Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,500)

Search Parameters:
Keywords = product design improvement strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

26 pages, 1638 KiB  
Review
In Silico Modeling of Metabolic Pathways in Probiotic Microorganisms for Functional Food Biotechnology
by Baiken B. Baimakhanova, Amankeldi K. Sadanov, Irina A. Ratnikova, Gul B. Baimakhanova, Saltanat E. Orasymbet, Aigul A. Amitova, Gulzat S. Aitkaliyeva and Ardak B. Kakimova
Fermentation 2025, 11(8), 458; https://doi.org/10.3390/fermentation11080458 - 7 Aug 2025
Abstract
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest [...] Read more.
Recent advances in computational biology have provided powerful tools for analyzing, modeling, and optimizing probiotic microorganisms, thereby supporting their development as promising agents for improving human health. The essential role of the microbiota in regulating physiological processes and preventing disease has driven interest in the rational design of next-generation probiotics. This review highlights progress in in silico approaches for enhancing the functionality of probiotic strains. Particular attention is given to genome-scale metabolic models, advanced simulation algorithms, and AI-driven tools that provide deeper insight into microbial metabolism and enable precise probiotic optimization. The integration of these methods with multi-omics data has greatly improved our ability to predict strain behavior and design probiotics with specific health benefits. Special focus is placed on modeling probiotic–prebiotic interactions and host–microbiome dynamics, which are essential for the development of functional food products. Despite these achievements, key challenges remain, including limited model accuracy, difficulties in simulating complex host–microbe systems, and the absence of unified standards for validating in silico-optimized strains. Addressing these gaps requires the development of integrative modeling platforms and clear regulatory frameworks. This review provides a critical overview of current advances, identifies existing barriers, and outlines future directions for the application of computational strategies in probiotic research. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

19 pages, 1717 KiB  
Article
A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization
by Michela Farneselli, Lara Reale, Beatrice Falcinelli, Muhammad Zubair Akram, Stefano Cimarelli, Eleonore Cinti, Michela Paglialunga, Flavia Carbone, Euro Pannacci and Francesco Tei
Horticulturae 2025, 11(8), 931; https://doi.org/10.3390/horticulturae11080931 - 7 Aug 2025
Abstract
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way [...] Read more.
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way factorial randomized complete block (RCBD) design, considering three biostimulants and three N regimes as two factors, to assess their morphophysiological, biochemical, anatomical and yield performances. Nitrogen application significantly influenced biomass accumulation, the leaf area index (LAI), nitrogen uptake and yield with notable comparable values between reduced and optimal nitrogen dose, indicating improved nitrogen use efficiency. Biostimulants showed limited effects alone but enhanced plant performance under reduced nitrogen conditions, particularly improving chlorophyll content, crop growth, N uptake, yield and anatomical adaptations. Moreover, compared to 2024, biostimulant application enhanced tomato growth more evidently in 2023 due to environmental variations, likely due to the occurrence of stress conditions. Importantly, biostimulants, together with N regimes, i.e., optimal and reduced doses, showed improved anatomical traits, especially regarding leaf thickness and thickness between the two epidermises, indicating adaptive responses that may support sustained productivity under N-limited conditions. Among the biostimulants used, the processed tomatoes responded better to protein hydrolysate and endophytic N-fixing bacteria than to seaweed extract. These findings suggest that although biostimulants alone were not affected, integrating them with reduced N fertilization provides a viable strategy for optimizing tomato production, conserving resources and minimizing the environmental impact without compromising yield or quality. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Graphical abstract

13 pages, 6104 KiB  
Article
Light-Driven Enhancement of Oxygen Evolution for Clean Energy Conversion: Co3O4-TiO2/CNTs P-N Heterojunction Catalysts Enabling Efficient Carrier Separation and Reduced Overpotential
by Weicheng Zhang, Taotao Zeng, Yi Yu, Yuling Liu, Hao He, Ping Li and Zeyan Zhou
Energies 2025, 18(15), 4185; https://doi.org/10.3390/en18154185 - 7 Aug 2025
Abstract
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow [...] Read more.
In the renewable energy conversion system, water electrolysis technology is widely regarded as the core means to achieve clean hydrogen production. However, the anodic oxygen evolution reaction (OER) has become a key bottleneck limiting the overall water splitting efficiency due to its slow kinetic process and high overpotential. This study proposes a novel Co3O4-TiO2/CNTs p-n heterojunction catalyst, which was synthesized by hydrothermal method and significantly improved OER activity by combining heterojunction interface regulation and light field enhancement mechanism. Under illumination conditions, the catalyst achieved an overpotential of 390 mV at a current density of 10 mA cm−2, which is superior to the performance of the dark state (410 mV) and single component Co3O4-TiO2 catalysts. The material characterization results indicate that the p-n heterojunction structure effectively promotes the separation and migration of photogenerated carriers and enhances the visible light absorption capability. This work expands the design ideas of energy catalytic materials by constructing a collaborative electric light dual field regulation system, providing a new strategy for developing efficient and low-energy water splitting electrocatalysts, which is expected to play an important role in the future clean energy production and storage field. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Value-Added Service Pricing Strategies Considering Customer Stickiness: A Freemium Perspective
by Xuwang Liu, Biying Zhou, Wei Qi, Zhiwu Li and Junwei Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 201; https://doi.org/10.3390/jtaer20030201 - 6 Aug 2025
Abstract
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and [...] Read more.
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and service price are important factors affecting customer choice behavior in such a model. Based on consumption stickiness, we consider a monopoly that provides value-added services by incorporating a multinomial logit model into a two-stage dynamic pricing model. First, we analyze the optimal pricing of value-added services under a normal sales scenario. We then consider optimal pricing during the marketing period under two strategies—level improvement for value-added services and quality reduction for a basic product—and analyze the applicability of each. The results show that increasing the value-added service level has a positive effect on the optimal price of value-added services, whereas reducing the basic product quality has no effect on the optimal price. Furthermore, the numerical simulation shows that when the depth of consumer stickiness is low, the optimal marketing strategy reduces the quality of the basic product, the price of value-added services should be higher than that in the normal sales period but lower than the price under the level-improvement strategy for value-added services; otherwise, improving the level of the value-added services becomes the optimal approach. This study provides a theoretical basis and decision support for product quality design and service pricing that applies to freemium platforms. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 244
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

22 pages, 3304 KiB  
Article
The Mechanism by Which Colour Patch Characteristics Influence the Visual Landscape Quality of Rhododendron simsii Landscape Recreational Forests
by Yan Liu, Juyang Liao, Yaqi Huang, Qiaoyun Li, Linshi Wu, Xinyu Yi, Ling Wang and Chan Chen
Horticulturae 2025, 11(8), 898; https://doi.org/10.3390/horticulturae11080898 - 3 Aug 2025
Viewed by 109
Abstract
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been [...] Read more.
Landscape quality and the productivity of Rhododendron simsii are directly related to the maintenance of ecological functions in the alpine region. The specific relationship between the spatial pattern of colour patches and the visual quality of R. simsii landscape recreational forests has been insufficiently explored. In this study, we constructed a model of the relationship between landscape colour patches and the aesthetic value of such a forest, analysing the key factors driving changes in its landscape quality. A total of 1549 participants were asked to assess 16 groups of landscape photographs. The results showed that variations in perceived aesthetic quality were stimulated by colour patch dynamics and spatial heterogeneity. Utilising structural equation modelling (SEM), we identified key indicators synergistically influencing aesthetic quality, including the area percentage, shape, and distribution of colour patches, which demonstrated strong explanatory power (R2 = 0.83). The SEM also revealed that the red patch area, mean perimeter area ratio, and separation index are critical latent variables with standardised coefficients of 0.54, 0.65, and 0.62, respectively. These findings provide actionable design strategies: (1) optimising chromatic contrast through high-saturation patches, (2) controlling geometric complexity, and (3) improving spatial coherence. These results advance the theoretical framework for landscape aesthetic evaluation and offer practical guidance for landscape recreational forest management. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

35 pages, 2193 KiB  
Review
How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects
by Gabriel Atampugre Atampugbire, Joanna Afokai Quaye and Giovanni Gadda
Catalysts 2025, 15(8), 736; https://doi.org/10.3390/catal15080736 - 1 Aug 2025
Viewed by 458
Abstract
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower [...] Read more.
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower overall costs, and environmental friendliness are some advantages biocatalysis has over conventional chemical synthesis, which has made biocatalysis increasingly used in industry. We highlight three necessary fields that are fundamental to advancing industrial biocatalysis, including biocatalyst engineering, solvent engineering, and mechanistic engineering. However, the fundamental mechanism of enzyme function is often overlooked or given less attention, which can limit the engineering process. In this review, we describe how mechanistic enzymology benefits industrial biocatalysis by elucidating key fundamental principles, including the kcat and kcat/Km parameters. Mechanistic enzymology presents a unique field that provides in-depth insights into the molecular mechanisms of enzyme activity and includes areas such as reaction kinetics, catalytic mechanisms, structural analysis, substrate specificity, and protein dynamics. In line with the objective of protein engineering to optimize enzyme activity, we summarize a range of strategies reported in the literature aimed at improving the product release rate, the chemical step of catalysis, and the overall catalytic efficiency of enzymes. Further into this review, we delineate kinetic solvent viscosity effects (KSVEs) as a very efficient, cost-effective, and easy-to-perform method to probe different aspects of enzyme reaction mechanisms, including diffusion-dependent kinetic steps and rate-limiting steps. KSVEs are cost-effective because simple kinetic enzyme assays, such as the Michaelis–Menten kinetic approach, can be combined with them without the need for specialized and costly equipment. Other techniques in protein engineering and genetic engineering are also covered in this review. Additionally, we provide information on solvent systems in enzymatic reactions, details on immobilized biocatalysts, and common misconceptions that misguide enzyme design and optimization processes. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 338
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

23 pages, 794 KiB  
Article
Assessing Safety Professional Job Descriptions Using Integrated Multi-Criteria Analysis
by Mohamed Zytoon and Mohammed Alamoudi
Safety 2025, 11(3), 72; https://doi.org/10.3390/safety11030072 - 29 Jul 2025
Viewed by 259
Abstract
Introduction: Poorly designed safety job descriptions may have a negative impact on occupational safety and health (OSH) performance. Firstly, they limit the chances of hiring highly qualified safety professionals who are vital to the success of OSH management systems in organizations. Secondly, the [...] Read more.
Introduction: Poorly designed safety job descriptions may have a negative impact on occupational safety and health (OSH) performance. Firstly, they limit the chances of hiring highly qualified safety professionals who are vital to the success of OSH management systems in organizations. Secondly, the relationship between the presence of qualified safety professionals and the safety culture (and performance) in an organization is reciprocal. Thirdly, the low quality of job descriptions limits exploring the proper competencies needed by safety professionals before they are hired. The safety professional is thus uncertain of what level of education or training and which skills they should attain. Objectives: The main goal of the study is to integrate the analytic hierarchy process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with importance–performance analysis (IPA) to evaluate job descriptions in multiple sectors. Results: The results of the study indicate that it is vital to clearly define job levels, the overall mission, key responsibilities, time-consuming tasks, required education/certifications, and necessary personal abilities in safety job descriptions. This clarity enhances recruitment, fairness, performance management, and succession planning. The organization can then attract and retain top talent, improve performance, foster a strong safety culture, create realistic job expectations, increase employee satisfaction and productivity, and ensure that competent individuals are hired, ultimately leading to a safer and more productive workplace. Conclusion: The outcomes of this study provide a robust framework that can and should be used as a guideline to professionalize job description development and enhance talent acquisition strategies. Full article
Show Figures

Figure 1

29 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Viewed by 465
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

20 pages, 2984 KiB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 388
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

42 pages, 914 KiB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 584
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop