Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,115)

Search Parameters:
Keywords = project life cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3185 KB  
Article
A Systems-Thinking Framework for Embedding Planetary Boundaries into Chemical Engineering Curriculum
by Yazeed M. Aleissa
Systems 2026, 14(1), 110; https://doi.org/10.3390/systems14010110 - 21 Jan 2026
Abstract
The integration of complex system concepts and sustainability in chemical engineering education is often limited to elective or separate courses rather than their integration into the core curriculum. This pedagogical gap can lead to graduates who lack a holistic understanding of the intricate [...] Read more.
The integration of complex system concepts and sustainability in chemical engineering education is often limited to elective or separate courses rather than their integration into the core curriculum. This pedagogical gap can lead to graduates who lack a holistic understanding of the intricate interplay between industrial processes and the Earth’s ecological limits, and the feedback loops required to address complex global challenges. This paper presents a transformative approach to close this gap by embedding the Planetary Boundaries framework and system thinking across core chemical engineering courses, such as Material and Energy Balances, Reaction Engineering, and Process Design, and extending this integration to capstone projects. The framework treats the curriculum itself as an interconnected learning system in which key systems concepts are revisited and deepened through contextualized examples and digital modeling tools, including process simulators and life-cycle assessment. We map each boundary to illustrative process examples and learning activities and discuss practical implementation issues such as curriculum crowding, educator readiness, and data availability. This approach aligns with outcome-based education goals by making system thinking and absolute sustainability explicit learning outcomes, preparing future chemical engineers to design processes that respect planetary limits while balancing technical performance, economic feasibility, and societal needs. Full article
(This article belongs to the Special Issue Systems Thinking in Education: Learning, Design and Technology)
Show Figures

Figure 1

27 pages, 1101 KB  
Article
Research on and Application of a Low-Carbon Assessment Model for Railway Bridges During the Construction Phase Based on the ANP-Fuzzy Method
by Bo Zhao, Bangyan Guo, Dan Ye, Mingzhu Xiu and Jingjing Wang
Infrastructures 2026, 11(1), 32; https://doi.org/10.3390/infrastructures11010032 - 19 Jan 2026
Viewed by 29
Abstract
Against the backdrop of global climate change and China’s “dual-carbon” goals, carbon emissions from the construction phase of transportation infrastructure, particularly the rapidly expanding railway network, have garnered significant attention. However, systematic research and general evaluation models targeting the factors influencing carbon emissions [...] Read more.
Against the backdrop of global climate change and China’s “dual-carbon” goals, carbon emissions from the construction phase of transportation infrastructure, particularly the rapidly expanding railway network, have garnered significant attention. However, systematic research and general evaluation models targeting the factors influencing carbon emissions during the railway bridge construction phase remain insufficient. To address this gap, this study presents a novel low-carbon evaluation model that integrates the analytic network process (ANP) and the fuzzy comprehensive evaluation (FCE) method. First, a carbon accounting model covering four stages—material production, transportation, construction, and maintenance—is established based on life cycle assessment (LCA) theory, providing a data foundation. Second, an innovative low-carbon evaluation index system for railway bridges, comprising 5 criterion layers and 23 indicator layers, is constructed. The ANP method is employed to calculate weights, effectively capturing the interdependencies among indicators, while the FCE method handles assessment ambiguities, forming a comprehensive evaluation framework. A case study of the bridge demonstrates the model’s effectiveness, yielding an evaluation score of 82.38 (“excellent” grade), which is consistent with expert judgement. The ranking of indicator weights from the model is highly consistent with the actual carbon emission inventory ranking (Spearman coefficient of 0.714). Key indicators—C21 (use of high-performance materials), C22 (concrete consumption), and C25 (transportation energy consumption)—collectively account for approximately 60% of the total impact, accurately identifying the major emission sources. This research not only verifies the model’s efficacy in pinpointing critical carbon sources but also provides a scientific theoretical basis and practical tool for low-carbon decision-making and optimization in the planning and design stages of railway bridge projects. Full article
19 pages, 831 KB  
Systematic Review
Assessing Water Reuse Through Life Cycle Assessment: A Systematic Review of Recent Trends, Impacts, and Sustainability Challenges
by Lenise Santos, Isabel Brás, Anna Barreto, Miguel Ferreira, António Ferreira and José Ferreira
Processes 2026, 14(2), 330; https://doi.org/10.3390/pr14020330 - 17 Jan 2026
Viewed by 161
Abstract
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse [...] Read more.
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse projects, focusing on research trends, methodological approaches, and opportunities for improvement. A systematic search was conducted in Web of Science, ScienceDirect, and Google Scholar for studies published from 2020 onwards using combinations of the keywords “life cycle assessment”, “LCA”, “water reuse”, “water recycling”, and “wastewater recycling”. Twelve studies were selected from 57 records identified, based on predefined eligibility criteria requiring quantitative LCA of water reuse systems. The results reveal a predominance of European research, reflecting regulatory advances and strong academic engagement in this field. The most frequently assessed impact categories were global warming, eutrophication, human toxicity and ecotoxicity, highlighting the environmental relevance of reuse systems. Energy consumption and water transport were identified as critical hotspots, especially in scenarios involving long distances and fossil-based energy sources. Nevertheless, most studies demonstrate that water reuse is environmentally viable, particularly when renewable energy and optimized logistics are applied. The review also emphasizes the need to better integrate economic and social dimensions and to adapt LCA methodologies to local conditions. Overall, the findings confirm LCA as a robust decision-support tool for sustainable planning and management of water reuse systems. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

47 pages, 2952 KB  
Review
Beyond Waste: Future Sustainable Insights for Integrating Complex Feedstocks into the Global Energy Mix
by Malkan Kadieva, Anton Manakhov, Maxim Orlov, Mustafa Babiker and Abdulaziz Al-Qasim
Energies 2026, 19(2), 413; https://doi.org/10.3390/en19020413 - 14 Jan 2026
Viewed by 114
Abstract
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived [...] Read more.
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived products (plastics, tires) and biomass, in addition to heavy oil feedstocks. Particular emphasis is placed on hydrogen addition pathways, specifically, residue hydroconversion facilitated by dispersed nanocatalysts and waste co-processing methodologies. Beyond nanoscale catalyst design and reaction performance, this work also addresses refinery-level sustainability impacts. The advanced catalytic conversion of heavy oil residue demonstrates superior conversion efficiency, significant coke suppression, and improved carbon utilization, while life cycle and illustrative techno-economic comparisons indicate greenhouse gas reductions and a net economic gain of approximately USD 2–3 per barrel relative to conventional refining under scenarios assuming decarbonized hydrogen production. Co-processing of plastics, tires, and biomass with heavy oil feedstocks is highlighted as a practical and effective approach. Together, these findings outline a rational catalytic pathway toward optimized refining systems. Within the framework of the circular carbon economy, these catalytic processes enable enhanced feedstock utilization, integration of low-carbon hydrogen, and coupling with carbon-capture technologies. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

31 pages, 4388 KB  
Review
Mapping the Knowledge Frontier in Environmental Health and Sustainability in Construction
by Chijioke Emmanuel Emere and Olusegun Aanuoluwapo Oguntona
Eng 2026, 7(1), 29; https://doi.org/10.3390/eng7010029 - 7 Jan 2026
Viewed by 217
Abstract
Environmental health concerns remain a major global challenge. In many nations, the adoption of measures to mitigate the negative environmental impacts of construction-related activities has been slow. Prior research has clarified that further study/advancement are required to improve environmental health/sustainability (EHS). To determine [...] Read more.
Environmental health concerns remain a major global challenge. In many nations, the adoption of measures to mitigate the negative environmental impacts of construction-related activities has been slow. Prior research has clarified that further study/advancement are required to improve environmental health/sustainability (EHS). To determine the focus of previous studies, this study attempts to identify, analyse, and visualise the trends in research concerning EHS in construction-related domains. The data were obtained from the Scopus database, and the study employed a bibliometric approach. The following keywords were used to search the database: ‘environmental health’ OR ‘ecological health’ OR ‘environmental sustainability’ OR ‘ecological sustainability’ OR ‘Environmental safety’ OR ‘ecological safety’ AND ‘construction industry’ OR ‘building industry’ to retrieve relevant documents. The analysis included co-citation analysis, keyword co-occurrence and trend mapping. The findings revealed four themes: Environmental Sustainability and Energy-Oriented Decision-Making, Low-Carbon Cementitious Materials and Mechanical Performance of Concrete, Waste Management and Circular Economy Practices, and Life Cycle Assessment and Carbon Emission Analysis. The keyword findings revealed very scant research in environmental health unlike environmental sustainability. Spain, China, and Saudi Arabia are the top three in terms of citation-to-publication ratio, indicating strong influence in literature sources. However, India has the highest number of publications. The findings also suggest that more relevant studies are required in African nations and South Asian countries. It further highlighted a knowledge gap that emerging economies must address to enhance the sustainability and environmental performance of construction projects. This bibliometric analysis is unique in its integrated examination of environmental sustainability and environmental health in the construction industry, employing strategic thematic mapping to reveal system-level linkages, contextual gaps, and targeted directions for future research. The conclusions provide scholars and stakeholders in the built environment with a solid theoretical basis, enhancing the industry’s preparedness to mitigate the adverse environmental and climatic impacts of traditional construction methods. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Evolution of Urban–Agricultural–Ecological Spatial Structure Driven by Irrigation and Drainage Projects and Water–Heat–Vegetation Response
by Tianqi Su and Yongmei
Agriculture 2026, 16(2), 142; https://doi.org/10.3390/agriculture16020142 - 6 Jan 2026
Viewed by 183
Abstract
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal [...] Read more.
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal remote sensing data from 1985 to 2015, this study takes the Inner Mongolia Hetao Plain as the research area, constructs a “multifunctionality–dynamic evolution” dual-principle classification system for urban–agricultural–ecological space, and adopts the technical process of “separate interpretation of each single land type using the maximum likelihood algorithm followed by merging with conflict pixel resolution” to improve the classification accuracy to 90.82%. Through a land use transfer matrix, a standard deviation ellipse model, surface temperature (LST) inversion, and vegetation fractional coverage (VFC) analysis, this study systematically reveals the spatiotemporal differentiation patterns of spatial structure evolution and surface parameter responses throughout the project’s life cycle. The results show the following: (1) The spatial structure follows the path of “short-term intense disturbance–long-term stable optimization”, with agricultural space stability increasing by 4.8%, the ecological core area retention rate exceeding 90%, and urban space expanding with a shift from external encroachment to internal filling, realizing “stable grain yield with unchanged cultivated land area and improved ecological quality with controlled green space loss”. (2) The overall VFC shows a trend of “central area stable increase (annual growth rate 0.8%), eastern area fluctuating recovery (cyclic amplitude ±12%), and western area local improvement (key patches increased by 18%)”. (3) The LST-VFC relationship presents spatiotemporal misalignment, with a 0.8–1.2 °C anomalous cooling in the central region during the construction period (despite a 15% VFC decrease), driven by irrigation water thermal inertia, and a disrupted linear correlation after completion due to crop phenology changes and plastic film mulching. (4) Irrigation and drainage projects optimize water resource allocation, constructing a hub regulation model integrated with the Water–Energy–Food (WEF) Nexus, providing a replicable paradigm for ecological effect assessment of major water conservancy projects in arid regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

20 pages, 4646 KB  
Article
A Life Cycle AI-Assisted Model for Optimizing Sustainable Material Selection
by Walaa S. E. Ismaeel, Joyce Sherif, Reem Adel and Aya Said
Sustainability 2026, 18(2), 566; https://doi.org/10.3390/su18020566 - 6 Jan 2026
Viewed by 259
Abstract
This research has successfully addressed the challenges attributed with SMS, including the fragmented data, heavy reliance on experience, and lack of life cycle integration. This study presents the development and validation of a novel sustainable material selection (SMS) model using Artificial Intelligence (AI). [...] Read more.
This research has successfully addressed the challenges attributed with SMS, including the fragmented data, heavy reliance on experience, and lack of life cycle integration. This study presents the development and validation of a novel sustainable material selection (SMS) model using Artificial Intelligence (AI). The proposed model structures the process around four core life cycle phases—design, construction, operation and maintenance, and end of life—and incorporates a dual-interface system. This includes a main credits interface for high-level tracking of 100 total credits to trace the dynamics of SMS in relation to energy efficiency, indoor air quality, site selection, and efficient use of water. Further, it includes a detailed credit interface for granular assessment of specific material properties. A key innovation is the formalization of closed-loop feedback mechanisms between phases, ensuring that practical insights from construction and operation inform earlier design choices. The model’s functionality is demonstrated through a proof of concept for SMS considering thermal properties, showcasing its ability to contextualize benchmarks by climate, map properties to building components via a weighted networking system, and rank materials using a comprehensive database sourced from the academic literature. Automated scoring aligns with green building certification tiers, with an integrated alert system flagging suboptimal performance. The proposed model was validated through a structured practitioner survey, and the collected responses were analysed using descriptive and inferential statistical analysis. The result presents a scalable quantitative AI-assisted decision-making support model for optimizing material selection across different project phases. This work paves the way for further research with additional assessment criteria and better integration of AI and Machine Learning for SMS. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

15 pages, 2567 KB  
Article
Evaluation of the Population Growth Potential of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on Six Common Potato Cultivars in China
by Shu-Yan Yan, He-Sen Yang, Hong-Yu Gao, Feng-Zhi Deng, Gui-Fen Zhang, Chuan-Ren Li, Fang-Hao Wan, Wan-Xue Liu, Cong Huang and Yi-Bo Zhang
Horticulturae 2026, 12(1), 41; https://doi.org/10.3390/horticulturae12010041 - 28 Dec 2025
Viewed by 571
Abstract
The South American tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Syn.: Phthorimaea absoluta), is a pest of great economic importance worldwide. Although T. absoluta shows a strong preference for tomato, it can also attack potato, eggplant, and various wild solanaceous plants, thereby [...] Read more.
The South American tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Syn.: Phthorimaea absoluta), is a pest of great economic importance worldwide. Although T. absoluta shows a strong preference for tomato, it can also attack potato, eggplant, and various wild solanaceous plants, thereby posing new challenges for pest control. To assess the adaptability of this pest to different potato varieties, an age-stage, two-sex life table method was used to determine the development, survival, reproduction, and key population parameters of the pest on six common potato varieties (Hezuo No. 88, Lishu No. 6, Weiyu No. 3, Zhongshu No. 5, Qingshu No. 9, and Qingshu No. 10) in China. The results showed that T. absoluta could complete its entire life cycle on all cultivars. However, key life history parameters varied significantly. On cultivars Qingshu No. 9 and Qingshu No. 10, the pest exhibited significantly prolonged preadult duration and total pre-oviposition period (TPOP), as well as reduced adult fecundity. In contrast, Hezuo No. 88 supported the highest intrinsic rate of increase (r) and net reproductive rate (R0). The 60-day population projections further highlighted this contrast, showing that the T. absoluta population on Hezuo No. 88 increased by a factor of 4.26 and 3.52 times compared to that on Qingshu No. 9 and Qingshu No. 10, respectively. We conclude that cultivars Qingshu No. 9 and Qingshu No. 10 exhibit antibiosis resistance against T. absoluta. This study not only provides a theoretical foundation and candidate materials for breeding pest-resistant potato varieties, but also establishes a basis for IPM strategies against T. absoluta that are founded on host resistance. Full article
Show Figures

Figure 1

20 pages, 3329 KB  
Article
Site-Dependent Dynamic Life Cycle Assessment of Human Health Impacts from Industrial Air Pollutants: Inhalation Exposure to NOx, SO2, and PM2.5 in PVC Window Manufacturing
by Patrice Megange, Amir-Ali Feiz, Pierre Ngae, Thien Phu Le and Patrick Rousseaux
Toxics 2026, 14(1), 23; https://doi.org/10.3390/toxics14010023 - 25 Dec 2025
Viewed by 359
Abstract
Industrial air emissions are major contributors to human exposure to toxic pollutants, posing significant health risks. Life cycle assessment (LCA) is increasingly used to quantify human toxicity impacts from industrial processes. Conventional LCA often overlooks spatial and temporal variability, limiting its ability to [...] Read more.
Industrial air emissions are major contributors to human exposure to toxic pollutants, posing significant health risks. Life cycle assessment (LCA) is increasingly used to quantify human toxicity impacts from industrial processes. Conventional LCA often overlooks spatial and temporal variability, limiting its ability to capture actual inhaled doses and exposure-driven impacts. To address this, we developed a site-dependent dynamic LCA (SdDLCA) framework that integrates conventional LCA with Enhanced Structural Path Analysis (ESPA) and atmospheric dispersion modeling. Applied to the production of double-glazed PVC windows for a residential project, the framework generates high-resolution, site-specific emission inventories for three key pollutants: nitrogen oxides (NOx), sulfur dioxide (SO2), and fine particulate matter (PM2.5). Local concentration fields are compared with World Health Organization (WHO) air quality thresholds to identify hotspots and periods of elevated exposure. By coupling these fields with the ReCiPe 2016 endpoint methodology and localized demographic and meteorological data, SdDLCA quantifies human health impacts in Disability-Adjusted Life Years (DALYs), providing a direct measure of inhalation toxicity. This approach enhances LCA’s ability to capture exposure-driven effects, identifies populations at greatest risk, and offers a robust, evidence-based tool to guide industrial planning and operations that minimize health hazards from air emissions. Full article
Show Figures

Graphical abstract

19 pages, 1211 KB  
Review
Sustainability Assessment of Circular Technologies in Agriculture: Overview of Evaluation Methodologies and Research Challenges
by Giulia Datola and Alessandra Oppio
Land 2026, 15(1), 44; https://doi.org/10.3390/land15010044 - 25 Dec 2025
Viewed by 286
Abstract
Global demand for food is expected to grow significantly by 2050, underlying the urgency of a sustainable transition in agriculture. In this context, the Circular Economy (CE) paradigm emerges as a promising strategy. This transition is still ongoing, underscoring the importance of sustainability [...] Read more.
Global demand for food is expected to grow significantly by 2050, underlying the urgency of a sustainable transition in agriculture. In this context, the Circular Economy (CE) paradigm emerges as a promising strategy. This transition is still ongoing, underscoring the importance of sustainability assessment as the first crucial step in supporting this process effectively. Therefore, comprehensive and robust evaluation tools and methodologies are necessary to support effective decision-making processes in this context. This study addresses this topic by conducting a literature review focused on the main evaluation methodologies adopted to assess the sustainability of circular technologies in agriculture, as well as to identify emerging research trends and to identify current knowledge gaps. Therefore, the main objective of this research is to establish a well-defined framework that starting from existing researches, it will support the development of future research directions. The performed review identifies Life Cycle Assessment (LCA) as the most applied methodology for environmental impact assessment, due to its ability to analyze environmental impacts and resources consumption throughout the entire life-cycle of a product, followed by Multi-Criteria Analysis (MCA) and performances-based models for their capacity of integrating and managing many dimensions (environmental, economic, and social) within the evaluation process. Emerging trends highlight the increasing adoption of computational approaches, such as System Dynamics (SD), facilitating a more comprehensive assessment of complex agricultural systems. Despite this increasing attention, the review addresses the significant gap, or rather, the limited management of stakeholders’ conflicts and synergies. This gap will inform potential research directions within the Agritech project, especially regarding the development of Social Multi-Criteria Evaluation (SMCE) to integrate stakeholders’ perspectives in the sustainability assessment of circular technologies. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

37 pages, 3165 KB  
Systematic Review
No One-Size-Fits-All: A Systematic Review of LCA Software and a Selection Framework
by Veridiana Souza da Silva Alves, Vivian Karina Bianchini, Barbara Stolte Bezerra, Carlos do Amaral Razzino, Fernanda Neves da Silva Andrade and Sofia Seniciato Neme
Sustainability 2026, 18(1), 197; https://doi.org/10.3390/su18010197 - 24 Dec 2025
Viewed by 439
Abstract
Life Cycle Assessment (LCA) is a fundamental methodology for evaluating environmental impacts across the life cycle of products, processes, and services. However, selecting appropriate LCA software is a complex task due to the wide variety of tools, each with different functionalities, sectoral focuses, [...] Read more.
Life Cycle Assessment (LCA) is a fundamental methodology for evaluating environmental impacts across the life cycle of products, processes, and services. However, selecting appropriate LCA software is a complex task due to the wide variety of tools, each with different functionalities, sectoral focuses, and technical requirements. This study conducts a systematic literature review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to map the main characteristics, strengths, and limitations of LCA tools. The review includes 41 studies published between 2017 and 2025, identifying and categorizing 24 different tools. Technical and operational features were analyzed, such as modelling capacity, database compatibility, usability, integration capabilities, costs, and user requirements. Among the tools, five stood out for their frequent application: SimaPro, GaBi, OpenLCA, Umberto, and Athena. SimaPro is recognized for flexibility and robustness; GaBi for its industrial applications and Environmental Product Declaration (EPD) support; OpenLCA for being open-source and accessible; Umberto for energy and process modelling; and Athena for integration with Building Information Modelling (BIM) in construction. Despite their advantages, all tools presented specific limitations, including learning curve challenges and limited scope. The results show that no single tool fits all scenarios. In addition to the synthesis of these characteristics, this study also emphasizes the general features of the identified software, the challenges in making a well-supported selection decision, and proposes a decision flowchart designed to guide users through key selection criteria. This visual tool aims to support a more transparent, systematic, and context-oriented choice of LCA software, aligning capabilities with project-specific needs. Tool selection should align with research objectives, available expertise, and context. This review offers practical guidance for enhancing LCA applications in sustainability science. Full article
Show Figures

Figure 1

29 pages, 6910 KB  
Article
When Growth Impedes Resort Renewal: A Path Dependence Perspective on the Impact of Scarce Resources on Product Innovation in Atami, Japan
by Eric Hanada, Giles B. Sioen and Riki Honda
Tour. Hosp. 2026, 7(1), 3; https://doi.org/10.3390/tourhosp7010003 - 23 Dec 2025
Viewed by 538
Abstract
The Tourism Area Life Cycle shaped tourism research for decades, but its concepts Product Life Cycle and Carrying Capacity remain problematic. We apply a Path Dependence frame under an Urban Growth Machine Theory lens to explore the effects of growth pressure and resource [...] Read more.
The Tourism Area Life Cycle shaped tourism research for decades, but its concepts Product Life Cycle and Carrying Capacity remain problematic. We apply a Path Dependence frame under an Urban Growth Machine Theory lens to explore the effects of growth pressure and resource undersupply on the decline and rejuvenation of Japan’s former premier hot spring resort Atami. We conduct structured data collection utilizing sampling and coding methods to collect quantitative and qualitative data from primary and secondary sources, reconstructing Atami’s development paths. Findings suggest that growth pressure conflicted with local supply such as land, water, labor and created negative externalities, most notably high prices. Decision makers’ uncompromising focus on growth aggravated displacement of key actors, disrupting local communities and undermining the human agency needed for small-scale product innovation; empowered associations obstructing promotion and diversification efforts; encouraged extreme specialization depriving Atami of new independent businesses; and drove local opposition to major new projects, thereby stalling product renewal. The framework helped recontextualize Atami’s recovery and demonstrated the value of directly incorporating factors of capacity into analysis. Results link displacement to long-term sustainability risks affecting ‘replaceable’ resorts reliant on innovation. Unencumbered access to local resources for residents (housing, training) is proposed as mitigation. Full article
(This article belongs to the Special Issue Sustainability of Tourism Destinations)
Show Figures

Figure 1

21 pages, 1599 KB  
Article
Life Cycle Carbon Emissions of GSHP Versus Traditional HVAC System for Residential Building: A Case from Jinan, China
by Jiayi Wang, Ke Zhu, Shulin Wang, Boli Wang, Haochen Lu and Ping Cui
Buildings 2025, 15(24), 4566; https://doi.org/10.3390/buildings15244566 - 18 Dec 2025
Viewed by 343
Abstract
The building sector represents a major source of global carbon emissions, with heating and cooling systems being particularly critical contributors, making the evaluation of sustainable low-carbon alternatives an urgent priority. In this study, life cycle assessment (LCA) methodology is used to analyze ground [...] Read more.
The building sector represents a major source of global carbon emissions, with heating and cooling systems being particularly critical contributors, making the evaluation of sustainable low-carbon alternatives an urgent priority. In this study, life cycle assessment (LCA) methodology is used to analyze ground source heat pump (GSHP) systems against traditional heating, ventilation, and air conditioning (HVAC) systems based on project data from the city of Jinan and electrical grid characteristics of Northern China. It is specified that the functional unit is providing heating and cooling that maintains the indoor temperature of the building between 18 °C and 26 °C for 20 years. Following ISO 14040 standards, carbon emissions and economic performance across four phases—production, transportation, construction, and operation—over a 20-year life cycle were quantified using actual material inventory data and region-specific carbon emissions factors. The results demonstrate obvious environmental advantages for GSHP systems, which achieve a 51% reduction in life cycle carbon emissions compared to traditional systems based on the current power generation structure. Furthermore, sensitivity analysis shows that as the proportion of renewable energy in the grid increases to meet carbon neutrality targets, the reduction potential can even reach 88%. Economic analysis reveals that despite higher initial investments, GSHP systems achieve favorable performance with a positive 20-year net present value and an acceptable dynamic payback period for the project. This study shows that GSHP systems represent a viable strategy for sustainable building design in northern China, and the substantial carbon reduction potential can be further enhanced through grid decarbonization and renewable energy integration. The implementation of the GSHP system in newly constructed buildings, which require both heating and cooling, in Northern China, can be an effective strategy for advancing carbon neutrality goals. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

33 pages, 2730 KB  
Perspective
A Perspective on Bio-Inspired Approaches as Sustainable Proxy Towards an Accelerated Net Zero Emission Energy Transition
by Miguel Chen Austin and Katherine Chung-Camargo
Biomimetics 2025, 10(12), 842; https://doi.org/10.3390/biomimetics10120842 - 16 Dec 2025
Viewed by 503
Abstract
The global energy transition faces a chasm between current policy commitments (IEA’s STEPS) and the deep, rapid transformation required to realize all national net zero pledges (IEA’s APC). This perspective addresses the critical innovation and policy gap blocking the APC pathway, where many [...] Read more.
The global energy transition faces a chasm between current policy commitments (IEA’s STEPS) and the deep, rapid transformation required to realize all national net zero pledges (IEA’s APC). This perspective addresses the critical innovation and policy gap blocking the APC pathway, where many high-impact, clean technologies remain at low-to-medium Technology Readiness Levels (TRLs 3–6) and lack formal policy support. The insufficient nature of current climate policy nomenclature is highlighted, which often limits Nature-based Solutions (NbS) to incremental projects rather than driving systemic technological change (Bio-inspiration). Then, we propose that a deliberate shift from simple biomimetics (mimicking form) to biomimicry (emulating life cycle sustainability) is the essential proxy for acceleration. Biomimicry inherently targets the grand challenges of resilience, resource efficiency, and multi-functionality that carbon-centric metrics fail to capture. To institutionalize this change, we advocate for the mandatory integration of bio-inspired design into National Determined Contributions (NDCs) by reframing NbS as Nature-based Innovation (NbI) and introducing novel quantitative metrics. Finally, a three-step roadmap to guide this systemic shift is presented, from deployment of prototypes (2025–2028), to scaling evidence and standardization (2029–2035), to consolidation and regenerative integration (2036–2050). Formalizing these principles through policy will de-risk investment, mandate greater R&D rigor, and ensure that the next generation of energy infrastructure is not just carbon-neutral, but truly regenerative, aligning technology deployment with the necessary speed and depth of the APC scenario. Full article
(This article belongs to the Section Energy Biomimetics)
Show Figures

Figure 1

23 pages, 3223 KB  
Article
Comprehensive Well-to-Wheel Life Cycle Assessment of Battery Electric Heavy-Duty Trucks Using Real-World Data: A Case Study in Southern California
by Miroslav Penchev, Kent C. Johnson, Arun S. K. Raju and Tahir Cetin Akinci
Vehicles 2025, 7(4), 162; https://doi.org/10.3390/vehicles7040162 - 16 Dec 2025
Viewed by 564
Abstract
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions [...] Read more.
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions from portable emissions measurement systems (PEMSs) with BEV energy use derived from telematics and charging records. Upstream (“well-to-tank”) emissions were estimated using USLCI datasets and the 2020 Southern California Edison (SCE) power mix, with an additional scenario for BEVs powered by on-site solar energy. The analysis combines measured real-world energy consumption data from deployed battery electric trucks with on-road emission measurements from conventional diesel trucks collected by the UCR team. Environmental impacts were characterized using TRACI 2.1 across climate, air quality, toxicity, and fossil fuel depletion impact categories. The results show that BEVs reduce total WTW CO2-equivalent emissions by approximately 75% compared to diesel. At the same time, criteria pollutants (NOx, VOCs, SOx, PM2.5) decline sharply, reflecting the shift in impacts from vehicle exhaust to upstream electricity generation. Comparative analyses indicate BEV impacts range between 8% and 26% of diesel levels across most environmental indicators, with near-zero ozone-depletion effects. The main residual hotspot appears in the human-health cancer category (~35–38%), linked to upstream energy and materials, highlighting the continued need for grid decarbonization. The analysis focuses on operational WTW impacts, excluding vehicle manufacturing, battery production, and end-of-life phases. This use-phase emphasis provides a conservative yet practical basis for short-term fleet transition strategies. By integrating empirical performance data with life-cycle modeling, the study offers actionable insights to guide electrification policies and optimize upstream interventions for sustainable freight transport. These findings provide a quantitative decision-support basis for fleet operators and regulators planning near-term heavy-duty truck electrification in regions with similar grid mixes, and can serve as an empirical building block for future cradle-to-grave and dynamic LCA studies that extend beyond the operational well-to-wheels scope adopted here. Full article
Show Figures

Figure 1

Back to TopTop