Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemistry
2.2.1. Synthesis of 2-(1H-pyrazol-1-yl)acetohydrazide (37a–d)
2.2.2. Synthesis of (E)-N’-benzylidene-2-(1H-pyrazol-1-yl)acetohydrazides (4–36)
(E)-N′-benzylidene-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetohydrazide (4)
(E)-N′-(4-chlorobenzylidene)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetohydrazide (5)
(E)-N′-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetohydrazide (6)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(4-nitrobenzylidene)acetohydrazide (7)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(2,4-dimethylbenzylidene)acetohydrazide (8)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(3-fluorobenzylidene)acetohydrazide (9)
(E)-N′-(3-bromobenzylidene)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetohydrazide (10)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(2-fluorobenzylidene)acetohydrazide (11)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(2-methoxybenzylidene)acetohydrazide (12)
(E)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)-N′-(4-fluorobenzylidene)acetohydrazide (13)
(E)-N′-(3-chlorobenzylidene)-2-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetohydrazide (14)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(3-hydroxybenzylidene)acetohydrazide (15)
(E)-N′-(3-chlorobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide (16)
(E)-N′-(benzo[d][1,3]dioxol-5-ylmethylene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide (17)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(2-hydroxybenzylidene)acetohydrazide (18)
(E)-N′-(2,4-dichlorobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazi-de (19)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(4-nitrobenzylidene)acetohydrazide (20)
(E)-N′-(4-chlorobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide (21)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(3-nitrobenzylidene)acetohydrazide (22)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(2-nitrobenzylidene)acetohydrazide (23)
(E)-N′-(2,4-difluorobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide (24)
(E)-N′-(3-bromobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide (25)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(2,4-dinitrobenzylidene)acetohydrazide (26)
(E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N′-(2,4-dimethylbenzylidene)acetohydrazide (27)
(E)-N′-(4-chlorobenzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (28)
(E)-N′-(2-methoxybenzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (29)
(E)-N′-(3-fluorobenzylidene)-2-(4-nitro-1H-pyrazol-1-yl)acetohydrazide (30)
(E)-2-(4-nitro-1H-pyrazol-1-yl)-N′-(3-nitrobenzylidene)acetohydrazide (31)
(E)-N′-(4-chlorobenzylidene)-2-(4-nitro-1H-pyrazol-1-yl)acetohydrazide (32)
(E)-2-(4-nitro-1H-pyrazol-1-yl)-N′-(4-nitrobenzylidene)acetohydrazide (33)
(E)-N′-(3-bromobenzylidene)-2-(4-nitro-1H-pyrazol-1-yl)acetohydrazide (34)
(E)-N′-(2-fluorobenzylidene)-2-(4-nitro-1H-pyrazol-1-yl)acetohydrazide (35)
(E)-2-(4-nitro-1H-pyrazol-1-yl)-N′-(2-nitrobenzylidene)acetohydrazide (36)
Synthesis of (E)-2-(3,5-dimethyl-1H-pyrazol-1-yl)-N-methyl-N′-(3-nitrobenzy-lidene)acetohydrazide (37)
2.3. Screening and IC50 of N-Acylhydrazone Derivatives in Promastigote Culture
2.4. Arginase Inhibition Test
2.5. In Silico Drug ADMET and Drug-Likeness Prediction
2.6. Statistical Analysis
3. Results
3.1. Chemistry of Compounds
3.2. Activity of Compounds Against Leishmania Promastigotes
3.3. Drug ADMET and Drug-Likeness Prediction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, G.; Demar, M.; Lami, P.; Zribi, A.; Marty, P.; Buffet, P.; Desbois-Nogard, N.; Gangneux, J.P.; Simon, S.; Blaizot, R.; et al. Leishmaniasis epidemiology in endemic areas of metropolitan France and its overseas territories from 1998 to 2020. PLoS Negl. Trop. Dis. 2022, 16, e0010745. [Google Scholar] [CrossRef]
- Valero, N.N.H.; Prist, P.; Uriarte, M. Environmental and socioeconomic risk factors for visceral and cutaneous leishmaniasis in São Paulo, Brazil. Sci. Total Environ. 2021, 797, 148960. [Google Scholar] [CrossRef]
- Roque, A.L.R.; Jansen, A.M. Wild and synanthropic reservoirs of Leishmania species in the Americas. Int. J. Parasitol. Parasites Wildl. 2014, 3, 251. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Maquiaveli, C.D.C.; Sá, A.M.O.E.; Vieira, P.C.; da Silva, E.R. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition. J. Ethnopharmacol. 2016, 192, 108–113. [Google Scholar] [CrossRef]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B.; Maes, L. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, V.; Tiwari, R.K.; Ravidas, V.; Pandey, K.; Kumar, A. Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop. 2022, 235, 106661. [Google Scholar] [CrossRef]
- De Rycker, M.; Wyllie, S.; Horn, D.; Read, K.D.; Gilbert, I.H. Anti-trypanosomatid drug discovery: Progress and challenges. Nat. Rev. Microbiol. 2023, 21, 35–50. [Google Scholar] [CrossRef]
- Capela, R.; Moreira, R.; Lopes, F. An Overview of Drug Resistance in Protozoal Diseases. Int. J. Mol. Sci. 2019, 20, 5748. [Google Scholar] [CrossRef]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol. 2022, 47, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Clos, J.; Grünebast, J.; Holm, M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.B.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.W. Arginase: An old enzyme with new tricks. Trends Pharmacol. Sci. 2015, 36, 395–405. [Google Scholar] [CrossRef]
- da Silva, M.F.L.; Zampieri, R.A.; Muxel, S.M.; Beverley, S.M.; Floeter-Winter, L.M. Leishmania amazonensis Arginase Compartmentalization in the Glycosome Is Important for Parasite Infectivity. PLoS ONE 2012, 7, e34022. [Google Scholar] [CrossRef]
- Clemente, G.S.; van Waarde, A.; Antunes, I.F.; Dömling, A.; Elsinga, P.H. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int. J. Mol. Sci. 2020, 21, 5291. [Google Scholar] [CrossRef]
- Carter, N.S.; Stamper, B.D.; Elbarbry, F.; Nguyen, V.; Lopez, S.; Kawasaki, Y.; Poormohamadian, R.; Roberts, S.C. Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise. Microorganisms 2021, 9, 267. [Google Scholar] [CrossRef]
- Camargo, J.d.N.A.; Pianoski, K.E.; dos Santos, M.G.; Lazarin-Bidóia, D.; Volpato, H.; Moura, S.; Nakamura, C.V.; Rosa, F.A. Antiparasitic Behavior of Trifluoromethylated Pyrazole 2-Amino-1,3,4-thiadiazole Hybrids and Their Analogues: Synthesis and Structure-Activity Relationship. Front. Pharmacol. 2020, 11, 591570. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hymete, A.; Bekhit, A.E.-D.A.; Damtew, A.; Aboul-Enein, H.Y. Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: A review. Mini Rev. Med. Chem. 2010, 10, 1014–1033. [Google Scholar] [CrossRef]
- Reviriego, F.; Olmo, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; García-España, E.; Albelda, M.T.; Gutiérrez-Sánchez, R.; Sánchez-Moreno, M.; Arán, V.J. Simple dialkyl pyrazole-3,5-dicarboxylates show in vitro and in vivo activity against disease-causing trypanosomatids. Parasitology 2017, 144, 1133–1143. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hassan, A.M.M.; El Razik, H.A.A.; El-Miligy, M.M.M.; El-Agroudy, E.J.; Bekhit, A.E.D.A. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem. 2015, 94, 30–44. [Google Scholar] [CrossRef]
- Mowbray, C.E.; Braillard, S.; Speed, W.; Glossop, P.A.; Whitlock, G.A.; Gibson, K.R.; Mills, J.E.J.; Brown, A.D.; Gardner, J.M.F.; Cao, Y.; et al. Novel Amino-pyrazole Ureas with Potent In Vitro and In Vivo Antileishmanial Activity. J. Med. Chem. 2015, 58, 9615–9624. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.S.; Oliveira, M.L.; Bernardino, A.M.; de Léo, R.M.; Amaral, V.F.; de Carvalho, F.T.; Leon, L.L.; Canto-Cavalheiro, M.M. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 7451–7454. [Google Scholar] [CrossRef]
- Bernardino, A.M.R.; Gomes, A.O.; Charret, K.S.; Freitas, A.C.C.; Machado, G.M.C.; Canto-Cavalheiro, M.M.; Leon, L.; Amaral, V.F. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N’-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur. J. Med. Chem. 2005, 41, 80–87. [Google Scholar] [CrossRef]
- Charret, K.S.; Rodrigues, R.F.; Bernardino, A.M.R.; Gomes, A.O.; Carvalho, A.V.; Canto-Cavalheiro, M.M.; Leon, L.; Amaral, V.F. Effect of oral treatment with pyrazole carbohydrazide derivatives against murine infection by Leishmania amazonensis. Am. J. Trop. Med. Hyg. 2009, 80, 568–573. [Google Scholar] [CrossRef]
- Socea, L.I.; Barbuceanu, S.-F.; Pahontu, E.M.; Dumitru, A.-C.; Nitulescu, G.M.; Sfetea, R.C.; Apostol, T.-V. Acylhydrazones and Their Biological Activity: A Review. Molecules 2022, 27, 8719. [Google Scholar] [CrossRef]
- Fernández-Palacios, S.; Matamoros, E.; Rojas, I.M.; Navarrete, J.T.L.; Delgado, M.C.R.; Vida, Y.; Perez-Inestrosa, E. New Insights into Acylhydrazones E/Z Isomerization: An Experimental and Theoretical Approach. Int. J. Mol. Sci. 2023, 24, 14739. [Google Scholar] [CrossRef]
- de Sousa, V.C.; Carvalho, R.d.C.V.; Barcelar, K.G.d.R.; de Melo, D.S.; Nunes, J.M.; Sousa, P.S.d.A.; Rocha, J.A.; Lima, C.C.; Gonsalves, A.d.A.; Araújo, C.R.M.; et al. Synthetic hydrazones: In silico studies and in vitro evaluation of the antileishmania potential. Toxicol. Vitr. 2023, 88, 105560. [Google Scholar] [CrossRef]
- da Silva, E.R.; Come, J.A.A.d.S.S.; Brogi, S.; Calderone, V.; Chemi, G.; Campiani, G.; Oliveira, T.M.F.d.S.; Pham, T.-N.; Pudlo, M.; Girard, C.; et al. Cinnamides Target Leishmania amazonensis Arginase Selectively. Molecules 2020, 25, 5271. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A Rapid and Precise Method for the Determination of Urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Myung, Y.; De Sá, A.G.C.; Ascher, D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, 52, W469–W475. [Google Scholar] [CrossRef]
- Palla, G.; Pelizzi, C.; Predieri, G.; Vignali, C. Conformational study on N-acylhydrazones of aromatic aldehydes by NMR spectroscopy. Gazz. Chim. Ital. 1982, 112, 339–341. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902041153217068 (accessed on 13 March 2025).
- Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron 1986, 42, 3649–3654. [Google Scholar] [CrossRef]
- Glidewell, C.; Low, J.N.; Wardell, J.L. 2-Nitrobenzaldehyde 2-iodobenzoylhydrazone. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, E61, o2438–o2440. [Google Scholar] [CrossRef]
- Costa, F.N.; da Silva, T.F.; Silva, E.M.B.; Barroso, R.C.R.; Braz, D.; Barreiro, E.J.; Lima, L.M.; Punzo, F.; Ferreira, F.F. Structural feature evolution—From fluids to the solid phase—And crystal morphology study of LASSBio 1601: A cyclohexyl-N-acylhydrazone derivative. RSC Adv. 2015, 5, 39889–39898. [Google Scholar] [CrossRef]
- Da Silva, T.F.; Júnior, W.B.; Alexandre-Moreira, M.S.; Costa, F.N.; Monteiro, C.E.d.S.; Ferreira, F.F.; Barroso, R.C.R.; Noël, F.; Sudo, R.T.; Zapata-Sudo, G.; et al. Novel orally active analgesic and anti-inflammatory cyclohexyl-N-acylhydrazone derivatives. Molecules 2015, 20, 3067–3088. [Google Scholar] [CrossRef]
- Wilde, F.; Lemmerhirt, H.; Emmrich, T.; Bednarski, P.J.; Link, A. Microwave-assisted synthesis and evaluation of acylhydrazones as potential inhibitors of bovine glutathione peroxidase. Mol. Divers. 2014, 18, 307–322. [Google Scholar] [CrossRef]
- Kümmerle, A.E.; Schmitt, M.; Cardozo, S.V.S.; Lugnier, C.; Villa, P.; Lopes, A.B.; Romeiro, N.C.; Justiniano, H.; Martins, M.A.; Fraga, C.A.M.; et al. Design, synthesis, and pharmacological evaluation of N-acylhydrazones and novel conformationally constrained compounds as selective and potent orally active phosphodiesterase-4 inhibitors. J. Med. Chem. 2012, 55, 7525–7545. [Google Scholar] [CrossRef]
- Pitombeira, M.C.S.R.; Júnior, P.A.S.; Murta, S.M.F.; Romanha, A.; Luccas, P.H.; Nonato, M.C.; Rocha, R.E.O.; Ferreira, R.S.; da Silveira, F.F.; Castelo-Branco, F.S.; et al. New 2-nitroimidazole-N-acylhydrazones, analogs of benznidazole, as anti-Trypanosoma cruzi agents. Arch. Pharm. 2024, 357, e2400059. [Google Scholar] [CrossRef]
- Saqib, M.; Ali Bhatti, A.S.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B Loaded Polymeric Nanoparticles for Treatment of Leishmania Infections. Nanomaterials 2020, 10, 1152. [Google Scholar] [CrossRef]
- Cardoso, L.N.F.; Nogueira, T.C.M.; Rodrigues, F.A.R.; Oliveira, A.C.A.; Luciano, M.C.d.S.; Pessoa, C.; de Souza, M.V.N. N-acylhydrazones containing thiophene nucleus: A new anticancer class. Med. Chem. Res. 2017, 26, 1605–1608. [Google Scholar] [CrossRef]
- Upegui Zapata, Y.A.; Echeverri, F.; Quiñones, W.; Torres, F.; Nacher, M.; Rivas, L.I.; Meira, C.d.S.; Gedamu, L.; Escobar, G.; Archbold, R.; et al. Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. Int. J. Parasitol. Drugs Drug Resist. 2020, 13, 94. [Google Scholar] [CrossRef]
- Melnyk, P.; Leroux, V.; Sergheraert, C.; Grellier, P. Design, synthesis and in vitro antimalarial activity of an acylhydrazone library. Bioorg. Med. Chem. Lett. 2006, 16, 31–35. [Google Scholar] [CrossRef]
Compound | R1 | R2 | Ar | Arginase Inhibition (%) | Leishmania Growth Inhibition (%) |
---|---|---|---|---|---|
4 | NO2 | Me | - | - | |
5 | NO2 | Me | - | - | |
6 | NO2 | Me | - | - | |
7 | NO2 | Me | - | - | |
8 | NO2 | Me | 4 ± 2 | 93 ± 1 | |
9 | NO2 | Me | - | - | |
10 | NO2 | Me | 21 ± 3 | - | |
11 | NO2 | Me | - | - | |
12 | NO2 | Me | 11 ± 1 | - | |
13 | NO2 | Me | 23 ± 1 | - | |
14 | NO2 | Me | 22 ± 1 | - | |
15 | H | Me | 21 ± 1 | - | |
16 | H | Me | 20 ± 1 | - | |
17 | H | Me | 13 ± 2 | - | |
18 | H | Me | 52 ± 1 | 94 ± 1 | |
19 | H | Me | 10 ± 1 | - | |
20 | H | Me | 4 ± 1 | - | |
21 | H | Me | 12 ± 3 | 19 ± 2 | |
22 | H | Me | 12 ± 1 | 69 ± 3 | |
23 | H | Me | 17 ± 1 | 73 ± 3 | |
24 | H | Me | 16 ± 1 | - | |
25 | H | Me | 33 ± 1 | 18 ± 3 | |
26 | H | Me | 24 ± 1 | - | |
27 | H | Me | 17 ± 1 | - | |
28 | H | H | 17 ± 4 | - | |
29 | H | H | 13 ± 1 | - | |
30 | NO2 | H | 5 ± 4 | - | |
31 | NO2 | H | 11 ± 4 | - | |
32 | NO2 | H | 10 ± 1 | - | |
33 | NO2 | H | 16 ± 1 | - | |
34 | NO2 | H | 14 ± 4 | - | |
35 | NO2 | H | 20 ± 6 | 8 ± 5 | |
36 | NO2 | H | 3 ± 1 | 47 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Monteiro, C.E.; Martins Mafra, J.C.; Boechat, N.; Silva, E.R.d. Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes. Microorganisms 2025, 13, 1563. https://doi.org/10.3390/microorganisms13071563
Oliveira Monteiro CE, Martins Mafra JC, Boechat N, Silva ERd. Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes. Microorganisms. 2025; 13(7):1563. https://doi.org/10.3390/microorganisms13071563
Chicago/Turabian StyleOliveira Monteiro, Caio Eduardo, João Carlos Martins Mafra, Nubia Boechat, and Edson Roberto da Silva. 2025. "Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes" Microorganisms 13, no. 7: 1563. https://doi.org/10.3390/microorganisms13071563
APA StyleOliveira Monteiro, C. E., Martins Mafra, J. C., Boechat, N., & Silva, E. R. d. (2025). Design, Synthesis, and Biological Evaluation of N-Acylhydrazones and Their Activity Against Leishmania amazonensis Promastigotes. Microorganisms, 13(7), 1563. https://doi.org/10.3390/microorganisms13071563