Development of New Drugs to Treat Infectious Diseases

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Antimicrobial Agents and Resistance".

Deadline for manuscript submissions: closed (20 May 2025) | Viewed by 1795

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, Brazil
Interests: infectious diseases; drug development; mycobacteriology

Special Issue Information

Dear Colleagues,

Infectious diseases constitute a serious global health concern. The increasing prevalence and spread of antimicrobial resistance, high mortality rates in hospital-acquired infections, and lack of adequate treatments for several “neglected tropical diseases”, particularly in developing countries, are points that deserve special attention from the international scientific community and the World Health Organization. Furthermore, the COVID-19 pandemic has highlighted the importance of advancing studies for developing novel prophylactic and therapeutic strategies for viral infections. In this context, it is essential to develop new effective and safe pharmacological therapies to treat infections caused by viruses, bacteria, fungi, and protozoa. This Special Issue, entitled "Development of New Drugs to Treat Infectious Diseases", aims to present recent research on different aspects of the field, providing a broad scientific platform for scientists performing fundamental, applied and translational research related to the development of new drugs to treat infectious diseases. Some focal points include, but are not limited to, the following:

  1. Target-based drug discovery and development of novel antimicrobial agents.
  2. Host-directed strategies.
  3. Drug repurposing for infectious diseases.
  4. Natural products as sources of anti-infective compounds.
  5. Target characterization and validation.
  6. Preclinical efficacy studies.
  7. Toxicity investigations.
  8. Pharmacokinetics and pharmacodynamics.
  9. Computational approaches for anti-infective drug design.
  10. Combination therapy strategies. 

Reviews, original research, and communications will be welcome.

Dr. Valnês da Silva Rodrigues-Junior
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial agents
  • natural products
  • tropical diseases
  • therapeutic strategies
  • viral infections

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 4169 KiB  
Article
Synthesis, Biological Evaluation, Molecular Dynamics, and QM-MM Calculation of Spiro-Acridine Derivatives Against Leishmaniasis
by Sonaly Albino, Michelangela Nobre, Jamire da Silva, Malu dos Reis, Maria Nascimento, Mayara de Oliveira, Tatiana Borges, Lucas Albuquerque, Selma Kuckelhaus, Luis Alves, Fábio dos Santos, Maria de Lima, Igor Nascimento, Teresinha da Silva and Ricardo de Moura
Microorganisms 2025, 13(6), 1297; https://doi.org/10.3390/microorganisms13061297 - 2 Jun 2025
Viewed by 517
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania sp. The therapeutic arsenal is reduced and limited. In this context, acridine derivatives present themselves as promising leishmanicidal compounds. This paper involved synthesizing and evaluating the antileishmanial and immunomodulatory potential of spiro-acridine derivatives. Six [...] Read more.
Leishmaniasis is a neglected tropical disease caused by Leishmania sp. The therapeutic arsenal is reduced and limited. In this context, acridine derivatives present themselves as promising leishmanicidal compounds. This paper involved synthesizing and evaluating the antileishmanial and immunomodulatory potential of spiro-acridine derivatives. Six spiro-acridine derivatives were obtained through nucleophilic substitution reactions between the acetohydrazide/acetamide intermediates and 9-carbaldehydeacridine, followed by spontaneous cyclization. IR, NMR, and HRMS confirmed the structures. These were analyzed in vitro against L. infantum and L. amazonensis to determine anti-promastigote, anti-amastigote, and cytotoxicity effects. Immunomodulatory activity was evaluated using CBA, DCF-DA, and DAF-FM diacetate. In silico evaluation included molecular docking and dynamics. The spiro-acridines showed a wide range of anti-promastigote activities (IC50 = 0.73–234.95 µM) and non-toxicity to red blood cells. AMTAC-02 and ACMD-03 demonstrated satisfactory anti-amastigote effect (IC50 = 10.47–13.50 µM), low toxicity to macrophages (CC50 = 27.22–569.50 µM), and cytokine and reactive species modulation. Molecular docking proposed cysteine protease B of L. amazonensis as a target, and molecular dynamics analysis highlighted the complex’s stability using RMSD, Rg, SASA, DCCM, PCA, and MM-PBSA (ΔG = −65.225 kJ/mol). Furthermore, QM-MM calculation provided the best energy for ACMD-03 (−199.30 au). Hence, AMTAC-02 and ACMD-03 demonstrated antileishmanial potential, making them promising entities for the development of leishmanicidal drug candidates. Full article
(This article belongs to the Special Issue Development of New Drugs to Treat Infectious Diseases)
Show Figures

Figure 1

29 pages, 6948 KiB  
Article
Host-Mediated Antimicrobial Effects and NLRP3 Inflammasome Modulation by Caulerpin and Its Derivatives in Macrophage Models of Mycobacterial Infections
by Maria Gabriella S. Sidrônio, Maria Eugênia G. Freitas, Daniel W. A. Magalhães, Deyse C. M. Carvalho, Vinícius A. B. Gonçalves, Ana Caroline M. de Queiroz Oliveira, Gisela C. Paulino, Gabriela C. Borges, Rafaelle L. Ribeiro, Natália Ferreira de Sousa, Marcus T. Scotti, Demétrius A. M. de Araújo, Francisco Jaime B. Mendonça-Junior, Kristerson R. de Luna Freire, Sandra Rodrigues-Mascarenhas, Bárbara Viviana de O. Santos and Valnês S. Rodrigues-Junior
Microorganisms 2025, 13(3), 561; https://doi.org/10.3390/microorganisms13030561 - 1 Mar 2025
Cited by 1 | Viewed by 911
Abstract
Caulerpin, a bis-indole alkaloid isolated from Caulerpa racemosa, has several documented pharmacological activities, including antineoplastic and antiviral properties. This study aimed to evaluate the anti-inflammatory and anti-tubercular potentials of caulerpin and its analogues in RAW 264.7 macrophages infected with Mycobacterium spp. Additionally, [...] Read more.
Caulerpin, a bis-indole alkaloid isolated from Caulerpa racemosa, has several documented pharmacological activities, including antineoplastic and antiviral properties. This study aimed to evaluate the anti-inflammatory and anti-tubercular potentials of caulerpin and its analogues in RAW 264.7 macrophages infected with Mycobacterium spp. Additionally, we evaluated cytokine production and NLRP3 expression in this infection model. Toxicity tests were performed using Vero E6 and HepG2 cell lines and Artemia salina. Pre-incubation of RAW 264.7 cells with caulerpin and its analogues decreased internalized M. smegmatis and M. tuberculosis H37Ra. Furthermore, treatment of M. smegmatis-infected macrophages with caulerpin and its analogues reduced bacterial loads. Caulerpin reduced the CFU count of internalized bacilli in the M. tuberculosis H37Ra infection model. In addition, caulerpin and its diethyl derivative were notably found to modulate IL-1β and TNF-α production in the M. smegmatis infection model after quantifying pro-inflammatory cytokines and NLRP3. Caulerpin and its derivates did not affect the viability of Vero E6 and HepG2 cell lines or nauplii survival in toxicity studies. These findings demonstrate that caulerpin and its analogues exhibit anti-inflammatory activity against Mycobacterium spp. infection in RAW 264.7 macrophages and show promising potential for further efficacy and safety evaluation. Full article
(This article belongs to the Special Issue Development of New Drugs to Treat Infectious Diseases)
Show Figures

Figure 1

Back to TopTop