in LNCaP cells, with EC50 values in the low nanomolar range, and minimal toxicity in HEK-293 cells. Collectively, these results identify [64Cu]Cu-NOTA-TP-PSMA as a promising radiotheranostic agent, warranting further in vivo evaluation for prostate cancer imaging and targeted radiotherapy. Full article
Show Figures

Graphical abstract

13 pages, 2097 KB  
Article
Chronic IL-1 Exposure Attenuates RELA- and STAT3-Dependent Synergistic Cytokine Signaling in Prostate Cancer Cell Lines
by Stephanie Akemi Yamauchi, Haley Dahl-Wilkie, Mohamed Hussien Mohamed Zaky, Vivian Liu, Adora Onuogu, Ahmed Abdi, Shreya Billa, Rahael Javaid, Sheza Siddiqui, Chisom Mbah, Olaoluwapo Bankole, Sarah Wells, Sydney Greene, Rafah Falah and Nikki Ayanna Delk
Cancers 2025, 17(23), 3778; https://doi.org/10.3390/cancers17233778 - 26 Nov 2025
Viewed by 1174
Abstract
Background/Objectives: The milieu of inflammatory cytokines present in the prostate cancer (PCa) tumor microenvironment exerts various effects on cancer progression. Chronic exposure to the inflammatory cytokine interleukin-1 (IL-1) has been shown to impact signaling via the RELA/NF-kB pathway; however, the effects of chronic [...] Read more.
Background/Objectives: The milieu of inflammatory cytokines present in the prostate cancer (PCa) tumor microenvironment exerts various effects on cancer progression. Chronic exposure to the inflammatory cytokine interleukin-1 (IL-1) has been shown to impact signaling via the RELA/NF-kB pathway; however, the effects of chronic inflammation on the integration of different inflammatory signaling pathways, such as the interleukin-6 (IL-6)/STAT3 axis, requires further exploration. Methods: We generated in vitro subline models by exposing the C4-2 and LNCaP PCa cell lines to either IL-1α or IL-1β for several months. We then treated the resulting sublines with acute IL-1 alone, IL-6 alone, or IL-1/IL-6 in combination and assessed for sensitivity to cytokine signaling. We observed changes in proliferation and quantified using Ki-67 immunostaining. Cell proliferation was assessed after siRNA silencing RELA or STAT3. Results: IL-1/IL-6 signaling in combination enhanced the signaling effects of either cytokine alone, particularly cytostasis. While the chronic IL-1 sublines maintained sensitivity to acute IL-6 signaling, they lost sensitivity to acute IL-1 signaling and did not show the enhanced IL-1/IL-6 cytostatic response. Inhibition of RELA and STAT3 rescued cytostasis after IL-1/IL-6 treatment in parental PCa cell lines, but only STAT3 inhibition rescued proliferation in the chronic IL-1 sublines. Conclusions: Our work shows that IL-1/RELA and IL-6/STAT3 work in parallel to synergistically induce cytostasis. However, chronic IL-1 exposure selects for cells that attenuate IL-1/RELA signaling, subsequently attenuating IL-1/IL-6 synergy. Full article
(This article belongs to the Special Issue Prostate Cancer and Inflammation)
Show Figures

Figure 1

25 pages, 5537 KB  
Article
Targeting Prostate Cancer Cells Using Anti-Sortilin and Anti-Syndecan-1 Antibody Drug Conjugates
by Ka Lok Li, Shane M. Hickey, Hugo Albrecht, Jessica M. Logan, Joanna Lazniewska, Courtney R. Moore, Robert D. Brooks, Ian R. D. Johnson, John J. O’Leary and Douglas A. Brooks
Int. J. Mol. Sci. 2025, 26(22), 11145; https://doi.org/10.3390/ijms262211145 - 18 Nov 2025
Viewed by 883
Abstract
Prostate cancer tissue usually involves either well formed glands, poorly formed glands or a combination of the two morphologies, which can be correlated with metabolic differences and tumor heterogeneity. This is particularly important for metastatic castration-resistant prostate cancer, where the heterogeneity and metabolic [...] Read more.
Prostate cancer tissue usually involves either well formed glands, poorly formed glands or a combination of the two morphologies, which can be correlated with metabolic differences and tumor heterogeneity. This is particularly important for metastatic castration-resistant prostate cancer, where the heterogeneity and metabolic changes drive cancer progression and treatment refractory properties. Sortilin and syndecan-1 expression accurately define the two different morphologies in prostate cancer tissue, are critical to the process of metabolic regulation, and exhibit mechanistic/functional interactions during prostate cancer progression. As trans-membrane proteins that recycle from endocytic compartments to the cell surface, sortilin and syndecan-1 are attractive targets for therapeutic intervention that address the two major forms of prostate cancer. In this study, we describe an antibody-drug conjugate (ADC) strategy that utilizes monoclonal antibodies which bind to specific extracellular domains of these integral membrane proteins to elicit anticancer activity in prostate cancer cell lines. Anti-sortilin (clone 11H8) and anti-syndecan-1 (clone 6D11) monoclonal antibodies demonstrated high specificity for epitopes on the extracellular, N-terminal domains of these respective proteins and were effectively internalized into prostate cancer cell endocytic compartments. Monomethyl aurastatin E (MMAE)-conjugated ADCs exhibited low nanomolar cytotoxicity in LNCaP and PC-3 prostate cancer cells. Mechanistically, 11H8-MMAE and 6D11-MMAE triggered cytotoxicity and morphological alterations in androgen-sensitive and androgen-insensitive cells. However, the uptake of fluorescent labelled 11H8 and 6D11 antibodies appeared to be high, whereas the killing capacity of the MMAE-conjugated antibodies was less impressive, suggesting the need for further ADC development. These promising proof-of-concept ADCs are designed to exploit molecular and metabolic vulnerabilities in prostate cancer and may have utility for overcoming treatment resistance by simultaneously targeting different forms of the cancer. Full article
Show Figures

Figure 1

24 pages, 24946 KB  
Article
Hybrid Dihydropyrimidinones Targeting AKT Signaling: Antitumor Activity in Hormone-Dependent 2D and 3D Cancer Models
by Amanda Helena Tejada, Samuel José Santos, Gabriel Tofolli Lobo, Abu-Bakr Adetayo Ariwoola, Aryel José Alves Bezerra, Giulia Rodrigues Stringhetta, Izabela Natalia Faria Gomes, Luciane Sussuchi da Silva, Rui Manuel V. Reis, Daniel D’Almeida Preto, Dennis Russowsky and Renato José Silva-Oliveira
Pharmaceutics 2025, 17(11), 1470; https://doi.org/10.3390/pharmaceutics17111470 - 14 Nov 2025
Viewed by 738
Abstract
Background/Objectives: The development of effective oncologic therapies with fewer adverse effects is often limited by the intrinsic and acquired resistance of tumor cells. Hybrid molecules, rationally designed to combine different pharmacophores, represent a promising strategy by providing synergistic effects, dose reduction, and a [...] Read more.
Background/Objectives: The development of effective oncologic therapies with fewer adverse effects is often limited by the intrinsic and acquired resistance of tumor cells. Hybrid molecules, rationally designed to combine different pharmacophores, represent a promising strategy by providing synergistic effects, dose reduction, and a lower risk of resistance. In this study, the antitumor potential and mechanisms of action of 22 novel hybrid compounds derived from xanthene and pyran scaffolds (SJ022–SJ103) were investigated. The hybrids were initially evaluated through in vitro screening in four breast, three ovarian, and two prostate cancer cell lines, followed by the selection of T-47D, OVCAR-3, and LNCaP cells for detailed assays assessing cytotoxicity, apoptosis, cell cycle distribution, DNA damage, caspase-3/7 activity, morphology, and PI3K/AKT/mTOR pathway modulation. Methods: Cytotoxicity assays were performed in the selected cell lines, while mechanistic studies included apoptosis and cell cycle analysis by flow cytometry, γH2AX detection, Western blotting for PI3K/AKT/mTOR pathway proteins, and 3D spheroid assays. Combinatorial effects with hormone therapies (tamoxifen, fulvestrant, and letrozole) and the AKT inhibitor MK2206 were evaluated. AKT silencing by esiRNA and molecular docking was performed to confirm target engagement. Results: SJ028 demonstrated broad activity across all tested cell lines, whereas SJ064 and SJ078 exhibited higher selectivity. Treatments induced apoptosis, S/G2-M arrest, and DNA damage, accompanied by decreased phospho-AKT levels and stable PI3K and mTOR expression. In 3D models, the hybrids increased caspase-3/7 activity and necrotic core expansion. Co-administration with hormone therapies resulted in synergistic effects in breast and ovarian cancer cells, reducing IC50 values by more than 50% in both parental and resistant models, while combinations with MK2206 were antagonistic across all tumor subtypes. AKT silencing abrogated cytotoxicity, and docking confirmed SJ028 binding to AKT. Conclusions: Xanthene- and pyran-based hybrids—particularly SJ028, SJ064, and SJ078—showed strong antitumor activity through apoptosis induction, cell cycle arrest, and PI3K/AKT pathway modulation. Their preserved efficacy in resistant models and synergistic interactions with hormone therapies contrasted with the antagonism observed with AKT inhibition, highlighting their potential as promising candidates for the treatment of hormone-responsive and -resistant cancers. Full article
(This article belongs to the Special Issue Innovative Drug Delivery Strategies for Targeted Cancer Immunotherapy)
Show Figures

Figure 1

15 pages, 7674 KB  
Article
MiR-10a as a Potential Biomarker and Therapeutic Target in Localized and Metastatic Prostate Cancer
by Tiago José Borelli Bovo, Juliana Alves de Camargo, Ruan Pimenta, Vanessa Ribeiro Guimarães, Patrícia Candido, Katia Ramos Moreira Leite, Carlo Camargo Passerotti, William Carlos Nahas and Sabrina T. Reis
Curr. Issues Mol. Biol. 2025, 47(11), 913; https://doi.org/10.3390/cimb47110913 - 3 Nov 2025
Cited by 2 | Viewed by 579
Abstract
Introduction: Prostate cancer (PC) accounts for around 10% of all cancers worldwide and is the fourth most common neoplasm. Localized PC has high cure rates when diagnosed early, but 35% of patients progress to the metastatic form. The search for new molecular markers, [...] Read more.
Introduction: Prostate cancer (PC) accounts for around 10% of all cancers worldwide and is the fourth most common neoplasm. Localized PC has high cure rates when diagnosed early, but 35% of patients progress to the metastatic form. The search for new molecular markers, such as microRNAs, is fundamental to improving diagnosis and treatment. The role of miR-10a is controversial between tumor tissues, opening a niche for studies on their role in PC. Objectives: To evaluate the role of miR-10a in metastatic PC cell lines, focusing on the mechanisms of proliferation, migration, and invasion, and to analyze the expression in surgical specimens of localized PC. Methods: Three commercial metastatic PC cell lines were used: LNCaP, DU145 and PC-3. Expression of mimic miR-10a was induced by cell transfection, followed by extraction of miRNA and total RNA. The synthesis of complementary DNA (cDNA) and analysis by real-time PCR enabled the expression of miR-10a and the VEGF, MYC, and HAS3 genes to be assessed. Matrigel, colony formation, invasion, and migration assays were evaluated for the transfected cells. The surgical specimens were used to evaluate the miR-10a expression. Results: Transfected cells with mimic significantly increased the expression of miR-10a in the LNCaP (p = 0.0179), PC-3 (p ≤ 0.001), and DU145 (p ≤ 0.001) cell lines. Transfected cells reduced cell invasion in the PC-3 (p = 0.001) and DU-145 (p = 0.0004) cell lines and decreased cell migration and proliferation. In surgical specimens, miR-10a expression was higher in PC compared to Benign Prostatic Hyperplasia (p = 0.0010). Conclusions: Increased expression of miR-10a affects cell migration, invasion, and proliferation, showing potential as a therapeutic target in treating PC. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

26 pages, 9781 KB  
Article
Lipoxygenase Inhibitory Activity and Prostate Cancer Cytotoxicity of In Situ- and In Vitro-Cultivated Balkan Endemic Sideritis scardica Griseb
by Kalina Danova, Jasmina Petreska Stanoeva, Elena Stoyanova, Kalina Alipieva, Marina Stefova and Ina Aneva
Plants 2025, 14(21), 3263; https://doi.org/10.3390/plants14213263 - 25 Oct 2025
Viewed by 659
Abstract
Sideritis scardica Griseb., a Balkan endemic species traditionally used for respiratory conditions and wound-healing, was investigated for its 15-lipoxygenase (15-LOX) inhibitory and cytotoxic activities in relation to its phenolic composition. Aerial parts from the wild-collected and in vitro-cultivated plant were successively extracted with [...] Read more.
Sideritis scardica Griseb., a Balkan endemic species traditionally used for respiratory conditions and wound-healing, was investigated for its 15-lipoxygenase (15-LOX) inhibitory and cytotoxic activities in relation to its phenolic composition. Aerial parts from the wild-collected and in vitro-cultivated plant were successively extracted with hexane, chloroform, and methanol and the methanol extract was further fractionated into ethyl acetate, butanol, and water fractions. This study presents the first combined evaluation of LOX inhibition and cytotoxicity against prostate cell lines WPMY-1 (normal epithelial fibroblast/myofibroblast), PC-3 (epithelial adenocarcinoma, Grade IV), and LNCaP (epithelial carcinoma) and detailed phytochemical profiles of wild-collected and in vitro-cultivated S. scardica. The phytochemical analysis revealed distinct profiles: increased LOX-inhibition activity was related to a higher phenylethanoid/flavone glycoside ratio, while PC cytotoxicity was rather related to flavone glycoside domination in the plant preparations. The cytotoxic effect of the in vitro-obtained preparations was characterized by a marked selectivity when comparing their effects on WPMY-1, PC-3 and LNCaP cells. To our knowledge, this is the first report linking phenylethanoid/flavone glycoside profiles of in situ and in vitro S. scardica plants with dual LOX-inhibitory and anti-prostate cancer activities, supporting the plant’s potential as a sustainable source of bioactive compounds. Full article
Show Figures

Figure 1

19 pages, 4726 KB  
Article
Mistletoe Extracts Inhibit Progressive Growth of Prostate Cancer Cells
by Sascha D. Markowitsch, Larissa Albrecht, Moritz Meiborg, Jochen Rutz, Anita Thomas, Felix K.-H. Chun, Axel Haferkamp, Eva Juengel and Roman A. Blaheta
Cells 2025, 14(19), 1535; https://doi.org/10.3390/cells14191535 - 30 Sep 2025
Viewed by 1368
Abstract
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa [...] Read more.
Although multimodal therapeutic management has significantly improved outcome in prostate cancer (PCa) patients, treatment options for castrate-resistant disease remain challenging. Plant-derived mistletoe extracts have supported cancer patients and are, therefore, widely used as complementary medicine. However, mechanisms behind possible mistletoe benefits to PCa patients remain to be explored. The present study was designed to evaluate the effect of mistletoe extracts from four different host trees (Tiliae, Populi, Salicis, and Crataegi) on the growth and proliferation of PCa cell lines in vitro. PC3, DU145, and LNCaP cells were used to evaluate tumor cell growth (MTT assay) and proliferation (BrdU incorporation assay). Clonogenicity, apoptosis, cell cycle, and cell-cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins) were investigated, as was CD44 standard and splice variant expression and integrin α and β receptors. SiRNA knockdown studies were employed to investigate the functional relevance of integrins. All mistletoe extracts significantly inhibited cell growth in a dose-dependent manner and cell proliferation and clonogenicity were suppressed. Populi and Salicis induced cell-cycle arrest in the G2/M phase and increased apoptosis. Both extracts down-regulated CDK1 and cyclin A and altered CD44 expression. Integrins α5 in all cell lines and α6 in DU145 and LNCaP were particularly diminished. Knocking down α5 and α6 induced cell growth inhibition in DU145. Mistletoe extracts block the growth and proliferation of PCa cells in vitro and therefore qualify for use in future animal studies to evaluate mistletoe as an adjunct to standard PCa treatment. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
Show Figures

Figure 1

20 pages, 2748 KB  
Article
CYR61 Expression Is Induced by IGF1 and Promotes the Proliferation of Prostate Cancer Cells Through the PI3/AKT Signaling Pathway
by Greisha L. Ortiz-Hernández, Carmina Patrick, Stefan Hinz, Mark A. LaBarge, Yun R. Li and Susan L. Neuhausen
Int. J. Mol. Sci. 2025, 26(18), 8991; https://doi.org/10.3390/ijms26188991 - 15 Sep 2025
Viewed by 1071
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between [...] Read more.
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between CYR61 and IGF1. CYR61 was silenced using small interfering RNA (siRNA) in prostate carcinoma 3 (PC3), lymph node carcinoma of the prostate (LNCaP), and androgen receptor (AR)-positive 22Rv1 cells, followed by assessments of their proliferation, viability, colony formation, migration, and signaling pathway activation. CYR61 knockdown significantly reduced cell growth, viability, prostasphere formation, and migration across all three cell lines. Mechanistically, CYR61 silencing inhibited PI3K/AKT signaling but had no effect on MAPK activation. In addition, treatment with recombinant IGF1 induced CYR61 expression in a time-dependent manner, and the inhibition of PI3K/AKT signaling suppressed both CYR61 expression and cell proliferation. These findings suggest that IGF1 promotes PCa progression through CYR61 and that CYR61 may serve as a potential therapeutic target for limiting tumor growth and metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

34 pages, 9695 KB  
Article
Anticancer Effects of Ascorbic Acid: Not All Sides Fit All
by Uche O. Arunsi, Jeremiah O. Olugbami and Adegboyega K. Oyelere
Cancers 2025, 17(17), 2877; https://doi.org/10.3390/cancers17172877 - 1 Sep 2025
Cited by 2 | Viewed by 2101
Abstract
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased [...] Read more.
Background/Objectives: Ascorbic acid (AA)is a micronutrient with concentration-dependent anticancer properties, acting either as a reactive oxygen species (ROS) scavenger or inducer. Methods: Conventional redox-based assays such as MTS/MTT often overestimate cell proliferation due to AA’s interaction with tetrazolium salts, leading to increased formazan production. To overcome this limitation, we employed the Propidium Iodide Triton X-100 (PI/TX-100) assay to evaluate AA’s cytotoxic effects across a diverse panel of cancer and normal cell lines, including prostate (22Rv1, C4-2B, DU-145, LNCaP), breast (MCF-7, MDA-MB-231, MDA-MB-453), lung (A549), liver (HepG2, SK-HEP-1, Huh7), and kidney (Vero) cells. Results: AA significantly suppressed cancer cell viability compared to normal cells (RWPE1 and Vero), with the strongest effects observed in hormone receptor-positive lines. The relative sensitivity to AA followed distinct patterns within each cancer type. Mechanistically, AA-induced cell death involved ROS generation, lipid peroxidation, cell cycle arrest, ferroptosis, apoptosis, and downregulation of pyruvate dehydrogenase kinase 1 (PDHK1). Conclusions: These findings further support the potential of AA as a selective anticancer agent and highlight the importance of assay choice in evaluating its therapeutic efficacy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

Back to TopTop