Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = promastigote

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 167
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

21 pages, 3465 KiB  
Article
Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes
by Caio Eduardo Oliveira Monteiro, João Carlos Martins Mafra, Nubia Boechat and Edson Roberto da Silva
Microorganisms 2025, 13(7), 1563; https://doi.org/10.3390/microorganisms13071563 - 2 Jul 2025
Viewed by 277
Abstract
Leishmaniasis is a significant public health concern, affecting millions and causing substantial mortality, thus urgently requiring more effective and safer treatments. This study explored the potential of 33 novel N-acylhydrazone-derived compounds against Leishmania amazonensis parasites, focusing on their inhibition of the Leishmania [...] Read more.
Leishmaniasis is a significant public health concern, affecting millions and causing substantial mortality, thus urgently requiring more effective and safer treatments. This study explored the potential of 33 novel N-acylhydrazone-derived compounds against Leishmania amazonensis parasites, focusing on their inhibition of the Leishmania arginase enzyme and promastigote growth. Compounds 8 and 18 showed over 90% inhibitory activity against promastigote cultures after 72 h of treatment. Compound 8 showed an IC50 of 10.5 µM (9.4–11.8 µM), while compound 18 exhibited an IC50 of 42.8 µM (41.3–44.4 µM). The antipromastigote effects of these compounds highlight their potential for further new drug design. These findings offer a promising starting point for addressing the pressing need for new therapeutic options against leishmaniasis. In addition, we used web-based tools to predict the compounds’ toxicity and pharmacokinetic parameters. Despite the lack of inhibition against the L. amazonensis arginase enzyme, further investigation into the mechanisms of action of these compounds and in vivo efficacy could contribute to the development of safer and more effective treatments for this neglected tropical disease. Full article
(This article belongs to the Special Issue Antileishmanial Agents)
Show Figures

Figure 1

23 pages, 2380 KiB  
Article
Development and Characterization of a New Oral Antileishmanial Bis(pyridine-2-Carboxamidine) Drug Through Innovative Dissolution Testing in Biorelevant Media Combined with Pharmacokinetic Studies
by Almudena Laguna, Borja Martínez-Alonso, Víctor Guarnizo-Herrero, J. Jonathan Nué-Martinez, Christophe Dardonville, Santiago Torrado-Santiago and Carlos Torrado-Salmerón
Pharmaceutics 2025, 17(7), 838; https://doi.org/10.3390/pharmaceutics17070838 - 26 Jun 2025
Viewed by 331
Abstract
Background/Objectives: Currently there are very few effective oral antileishmanial treatments. In this study we evaluated a new bis(pyridine-2-carboxamidine) antileishmanial drug (JNII40_base) and its hydrochloride salt (JNII40_HCl). Methods: The characterization studies performed allowed us to determine the crystallinity, hydration water, and presence [...] Read more.
Background/Objectives: Currently there are very few effective oral antileishmanial treatments. In this study we evaluated a new bis(pyridine-2-carboxamidine) antileishmanial drug (JNII40_base) and its hydrochloride salt (JNII40_HCl). Methods: The characterization studies performed allowed us to determine the crystallinity, hydration water, and presence of hydrogen bonds in these drugs. Different dissolution methods were employed to predict intestinal absorption. A high-performance liquid chromatography–mass spectrophotometry (HPLC-MS/MS) method was developed for the determination of JNII40 in plasma. Results: Pharmacokinetic studies in rats of JNII40_base at 100 and 20 mg/kg, and JNII40_HCl at 20 mg/kg, showed a non-linear pharmacokinetic at high doses. An innovative biorelevant medium of phosphate buffer pH 6.8 with polysorbate 80 at 0.6% (w/v) showed high concentration values for JNII40_base at 30 min, which predicts good intestinal absorption. These results were consistent with the bioavailability data, which exhibited a significant (p < 0.05) increase in maximum plasma concentration (Cmax) and a slight delay in time to maximum (Tmax) compared to JNII40_HCl. Furthermore, the sustained release of JNII40_base in this biorelevant media was related to high plasma concentration values at 24 h (C24h) observed in bioavailability studies. These plasma concentrations of JNII40_base were above the half-maximal inhibitory concentration (IC50) against promastigote and amastigote forms of Leishmania donovani, which is indicative of effectiveness and should reduce the occurrence of drug resistance during treatments. Conclusions: The bioavailability and pharmacokinetic data support the consideration of this drug for further in vivo studies as an oral antileishmanial treatment. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

20 pages, 1824 KiB  
Article
In Vitro and In Silico Assessments of Curcuminoids and Turmerones from Curcuma longa as Novel Inhibitors of Leishmania infantum Arginase
by Flora F. S. Spíndola, Anderson S. Pinheiro, Maria Athana Mpalantinos, Jefferson R. A. Silva, Walter S. M. F. Neto, Raissa A. Conceição, Eduarda M. Barreto, Barbara A. Abrahim-Vieira, Carlos R. Rodrigues, Alessandra M. T. Souza, Dirlei Nico, Ana Claudia F. Amaral, Andreza R. Garcia and Igor A. Rodrigues
Pharmaceuticals 2025, 18(6), 851; https://doi.org/10.3390/ph18060851 - 6 Jun 2025
Viewed by 643
Abstract
Background/Objectives: The anti-Leishmania potential of Curcuma longa and its derivatives, such as curcuminoids, is well-established, yet their mechanisms of action remain underexplored. This study investigates the inhibitory effects of C. longa extracts and curcumin on Leishmania infantum arginase, a key enzyme [...] Read more.
Background/Objectives: The anti-Leishmania potential of Curcuma longa and its derivatives, such as curcuminoids, is well-established, yet their mechanisms of action remain underexplored. This study investigates the inhibitory effects of C. longa extracts and curcumin on Leishmania infantum arginase, a key enzyme in polyamine and trypanothione biosynthesis, and evaluates their antiparasitic activity. Methods: Extracts were prepared via rhizome successive maceration with hexane (HEXCURC), dichloromethane (DCCURC), and ethanol (ETOHCURC) and chemically characterized by a combination of chromatographic and spectrometric methods. The inhibition of recombinant L. infantum arginase (LiARG) was assessed by urea quantification, while molecular docking explored interactions between the main compounds annotated in the extracts and the enzyme’s active site. Biological activity was tested against L. infantum promastigotes, intracellular amastigotes, and mammalian cells. Results: LC-MS and GC-MS revealed curcuminoids and turmerones as main compounds annotated in the extracts. DCCURC, HEXCURC, and curcumin showed the strongest LiARG inhibition (IC50 = 10.04, 14.4, and 17.55 μg/mL, respectively). Docking analysis revealed that curcumin, demethoxycurcumin, and bisdemethoxycurcumin bind near the active site, with binding energies of –3.43, –4.14, and –3.99 kcal/mol, respectively. Curcumin demonstrated superior anti-promastigote activity (IC50 = 15.01 μg/mL) and selectivity (SI = 12.7) compared to the extracts. It also significantly reduced amastigote burden in infected macrophages (IC50 = 13.6 μg/mL). Conclusions: This is the first report demonstrating that C. longa extracts and curcumin inhibit LiARG. These findings support curcumin’s potential as a lead compound for developing multi-target therapies against leishmaniasis, combining enzyme inhibition with direct antiparasitic effects. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

14 pages, 1184 KiB  
Article
Quantification of Phenolic Compounds by HPLC/DAD and Evaluation of the Antioxidant, Antileishmanial, and Cytotoxic Activities of Ethanolic Extracts from the Leaves and Bark of Sarcomphalus joazeiro (Mart.)
by Natália Kelly Gomes de Carvalho, Débora Odília Duarte Leite, Aracélio Viana Colares, Fernando Almeida Souza, Kátia da Silva Calabrese, Gerson Javier Torres Salazar, Joice Barbosa do Nascimento, Mariana Pereira da Silva, Fabiola Fernandes Galvão Rodrigues and José Galberto Martins da Costa
Plants 2025, 14(11), 1733; https://doi.org/10.3390/plants14111733 - 5 Jun 2025
Viewed by 536
Abstract
Sarcomphalus joazeiro (Mart.) is a promising candidate for the formulation of new therapies against parasitic infections. This study aimed to quantify the content of phenolic compounds and evaluate the antioxidant, antileishmanial, and cytotoxic potential of ethanolic extracts of the leaves (EELSJ) and bark [...] Read more.
Sarcomphalus joazeiro (Mart.) is a promising candidate for the formulation of new therapies against parasitic infections. This study aimed to quantify the content of phenolic compounds and evaluate the antioxidant, antileishmanial, and cytotoxic potential of ethanolic extracts of the leaves (EELSJ) and bark (EEBSJ) of S. joazeiro. Quantification of phenolic acids (caffeic acid, p-coumaric acid, ferulic acid, cinnamic acid) and flavonoids (naringenin, pinocembrin, and apigenin) was performed by high-performance liquid chromatography with a diode array detector (HPLC-DAD). The extracts were subjected to antioxidant assays, including Fe3+ reduction, Fe2+ chelation, and inhibition of oxidative degradation of deoxyribose (2-DR). The antileishmanial activity was evaluated against promastigote forms of Leishmania amazonensis, while cytotoxicity was assessed in J774.G8 macrophages. Among the biological effects evaluated, EELSJ showed potent hydroxyl radical (•OH) scavenging activity, with IC50 < 10 µg/mL, which potentially correlates with its phenolic acid and flavonoid content (0.7066 mg/g). In comparison, EEBSJ showed a lower phenolic content (0.197 mg/g) and demonstrated Fe2+ chelating activity (IC50 = 14.96 ± 0.0477 µg/mL). EELSJ also exhibited antileishmanial activity against L. amazonensis (IC50 = 246.20 µg/mL), with low cytotoxicity (CC50 = 343.3 µg/mL; SI = 1.39), whereas EEBSJ showed minimal antileishmanial effect and marked cytotoxicity toward J774.G8 macrophages (CC50 = 5.866 µg/mL). The leaves of S. joazeiro stand out as the most promising plant organ for future investigations. Future studies should focus on investigating their action mechanisms in more detail. Full article
Show Figures

Figure 1

14 pages, 3094 KiB  
Article
Evaluation of the Antileishmanial Activity of Some Benzimidazole Derivatives Using In Vitro and In Silico Techniques
by Mustafa Eser, İbrahim Çavuş, Aybüke Züleyha Kaya, Asaf Evrim Evren and Leyla Yurttaş
Vet. Sci. 2025, 12(6), 550; https://doi.org/10.3390/vetsci12060550 - 5 Jun 2025
Viewed by 551
Abstract
Benzimidazole derivatives are well known for their anthelmintic activity. Investigating the potential efficacy of new derivatives of this class against various parasites is essential to identify novel drug candidates. For this purpose, an in-house molecular database was screened, and four benzimidazole-based molecules were [...] Read more.
Benzimidazole derivatives are well known for their anthelmintic activity. Investigating the potential efficacy of new derivatives of this class against various parasites is essential to identify novel drug candidates. For this purpose, an in-house molecular database was screened, and four benzimidazole-based molecules were chosen to evaluate antiprotozoal activity. The compounds (K1K4) had been previously synthesized through a four-step procedure. The potential in vitro cytotoxic properties of the compounds were assessed against the Leishmania (L.) major strain and L929 mouse fibroblast cells. The tests indicated that K1 (3-Cl phenyl) demonstrated an antileishmanial effect (IC50 = 0.6787 µg/mL) and cytotoxicity at elevated concentrations (CC50 = 250 µg/mL) in healthy cells. These findings were comparable to those of AmpB. The antileishmanial activity values were determined as follows: K2; 8.89 µg/mL, K3; 45.11 µg/mL, K4; and 69.19 µg/mL. The CC50 values were determined as follows: K2, 63 µg/mL; K3; 0.56 µg/mL; and K4, 292 µg/mL. Molecular docking and dynamic simulations were conducted to elucidate the potential mechanisms of action of the test substances. In silico investigations indicated interactions between the compounds and the active site of pteridine reductase 1 (PTR1), which is a biosynthetic enzyme essential for parasite proliferation. N-alkyl benzimidazole-based compounds exhibit potential inhibitory activity against L. (L.) major promastigotes. Therefore, these findings suggest that in vivo evaluation is warranted, and structural modifications may lead to the identification of more effective antileishmanial agents. Full article
Show Figures

Figure 1

26 pages, 4169 KiB  
Article
Synthesis, Biological Evaluation, Molecular Dynamics, and QM-MM Calculation of Spiro-Acridine Derivatives Against Leishmaniasis
by Sonaly Albino, Michelangela Nobre, Jamire da Silva, Malu dos Reis, Maria Nascimento, Mayara de Oliveira, Tatiana Borges, Lucas Albuquerque, Selma Kuckelhaus, Luis Alves, Fábio dos Santos, Maria de Lima, Igor Nascimento, Teresinha da Silva and Ricardo de Moura
Microorganisms 2025, 13(6), 1297; https://doi.org/10.3390/microorganisms13061297 - 2 Jun 2025
Viewed by 839
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania sp. The therapeutic arsenal is reduced and limited. In this context, acridine derivatives present themselves as promising leishmanicidal compounds. This paper involved synthesizing and evaluating the antileishmanial and immunomodulatory potential of spiro-acridine derivatives. Six [...] Read more.
Leishmaniasis is a neglected tropical disease caused by Leishmania sp. The therapeutic arsenal is reduced and limited. In this context, acridine derivatives present themselves as promising leishmanicidal compounds. This paper involved synthesizing and evaluating the antileishmanial and immunomodulatory potential of spiro-acridine derivatives. Six spiro-acridine derivatives were obtained through nucleophilic substitution reactions between the acetohydrazide/acetamide intermediates and 9-carbaldehydeacridine, followed by spontaneous cyclization. IR, NMR, and HRMS confirmed the structures. These were analyzed in vitro against L. infantum and L. amazonensis to determine anti-promastigote, anti-amastigote, and cytotoxicity effects. Immunomodulatory activity was evaluated using CBA, DCF-DA, and DAF-FM diacetate. In silico evaluation included molecular docking and dynamics. The spiro-acridines showed a wide range of anti-promastigote activities (IC50 = 0.73–234.95 µM) and non-toxicity to red blood cells. AMTAC-02 and ACMD-03 demonstrated satisfactory anti-amastigote effect (IC50 = 10.47–13.50 µM), low toxicity to macrophages (CC50 = 27.22–569.50 µM), and cytokine and reactive species modulation. Molecular docking proposed cysteine protease B of L. amazonensis as a target, and molecular dynamics analysis highlighted the complex’s stability using RMSD, Rg, SASA, DCCM, PCA, and MM-PBSA (ΔG = −65.225 kJ/mol). Furthermore, QM-MM calculation provided the best energy for ACMD-03 (−199.30 au). Hence, AMTAC-02 and ACMD-03 demonstrated antileishmanial potential, making them promising entities for the development of leishmanicidal drug candidates. Full article
(This article belongs to the Special Issue Development of New Drugs to Treat Infectious Diseases)
Show Figures

Figure 1

16 pages, 2123 KiB  
Article
Amburana cearensis (Cumaru) and Its Active Principles as Source of Anti-Leishmania Drugs: Immunomodulatory Activity of Coumarin (1,2-Benzopyrone)
by Naya Lúcia de Castro Rodrigues, Elizama Shirley Silveira, Francisco Rafael Marciano Fonseca, Ticiana Monteiro Abreu, Edilberto Rocha Silveira, Ana Bruna de Araújo, Maria Jania Teixeira and Luzia Kalyne Almeida Moreira Leal
Biomedicines 2025, 13(4), 979; https://doi.org/10.3390/biomedicines13040979 - 17 Apr 2025
Cited by 1 | Viewed by 1078
Abstract
Background/Objectives: In Brazil, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis and represents an important public health problem. The actual pharmacotherapy of leishmaniasis has several disadvantages, making the development of new therapeutic options essential. The present study aimed to carry [...] Read more.
Background/Objectives: In Brazil, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis and represents an important public health problem. The actual pharmacotherapy of leishmaniasis has several disadvantages, making the development of new therapeutic options essential. The present study aimed to carry out the bioprospecting and selection of products of Amburana cearensis, including extracts and active principles with a leishmanicidal effect and to evaluate its possible mechanism of action. Methods: A dry extract of A. cearensis (DEAC) was characterized by HPLC, with the following active markers: coumarin (CM), amburoside A (AMR), and vanillic acid (VA). The leishmanicidal effect of DEAC was assessed, and the in vitro inhibitory action of the phenolic fraction, including CM, AMR, and VA, on promastigote and amastigote forms were determined. Results: CM showed the best reductions (maximal inhibition: 57%) of the promastigote form of L. braziliensis, followed by the plant extract (40% inhibition) and other test drugs (maximal reduction: 29%). The treatment of macrophages infected by L. brasiliensis with CM (10 μg/mL) reduced the intracellular parasite load (amastigote form, maximal reduction: 50%), increased the production of nitric oxide, TNF-α, IL-12, and IL-10, and decreased the production of IL-4. These effects were not related to cytotoxicity (MTT test). Glucantime (4 mg/mL, standard drug) reduced the amastigote form by 65%. Conclusions: CM showed promising leishmanicidal activity against both forms of L. brasiliensis, and this effect seems to be associated, at least in part, to its immunomodulatory action by tilting the Th1/Th2 imbalance in favor of Th1. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

8 pages, 703 KiB  
Communication
Caffeic Acid Phenethyl Ester (CAPE) Inhibits Arginase Activity and Growth of Leishmania amazonensis Promastigotes and Intracellular Amastigotes
by Edson Roberto da Silva, André Mesquita and Claudia do Carmo Maquiaveli
Pathogens 2025, 14(4), 384; https://doi.org/10.3390/pathogens14040384 - 15 Apr 2025
Viewed by 513
Abstract
Caffeic acid phenethyl ester (CAPE) is a polyphenol produced by many plants and is found in red and green propolis. Here, we evaluated the antileishmanial activity of this natural product against Leishmania amazonensis. CAPE exhibited IC50 values of 8.07 µM (95% [...] Read more.
Caffeic acid phenethyl ester (CAPE) is a polyphenol produced by many plants and is found in red and green propolis. Here, we evaluated the antileishmanial activity of this natural product against Leishmania amazonensis. CAPE exhibited IC50 values of 8.07 µM (95% CI, 6.79–9.62 µM) and 13.51 µM (95% CI, 10.71–17.16 µM) against L. amazonensis promastigotes and intracellular amastigotes, respectively. Additionally, CAPE inhibited L. amazonensis arginase in a non-competitive manner with a Ki value of 1.51 ± 0.04 µM. These results highlight the potential of CAPE as a promising lead compound for developing new therapies against leishmaniasis. Full article
Show Figures

Figure 1

18 pages, 2275 KiB  
Article
In Vitro Efficacy and Toxicity Assessment of an Amphotericin B Gel for the Treatment of Cutaneous Leishmaniasis
by Lilian Sosa, Lupe Carolina Espinoza, Marcelle Silva-Abreu, Ximena Jaramillo-Fierro, Diana Berenguer, Cristina Riera, María Rincón and Ana C. Calpena
Pharmaceuticals 2025, 18(3), 427; https://doi.org/10.3390/ph18030427 - 18 Mar 2025
Viewed by 761
Abstract
Background/Objectives: Leishmaniasis is a neglected tropical disease caused by a protozoan parasite of Leishmania. This study aimed to evaluate the in vitro efficacy and toxicity of a previously developed amphotericin gel as a possible treatment for cutaneous leishmaniasis. Methods: First, [...] Read more.
Background/Objectives: Leishmaniasis is a neglected tropical disease caused by a protozoan parasite of Leishmania. This study aimed to evaluate the in vitro efficacy and toxicity of a previously developed amphotericin gel as a possible treatment for cutaneous leishmaniasis. Methods: First, quality control of the AmB-gel was carried out, including microbiological stability. The permeated and retained drug was tested on healthy and lacerated human skin. Tolerance to the AmB-gel was tested in vitro using HaCaT, RAW 264.7, and J774 cell lines and by an irritation test (HET-CAM). Promastigotes and amastigotes of various Leishmania species were tested, and the microscopic morphology of promastigotes exposed to the formulation was analyzed. Computational analysis was performed on the drug, polymer, and ergosterol in the promastigote. Results: The AmB-gel presented appropriate characteristics for topical use, including no microbial contamination after storage. The amount of drug retained on the intact and injured skin was 1180.00 ± 13.54 µg/g/cm2 and 750.18 ± 5.43 µg/g/cm2, respectively. The AmB-gel did not cause significant signs of toxicity. The IC50 of the AmB-gel for promastigotes was less than 1 µg/mL for the four species examined, i.e., Leishmania infantum, Leishmania tropica, Leishmania major, and Leishmania braziliensis, and less than 2 µg/mL for amastigotes of Leishmania infantum and Leishmania tropica. The AmB-gel caused notable effects on the surface of promastigotes. Computational analysis revealed primarily hydrophobic and van der Waals interactions between AmB and Pluronic® F127 and ergosterol. Conclusions: Based on the drug retention content and IC50 values observed for both parasite stages, the AmB-gel may be a promising candidate for in vivo studies in patients with cutaneous leishmaniasis. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

12 pages, 2902 KiB  
Article
Thymus syriacus Essential Oil Extract: Potential Antileishmanial Activity Induced by an Apoptotic-like Death
by Basem Battah, Teresa Chianese, Luigi Rosati, Giacomo Petretto, Chadi Soukkarieh, Marco Ferrari, Vittorio Mazzarello, Aleksandra Barac, Aleksandar Peric and Matthew Gavino Donadu
Antibiotics 2025, 14(3), 293; https://doi.org/10.3390/antibiotics14030293 - 12 Mar 2025
Viewed by 793
Abstract
Background: Chemotherapy continues to be the cornerstone for the management of leishmaniasis. The preferred medications are pricey and have a number of unfavorable side effects. These restrictions make it necessary to produce novel antileishmanial chemicals, and plants have opportunities in this respect. Objectives: [...] Read more.
Background: Chemotherapy continues to be the cornerstone for the management of leishmaniasis. The preferred medications are pricey and have a number of unfavorable side effects. These restrictions make it necessary to produce novel antileishmanial chemicals, and plants have opportunities in this respect. Objectives: This study aimed to evaluate the antileishmanial properties of Thymus syriacus essential oil and its mechanisms of action. Results: Our findings demonstrated that Thymus syriacus essential oil, rich in thymol, exhibited potent antileishmanial activity, with an IC50 value of approximately 1 µg/mL against L. tropica promastigotes. Furthermore, the cell cycle arrest at the sub-G0-G1 phase supported the theory that the leishmanicidal effect was mediated by apoptosis. Methods: The essential oil was characterized using gas chromatography–tandem mass spectrometry. Antileishmanial activity against L. tropica promastigotes was assessed, with mechanisms confirmed via flow cytometry. Conclusions: These results confirm the potential of Thymus syriacus essential oil as a promising therapeutic candidate for the treatment of leishmaniasis. Full article
Show Figures

Figure 1

32 pages, 5767 KiB  
Article
Green Synthesis of Silver Nanoparticles Using Paullinia cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties
by Alan Kelbis Oliveira Lima, Ítalo Rennan Sousa Vieira, Lucas Marcelino dos Santos Souza, Isadora Florêncio, Ingrid Gracielle Martins da Silva, Alberto Gomes Tavares Junior, Yasmin Alves Aires Machado, Lucas Carvalho dos Santos, Paulo Sérgio Taube, Gerson Nakazato, Laila Salmen Espindola, Lorena Carneiro Albernaz, Klinger Antônio da França Rodrigues, Marlus Chorilli, Hugo de Campos Braga, Dayane Batista Tada, Sônia Nair Báo, Luís Alexandre Muehlmann and Mônica Pereira Garcia
Pharmaceutics 2025, 17(3), 356; https://doi.org/10.3390/pharmaceutics17030356 - 10 Mar 2025
Cited by 4 | Viewed by 1545
Abstract
Background: Paullinia cupana Kunth, popularly known as guarana, a native Amazonian shrub cultivated by the Sateré-Mawé ethnic group, has been used in traditional medicine for various purposes, including stimulant and therapeutic actions, due to its chemical composition, which is rich in bioactive [...] Read more.
Background: Paullinia cupana Kunth, popularly known as guarana, a native Amazonian shrub cultivated by the Sateré-Mawé ethnic group, has been used in traditional medicine for various purposes, including stimulant and therapeutic actions, due to its chemical composition, which is rich in bioactive compounds. This study explored the reductive potential of guarana with nanobiotechnology and aimed to synthesize silver nanoparticles (AgNPs) using the aqueous extract of leaves collected during the dry and rainy seasons, assessing their biological and catalytic activities. Methods: The AgNPs were synthesized in a water bath at 70 °C for three hours and then characterized using techniques such as UV-Vis spectroscopy, DLS, zeta potential, MET, NTA, and EDX and had their effects on various biological systems assessed in vitro, as well as in catalytic tests aimed at indicating the probable influence of the time when the plant material was collected on the properties of the nanostructures. Results: The AgNPs had an average diameter between 39.33 and 126.2 nm, spherical morphology, absorption bands between 410 and 450 nm, and high colloidal stability over two years. The biological results showed antibacterial activity against all the species tested, as well as remarkable antioxidant action against DPPH and ABTS free radicals, in the same way as the aqueous leaf extracts of P. cupana, in addition to cytotoxic properties against cancerous (A431 and A549) and non-cancerous (HaCaT and HNTMC) cells. The AgNPs were active against promastigote forms of Leishmania (Leishmania) amazonensis while not affecting the viability of macrophages, and from the LC50 and LC90 values, the AgNPs were more effective than the metal salt solution in controlling Aedes aegypti larvae and pupae. We also reported that the catalytic degradation of the organic dyes methylene blue (MB) and methyl orange (MO) by AgNPs was over 90% after 40 or 14 min, respectively. Conclusions: Thus, our results support the potential of seasonal extracts of guarana leaves to produce AgNPs with diverse application possibilities for the health, industrial, and environmental sectors. Full article
Show Figures

Graphical abstract

12 pages, 857 KiB  
Article
Impact of Marasmic Malnutrition on Visceral Leishmaniasis: Progression and Treatment Efficacy in a Murine Model
by Taiana Ferreira-Paes, Luiza F. O. Gervazoni, Paula Seixas-Costa, Paula Mello De Luca and Elmo Eduardo Almeida-Amaral
Nutrients 2025, 17(5), 849; https://doi.org/10.3390/nu17050849 - 28 Feb 2025
Viewed by 949
Abstract
Background/Objectives: Malnutrition and visceral leishmaniasis are major public health problems that are responsible for millions of deaths across many countries. Leishmaniasis development and progression are associated with the host immune status. In this context, malnutrition can directly affect the course of leishmaniasis, impairing [...] Read more.
Background/Objectives: Malnutrition and visceral leishmaniasis are major public health problems that are responsible for millions of deaths across many countries. Leishmaniasis development and progression are associated with the host immune status. In this context, malnutrition can directly affect the course of leishmaniasis, impairing several components of the immune system. Moreover, malnutrition directly interferes with the tropism of Leishmania in organs, affecting host susceptibility. Therefore, this work aimed to evaluate the influence of nutritional status on the establishment, progression, and treatment of Leishmania infantum infection in malnourished and refed mice. Methods: BALB/c mice were fed either a control or restricted diet, infected with L. infantum promastigotes, and treated with meglumine antimoniate, the standard drug for treating visceral leishmaniasis. The effects of infection were evaluated through limiting dilution analysis (LDA). Results: Compared with control mice, malnourished and refed mice presented a lower parasitic load in the spleen, which correlated with spleen atrophy, and the refeeding process partially reversed but did not fully rescue the infection status. Both groups presented a high parasitic load in the liver. Marasmic malnutrition appeared to impair the efficacy of leishmaniasis treatment; however, the refed groups exhibited a robust decrease in the parasite load, which was comparable to that in the control group subjected to treatment. Conclusions: Our data suggested that marasmic malnutrition affects the establishment and progression of Leishmania infection, in addition to reducing the efficacy of standard treatment. Furthermore, the refeeding intervention used did not fully reverse the observed effects. These findings highlight the potential importance of nutritional interventions in the clinical management of visceral leishmaniasis in malnourished populations. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

14 pages, 1240 KiB  
Article
Bioactive Compounds with Leishmanicidal Potential from Helianthus tuberosus and Vernonanthura squamulosa
by Rachel Nápoles Rodríguez, María Laura Arreguez, Aldana M. Corlatti, Hernán G. Bach, César A. N. Catalán, Laura C. Laurella, Paola A. Barroso and Valeria P. Sülsen
Molecules 2025, 30(5), 1039; https://doi.org/10.3390/molecules30051039 - 24 Feb 2025
Viewed by 736
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. An estimated 700,000 to 1 million new cases occur annually. Current therapies are limited by high toxicity, cost, prolonged treatment period, and rising resistance in endemic regions. The [...] Read more.
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. An estimated 700,000 to 1 million new cases occur annually. Current therapies are limited by high toxicity, cost, prolonged treatment period, and rising resistance in endemic regions. The Asteraceae family has emerged as a promising source of bioactive compounds with proven leishmanicidal activity. In this study, the assessment of the antileishmanial activity of Helianthus tuberosus and Vernonanthura squamulosa extracts, the isolation of the sesquiterpene lactones heliangin and glaucolide A, respectively, and the evaluation of the activity of the compounds were conducted. Dichloromethane extracts of H. tuberosus and V. squamulosa were active on Leishmania amazonensis promastigotes, inhibiting the replication of the parasites in 97.2 ± 3.1% and 89.1 ± 1.1%, respectively, at 100 μg/mL. Heliangin was active against promastigotes of L. amazonensis (IC50 = 9.3 μM) and intracellular amastigotes (IC50 = 0.8 μM), while glaucolide A exhibited moderate activity against promastigotes (IC50 = 46.7 μM) and did not show activity against intracellular amastigotes. Based on these results, heliangin was further evaluated in an animal model of cutaneous leishmaniasis using BALB/c mice infected with L. amazonensis. Heliangin (8 mg/Kg), when administered in combination with Glucantime, significantly reduced lesion progression and parasite load compared to the vehicle-treated group (p < 0.001). These findings show that heliangin is a potential candidate for leishmaniasis treatment, especially in combination with therapeutic drugs. Full article
Show Figures

Figure 1

22 pages, 57415 KiB  
Article
Enhanced Nanogel Formulation Combining the Natural Photosensitizer Curcumin and Pectis brevipedunculata (Asteraceae) Essential Oil for Synergistic Daylight Photodynamic Therapy in Leishmaniasis Treatment
by Lara Maria Oliveira Campos, Estela Mesquita Marques, Daniele Stéfanie Sara Lopes Lera-Nonose, Maria Julia Schiavon Gonçalves, Maria Valdrinez Campana Lonardoni, Glécilla Colombelli de Souza Nunes, Gustavo Braga and Renato Sonchini Gonçalves
Pharmaceutics 2025, 17(3), 286; https://doi.org/10.3390/pharmaceutics17030286 - 21 Feb 2025
Cited by 1 | Viewed by 693
Abstract
Background/Objectives: Neglected tropical diseases (NTDs), such as leishmaniasis, remain a global health challenge due to limited therapeutic options and rising drug resistance. In this study, we developed an advanced nanogel formulation incorporating curcumin (CUR) and Pectis brevipedunculata essential oil (EOPb) [...] Read more.
Background/Objectives: Neglected tropical diseases (NTDs), such as leishmaniasis, remain a global health challenge due to limited therapeutic options and rising drug resistance. In this study, we developed an advanced nanogel formulation incorporating curcumin (CUR) and Pectis brevipedunculata essential oil (EOPb) within an F127/Carbopol 974P matrix to enhance bioavailability and therapeutic efficacy against Leishmania (Leishmania) amazonensis (LLa) promastigotes. Methods: The chemical profile of EOPb was determined through GC-MS and NMR analyses, confirming the presence of key bioactive monoterpenes such as neral, geranial, α-pinene, and limonene. The nanogel formulation (nGPC) was optimized to ensure thermosensitivity, and stability, exhibiting a sol–gel transition at physiological temperatures. Rheological analysis revealed that nGPC exhibited Newtonian behavior at 5 °C, transitioning to shear-thinning and thixotropic characteristics at 25 and 32 °C, respectively. This behavior facilitates its application and controlled drug release, making it ideal for topical formulations. Dynamic light scattering (DLS) analysis demonstrated that nGPC maintained a stable nanoscale structure with hydrodynamic radius below 300 nm, while Fourier-transform infrared spectroscopy (FTIR) confirmed strong molecular interactions between EOPb, CUR, and the polymer matrix. Biological assays demonstrated that nGPC significantly enhanced anti-promastigote activity compared to free CUR and OEPb. Results: At the highest tested concentration (50 μg/mL EOPb and 17.5 μg/mL CUR) nGPC induced over 88% mortality in LLa promastigotes across 24, 48, and 72 h, indicating sustained efficacy. Even at lower concentrations, nGPC retained dose-dependent activity, suggesting a synergistic effect between CUR and EOPb. These findings highlight the potential of nGPC as an innovative nanocarrier for daylight photodynamic therapy (dPDT) in the treatment of leishmaniasis. Future studies will investigate the underlying mechanisms of this synergism and explore the potential application of photodynamic therapy (PDT) to further enhance therapeutic outcomes. Full article
(This article belongs to the Special Issue Natural Products in Photodynamic Therapy)
Show Figures

Figure 1

Back to TopTop