error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,197)

Search Parameters:
Keywords = produced water system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4683 KB  
Article
Investigation on Wake Characteristics of Two Tidal Stream Turbines in Tandem Using a Mobile Submerged PIV System
by Sejin Jung, Heebum Lee, In Sung Jang, Seong Min Moon, Heungchan Kim, Chang Hyeon Seo, Jihoon Kim and Jin Hwan Ko
J. Mar. Sci. Eng. 2026, 14(2), 135; https://doi.org/10.3390/jmse14020135 (registering DOI) - 8 Jan 2026
Abstract
Understanding wake interactions between multiple tidal stream turbines is essential for optimizing the performance and layout of tidal energy farms. This study investigates the hydrodynamic behavior of two horizontal-axis tidal turbines arranged in tandem under simplified inflow conditions, where the incoming flow was [...] Read more.
Understanding wake interactions between multiple tidal stream turbines is essential for optimizing the performance and layout of tidal energy farms. This study investigates the hydrodynamic behavior of two horizontal-axis tidal turbines arranged in tandem under simplified inflow conditions, where the incoming flow was dominated by the streamwise velocity component without imposed external disturbances. Wake measurements were conducted in a large circulating water tunnel using a mobile, submerged particle image velocimetry (PIV) system capable of long-range, high-resolution measurements. Performance tests showed that the downstream turbine experienced a decrease of approximately 9% in maximum power coefficient compared to the upstream turbine due to reduced inflow velocity and increased turbulence generated by the upstream wake. Phase-averaged PIV results revealed the detailed evolution of velocity deficit, turbulence intensity, turbulent kinetic energy, and tip vortex structures. The tip vortices shed from the upstream turbine persisted over a long downstream distance, remaining coherent up to 10D and merging with those generated by the downstream turbine. These merged vortex structures produced elevated turbulence and complex flow patterns that significantly influenced the downstream turbine’s operating conditions. The results provide experimentally validated insight into turbine-to-turbine wake interactions and highlight the need for high-fidelity wake data to support array optimization and numerical model development for tidal stream turbine array. Full article
(This article belongs to the Special Issue Hydrodynamic Performance, Optimization, and Design of Marine Turbines)
31 pages, 2175 KB  
Article
Occupational Risk Assessment in Irrigation and Drainage in the Lis Valley, Portugal: A Comparative Evaluation of the William T. Fine and INSHT/NTP 330 Simplified Method
by Susana Ferreira, Tânia Filipe, Juan Manuel Sánchez, José Manuel Gonçalves, Rui Eugénio and Henrique Damásio
Sustainability 2026, 18(2), 665; https://doi.org/10.3390/su18020665 (registering DOI) - 8 Jan 2026
Abstract
Ensuring the safe, efficient, and economically viable operation of irrigation and drainage infrastructures is essential for long-term system resilience. This field-based study presents a comparative evaluation of the semi-quantitative William T. Fine (WF) method and a simplified probability–consequence (SM) approach applied in the [...] Read more.
Ensuring the safe, efficient, and economically viable operation of irrigation and drainage infrastructures is essential for long-term system resilience. This field-based study presents a comparative evaluation of the semi-quantitative William T. Fine (WF) method and a simplified probability–consequence (SM) approach applied in the Lis Valley Irrigation and Drainage Association (Leiria, Portugal). Monthly on-site observations of routine maintenance and conservation activities were conducted between January 2023 and December 2024, covering eight main operation types and resulting in 87 distinct occupational risk scenarios (N = 87). The mean Hazard Risk Score (HRS) was 88.9 ± 51.1, corresponding predominantly to “Substantial” risk levels according to the William T. Fine classification (HRS = 70–200). Both methods consistently identified the highest-risk activities—tractor rollover, work at height, and boat-based removal of aquatic plants. Quantitative differences emerged for medium and chronic hazards; WF produced a wider dispersion of risk scores across tasks, while the SM aggregated most hazards into a limited number of intervention classes (74% classified as Intervention Level II and 26% as Level III). These differences reflect complementary methodological limitations; WF requires greater data input and expert judgment but offers finer prioritization, whereas SM enables rapid field application but tends to group ergonomic and low-intensity hazards when consequences are not immediately observable. Based on these findings, a combined assessment framework is proposed, integrating the discriminative capacity of WF with the operational simplicity of SM. Recommended mitigation measures include targeted personal protective equipment, task rotation, focused training, and technology-assisted monitoring to reduce worker exposure. The methodology is readily replicable for Water Users’ Associations with similar operational contexts and supports evidence-based decision-making for sustainable irrigation management. From a sustainability perspective, this integrated risk assessment framework supports safer working conditions, more efficient maintenance planning, and informed policy decisions for the long-term management of irrigation and drainage infrastructures. Full article
19 pages, 6951 KB  
Article
Smart Packaging System with Betalains and Rosemary Essential Oil to Extend Food Shelf Life and Monitor Quality During Storage
by Noemi Takebayashi-Caballero, Carlos Regalado-González, Aldo Amaro Reyes, Silvia Lorena Amaya-Llano, José Ángel Granados-Arvizu, Genoveva Hernández Padrón, Víctor Castaño-Meneses and Monserrat Escamilla-García
Polysaccharides 2026, 7(1), 5; https://doi.org/10.3390/polysaccharides7010005 - 8 Jan 2026
Abstract
Smart packaging is an alternative that may not only replace plastic containers, but also enable food quality monitoring. In this study, an innovative packaging system was developed using a starch-chitosan polymer matrix, infused with rosemary essential oil (REO) as an antimicrobial agent, and [...] Read more.
Smart packaging is an alternative that may not only replace plastic containers, but also enable food quality monitoring. In this study, an innovative packaging system was developed using a starch-chitosan polymer matrix, infused with rosemary essential oil (REO) as an antimicrobial agent, and betalain extract as a food quality indicator. Betalain extract, derived from beet waste, can change color with pH, making it a useful natural indicator for monitoring food freshness. This packaging system is beneficial for foods that produce metabolites related to degradation, which alter pH and allow for the visual detection of changes in product quality. The objective of this work was to develop a smart packaging system with betalains and rosemary essential oil (REO) to extend food shelf life and monitor quality during storage. REO demonstrated antimicrobial activity, but its effect did not differ significantly among the microorganisms tested. On the other hand, the betalain extract (35.75% BE v/v) completely inhibited the growth of Listeria innocua and Salmonella spp. at concentrations of 50% (v/v; 0.82 ± 0.04 mg betalain/g), showing its potential as an antimicrobial agent. The interactions between chitosan and betalains were primarily associated with electrostatic interactions between the positively charged amino groups of chitosan and the negatively charged carboxyl groups of betalains. In contrast to starch, these interactions could result from interactions between the C=O groups of betalain carboxyls and water, which, in turn, interact with the hydroxyl groups of starch through hydrogen bonding. Despite the results obtained in this study, certain limitations need to be addressed in future research, such as the variability in antimicrobial activity among different bacterial strains, which could reveal differences in the efficacy of betalains and essential oils against other pathogens. Full article
Show Figures

Graphical abstract

24 pages, 1753 KB  
Article
Valorization of Produced Water from Oilfields for Microbial Exopolysaccharide Synthesis in Stirred Tank Bioreactors
by Igor Carvalho Fontes Sampaio, Pamela Dias Rodrigues, Isabela Viana Lopes de Moura, Maíra dos Santos Silva, Luiz Fernando Widmer, Cristina M. Quintella, Elias Ramos-de-Souza and Paulo Fernando de Almeida
Fermentation 2026, 12(1), 39; https://doi.org/10.3390/fermentation12010039 - 8 Jan 2026
Abstract
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming [...] Read more.
The increasing volume of produced water (PW) generated by oil extraction activities has intensified the need for environmentally sustainable strategies that enable its reuse and valorization. Biotechnological approaches, particularly those involving the microbial production of value-added compounds, offer a promising route for transforming PW from an industrial waste into a useful resource. In this context, bacterial exopolysaccharides (EPS) have gained attention due to their diverse functional properties and applicability in bioremediation, bioprocessing and petroleum-related operations. This study evaluated the potential of Lelliottia amnigena to synthesize EPS using oilfield PW as a component of the culture medium in stirred-tank bioreactors. Three conditions were assessed: a control using distilled water (dW), PW diluted to 25% (PW25%) and dialyzed PW (DPW). Batch experiments were conducted for 24 h, during which biomass growth, EPS accumulation and dissolved oxygen dynamics were monitored. Post-cultivation analyses included elemental and monosaccharide composition, scanning electron microscopy and rheological characterization of purified EPS solutions. EPS production varied among treatments, with dW and DPW yielding approximately 9.6 g L−1, while PW25% achieved the highest productivity (17.55 g L−1). The EPS samples contained fucose, glucose and mannose, with compositional differences reflecting the influence of PW-derived minerals. Despite reduced apparent viscosity under PW25% and DPW conditions, the EPS exhibited physicochemical properties suitable for biotechnological applications, including potential use in fucose recovery, drilling fluids and lubrication systems in the petroleum sector. The EPS also demonstrated substantial adsorption capacity, incorporating salts from PW and contributing to contaminant removal. This study demonstrates that PW can serve both as a substrate and as a source of functional inorganic constituents for microbial EPS synthesis, supporting an integrated approach to PW valorization. These findings reinforce the potential of EPS-based bioprocesses as sustainable green technologies that simultaneously promote waste mitigation and the production of high-value industrial bioproducts. Full article
Show Figures

Figure 1

11 pages, 1027 KB  
Article
Clustering-Based Characterization of Mixed Herds and the Influence of Pasture Fertilization in High-Andean Livestock Systems
by Jesus Nuñez, Felimon Paxi-Meneses, Wilder Cruz and Richard Estrada
Ruminants 2026, 6(1), 5; https://doi.org/10.3390/ruminants6010005 - 8 Jan 2026
Abstract
Livestock production in the high Andes is vital for rural livelihoods and food security but is limited by poor pasture quality, environmental variability, and restricted resources. Pasture improvement, achieved through management practices and particularly through fertilization, may enhance productivity and sustainability in high-Andean [...] Read more.
Livestock production in the high Andes is vital for rural livelihoods and food security but is limited by poor pasture quality, environmental variability, and restricted resources. Pasture improvement, achieved through management practices and particularly through fertilization, may enhance productivity and sustainability in high-Andean livestock systems. This study aimed to characterize mixed herds composed of domestic sheep (Ovis aries), alpacas (Vicugna pacos), llamas (Lama glama), and domestic cattle (Bos taurus) and to evaluate the role of pasture fertilization on herd composition and livestock size. Primary data were collected through structured questionnaires administered to 88 randomly selected livestock producers, complemented by direct field observations of grazing areas, corrals, shelters, and water sources. The survey documented herd structure, grazing management, pasture conservation, fertilization practices, and farm infrastructure. Data from multiple farms were analyzed using a clustering approach to group production units with similar characteristics, and statistical models were applied to assess the effects of fertilization, pasture area, and water sources. Three distinct clusters were identified: one dominated by alpacas, another by sheep, and a third by llamas with the most uniform stocking density. Pasture fertilization was most common in the sheep-dominated cluster and was significantly associated with higher sheep numbers, while no significant effects were detected for alpacas, llamas, or cattle. Farms without fertilization showed slightly higher overall livestock size; however, a strong negative interaction between pasture area and lack of fertilization indicated that expanding grazing land alone could not offset low forage quality. These findings suggest that targeted fertilization, when combined with sustainable grazing practices, may contribute to improved herd performance and long-term resilience in heterogeneous Andean livestock systems. Full article
Show Figures

Figure 1

17 pages, 1121 KB  
Article
Design and Environmental Analysis of an Aquaponics System Coupled with Photovoltaic Unit for Food Production and Reuse of Nutrients from Wastewater: A Life Cycle Assessment Study
by Juan J. Espada Sanjurjo, Mª Prado Díaz de Mera-Sánchez and Rosalía Rodríguez Escudero
Appl. Sci. 2026, 16(2), 635; https://doi.org/10.3390/app16020635 - 8 Jan 2026
Abstract
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, [...] Read more.
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, the wastewater produced by fish, rich in nutrients, can be used to grow a wide variety of plants, which avoids further treatments for nutrient removal. Although aquaponics presents advantages from an environmental point of view with regard to other technologies, its sustainability must be analyzed using systematic tools, such as the Life Cycle Assessment (LCA). In this work, a small-scale aquaponics system (tilapia–lettuce) coupled with a photovoltaic unit was designed and assessed from an environmental perspective using the LCA to quantify its environmental burdens. The photovoltaic unit was sized to supply renewable energy to the system, achieving a reduction of 52% in grid electricity consumption. The environmental impacts of the system were quantified by the LCA, showing that electricity and fish feed were the most important contributors to all the impacts (by 90%), obtaining significant reductions (by 40% on average for all of them) when coupling a photovoltaic unit to the system. Full article
Show Figures

Figure 1

16 pages, 737 KB  
Article
Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder
by Titaporn Tumpanuvatr and Weerachet Jittanit
Foods 2026, 15(2), 210; https://doi.org/10.3390/foods15020210 - 7 Jan 2026
Abstract
This work investigated the comparative performance of two fluidized bed agglomeration systems for producing instant coconut milk powder: a commercially manufactured unit and a hybrid dryer previously modified into a fluidized bed agglomerator. Three binder solutions, distilled water, xanthan gum, and xyloglucan polysaccharide, [...] Read more.
This work investigated the comparative performance of two fluidized bed agglomeration systems for producing instant coconut milk powder: a commercially manufactured unit and a hybrid dryer previously modified into a fluidized bed agglomerator. Three binder solutions, distilled water, xanthan gum, and xyloglucan polysaccharide, were employed to examine how equipment configuration and binder type influence key powder properties. The aim was to evaluate the effects of fluidized bed agglomerator design and binder selection on coconut milk powder characteristics, including moisture content, bulk density, solubility, and glass transition temperature. All samples, including the non-agglomerated control, exhibited moisture contents ranging from 2.1% and 2.6% (w.b.), meeting the criterion for safe long-term storage. Powders produced with hydrocolloid binders (xanthan gum and xyloglucan) possessed lower bulk densities than those agglomerated with water, reflecting the formation of more open particle structures. When identical binders were applied, the two agglomerators produced comparable solubility outcomes, although water-based agglomerates consistently dissolved the fastest. Differential scanning calorimetry indicated a substantial increase in glass transition temperature after agglomeration, confirming improved structural stability. Overall, the results demonstrate that both agglomeration systems effectively enhanced the physicochemical and functional characteristics of coconut milk powder, with only minor variations that were attributable to equipment design. Full article
Show Figures

Graphical abstract

23 pages, 8400 KB  
Article
Seasonal Drought Dynamics in Kenya: Remote Sensing and Combined Indices for Climate Risk Planning
by Vincent Ogembo, Samuel Olala, Ernest Kiplangat Ronoh, Erasto Benedict Mukama and Gavin Akinyi
Climate 2026, 14(1), 14; https://doi.org/10.3390/cli14010014 - 7 Jan 2026
Abstract
Drought is a pervasive and intensifying climate hazard with profound implications for food security, water availability, and socioeconomic stability, particularly in sub-Saharan Africa. In Kenya, where over 80% of the landmass comprises arid and semi-arid lands (ASALs), recurrent droughts have become a critical [...] Read more.
Drought is a pervasive and intensifying climate hazard with profound implications for food security, water availability, and socioeconomic stability, particularly in sub-Saharan Africa. In Kenya, where over 80% of the landmass comprises arid and semi-arid lands (ASALs), recurrent droughts have become a critical threat to agricultural productivity and climate resilience. This study presents a comprehensive spatiotemporal analysis of seasonal drought dynamics in Kenya for June–July–August–September (JJAS) from 2000 to 2024, leveraging remote sensing-based drought indices and geospatial analysis for climate risk planning. Using the Standardized Precipitation Evapotranspiration Index (SPEI), Vegetation Condition Index (VCI), Soil Moisture Anomaly (SMA), and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) anomaly, a Combined Drought Indicator (CDI) was developed to assess drought severity, persistence, and impact across Kenya’s four climatological seasons. Data were processed using Google Earth Engine and visualized through GIS platforms to produce high-resolution drought maps disaggregated by county and land-use class. The results revealed a marked intensification of drought conditions, with Alert and Warning classifications expanding significantly in ASALs, particularly in Garissa, Kitui, Marsabit, and Tana River. The drought persistence analysis revealed chronic exposure in drought conditions in northeastern and southeastern counties, while cropland exposure increased by over 100% while rangeland vulnerability rose nearly 56-fold. Population exposure to drought also rose sharply, underscoring the socioeconomic risks associated with climate-induced water stress. The study provides an operational framework for integrating remote sensing into early warning systems and policy planning, aligning with global climate adaptation goals and national resilience strategies. The findings advocate for proactive, data-driven drought management and localized adaptation interventions in Kenya’s most vulnerable regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

24 pages, 3695 KB  
Review
Therapeutic Advances of Curcumin and Nanocurcumin in Glioblastoma: Molecular Targets, Bioavailability, and Drug Delivery
by Md Ataur Rahman, Mahesh Kumar Yadab and Meser M. Ali
Nutrients 2026, 18(2), 194; https://doi.org/10.3390/nu18020194 - 7 Jan 2026
Abstract
Glioblastoma (GBM), the most common, invasive, and chemoresistant form of adult primary brain cancer, is characterized by rapid cell proliferation, local invasiveness, and resistance to chemotherapy (e.g., temozolomide (TMZ)) and radiation therapy. Curcumin, a bioactive polyphenol derived from Curcuma longa, has exhibited [...] Read more.
Glioblastoma (GBM), the most common, invasive, and chemoresistant form of adult primary brain cancer, is characterized by rapid cell proliferation, local invasiveness, and resistance to chemotherapy (e.g., temozolomide (TMZ)) and radiation therapy. Curcumin, a bioactive polyphenol derived from Curcuma longa, has exhibited exceptional anti-cancer properties, including anti-proliferative, pro-apoptotic, anti-inflammatory, and anti-angiogenic activities in a wide range of cancer models, including GBM. However, the clinical application of curcumin has been seriously limited by several challenges, including low water solubility, low bioavailability, rapid systemic clearance, and poor blood–brain barrier (BBB) penetration. To overcome these challenges, several nanocarrier systems to produce nanocurcumin have been developed, including liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, and micelles. These nanoformulations improve the solubility, stability, systemic circulation, and target-directed delivery of curcumin to glioma cells, thereby resulting in a high level of accumulation in the glioma microenvironment. On the other hand, this work is devoted to the potential of curcumin and nanocurcumin for the treatment of GBM. The article provides a detailed review of the major molecular targets of curcumin, such as NF-κB, STAT3, PI3K/AKT/mTOR, and p53 signaling pathways, as well as recent advancements in nanotechnology-based delivery platforms that improve drug delivery across the BBB and their possible clinical translation. We also include a thorough examination of the issues, limitations, and potential opportunities associated with the clinical advancement of curcumin-based therapeutics for GBM. Full article
(This article belongs to the Special Issue Natural Active Substances and Cancer)
Show Figures

Figure 1

18 pages, 2564 KB  
Article
Mechanism Study on Enhancing Fracturing Efficiency in Coalbed Methane Reservoirs Using Highly Elastic Polymers
by Penghui Bo, Qingfeng Lu, Wenfeng Wang and Wenlong Wang
Processes 2026, 14(2), 191; https://doi.org/10.3390/pr14020191 - 6 Jan 2026
Abstract
Coalbed methane development is constrained by reservoir characteristics including high gas adsorption, high salinity, and high closure pressure, which impose significant limitations on conventional polymer fracturing fluids regarding viscosity enhancement, proppant transport, and fracture maintenance. In this study, a novel polymer fracturing fluid [...] Read more.
Coalbed methane development is constrained by reservoir characteristics including high gas adsorption, high salinity, and high closure pressure, which impose significant limitations on conventional polymer fracturing fluids regarding viscosity enhancement, proppant transport, and fracture maintenance. In this study, a novel polymer fracturing fluid system, Z-H-PAM, was designed and synthesized to achieve strong salt tolerance, low adsorption affinity, and high elasticity to withstand closure pressure. This was accomplished through the molecular integration of a zwitterionic monomer ZM-1 and a hydrophobic associative monomer HM-2, forming a unified structure that combines rigid hydrated segments with a hydrophobic elastic network. The results indicate that ZM-1 provides a stable hydration layer and low adsorption tendency under high-salinity conditions, while HM-2 contributes to a high-storage-modulus, three-dimensional physically cross-linked network via reversible hydrophobic association. Their synergistic interaction enables Z-H-PAM to retain viscoelasticity that is significantly superior to conventional HPAM and to achieve rapid structural recovery in high-mineralization environments. Systematic evaluation shows that this system achieves a static sand-suspension rate exceeding 95% in simulated flowback fluid, produces broken gel residues below 90 mg/L, and results in a core damage rate of only 10.5%. Moreover, it maintains 88.8% of its fracture conductivity under 30 MPa closure pressure. Notably, Z-H-PAM can be prepared directly using high-salinity flowback water, maintaining high elasticity and sand-carrying capacity while enabling fluid recycling and reducing reservoir damage. This work clarifies the multi-scale mechanisms of strongly hydrated and highly elastic polymers in coalbed methane reservoirs, offering a theoretical and technical pathway for developing efficient and low-damage fracturing materials. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

23 pages, 2724 KB  
Article
The Development and Optimisation of a Spinosin Solid-Dispersion-Based Functional Dairy Beverage and Its Sleep-Promoting Effects in Mice
by Beizhi Zhang, Fuzhi Xie, Nannan Chen, Qing Zhang, Dan Zhao, Yu Chen, Shujing Xuan, Xiaona Liu and Liang Zhang
Foods 2026, 15(1), 180; https://doi.org/10.3390/foods15010180 - 5 Jan 2026
Viewed by 93
Abstract
Insomnia remains a widespread global health issue, and traditional hypnotic drugs often produce adverse effects. Although spinosin in Ziziphi Spinosae Semen has sleep-promoting effects, its use is limited by poor solubility and low oral bioavailability. In this study, the solvent melt method was [...] Read more.
Insomnia remains a widespread global health issue, and traditional hypnotic drugs often produce adverse effects. Although spinosin in Ziziphi Spinosae Semen has sleep-promoting effects, its use is limited by poor solubility and low oral bioavailability. In this study, the solvent melt method was used to prepare spinosin solid dispersions, optimising the process with an L9(34) orthogonal design based on apparent solubility. In vitro dissolution testing showed that solid dispersions of varying particle sizes dissolved more readily than pure spinosin, with smaller particles exhibiting faster dissolution. Cellular uptake was assessed in human colon adenocarcinoma cells, with results revealing enhanced uptake of smaller-particle solid dispersions. Powder X-ray diffraction confirmed that spinosin transformed from a crystalline to an amorphous state in the dispersion system. A quadratic orthogonal experiment was conducted to optimise functional dairy beverage formulation, using the centrifugal sedimentation rate as the evaluation index. In vivo experiments demonstrated that the resulting functional dairy beverage reduced spontaneous activity in mice, achieved a 60% sleep-onset rate, improved ethanol-induced memory impairment and produced marked sleep-promoting effects. Moreover, pharmacokinetic studies confirmed that the spinosin solid-dispersion-based functional dairy beverage significantly enhanced the systemic exposure and oral bioavailability of spinosin compared to the spinosin water suspension. These findings indicate that solid dispersion technology effectively enhances spinosin solubility and that the developed functional dairy beverage shows promise as a sleep-promoting functional food. Full article
(This article belongs to the Special Issue Functional Foods for Health Promotion and Disease Prevention)
Show Figures

Graphical abstract

21 pages, 1320 KB  
Article
Microencapsulation of Black Carrot Pomace Bioactive Compounds: Artificial Neural Network Modeling of Cytotoxicity on L929 Fibroblast Cells
by Rumeyse Önal, Derya Dursun Saydam, Merve Terzi and Mehmet Fatih Seyhan
Gels 2026, 12(1), 53; https://doi.org/10.3390/gels12010053 - 5 Jan 2026
Viewed by 193
Abstract
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a [...] Read more.
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a gum Arabic gel system to obtain a powder formulation (FD-BCP). The technological, physicochemical, and bioactive characteristics of both formulations are described. Total monomeric anthocyanin and antioxidant activities (DPPH and ABTS) did not differ substantially (p > 0.05), but the liquid extract’s total phenolic content was significantly higher (4.95 mg GAE/g db) than the powder formulation’s (4.46 mg GAE/g db). While FD-BCP had three main hydrophilic phenolic compounds, suggesting partial encapsulation, high-resolution LC-MS analysis identified 21 phenolic compounds in BCP-E, dominated by chlorogenic, quinic, and protocatechuic acids. The development of a stable gum Arabic matrix that maintains the phenolics’ structural integrity was confirmed by SEM and FTIR observations. According to cytotoxicity tests conducted on L929 fibroblast cells, both formulations were biocompatible (>70% viability) and even stimulated cell growth at moderate dosages. Dose- and time-dependent viability patterns were successfully described by Principal Component Analysis and Artificial Neural Network models, highlighting the fact that formulation type is the main factor influencing biological response. Overall, ultrasonic extraction and freeze-drying offer efficient and sustainable strategies for producing stable and bioactive-rich components from black carrot pomace that may be used in functional foods and biomedical products. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Figure 1

36 pages, 968 KB  
Review
Applications of Artificial Intelligence in Fisheries: From Data to Decisions
by Syed Ariful Haque and Saud M. Al Jufaili
Big Data Cogn. Comput. 2026, 10(1), 19; https://doi.org/10.3390/bdcc10010019 - 5 Jan 2026
Viewed by 499
Abstract
AI enhances aquatic resource management by automating species detection, optimizing feed, forecasting water quality, protecting species interactions, and strengthening the detection of illegal, unreported, and unregulated fishing activities. However, these advancements are inconsistently employed, subject to domain shifts, limited by the availability of [...] Read more.
AI enhances aquatic resource management by automating species detection, optimizing feed, forecasting water quality, protecting species interactions, and strengthening the detection of illegal, unreported, and unregulated fishing activities. However, these advancements are inconsistently employed, subject to domain shifts, limited by the availability of labeled data, and poorly benchmarked across operational contexts. Recent developments in technology and applications in fisheries genetics and monitoring, precision aquaculture, management, and sensing infrastructure are summarized in this paper. We studied automated species recognition, genomic trait inference, environmental DNA metabarcoding, acoustic analysis, and trait-based population modeling in fisheries genetics and monitoring. We used digital-twin frameworks for supervised learning in feed optimization, reinforcement learning for water quality control, vision-based welfare monitoring, and harvest forecasting in aquaculture. We explored automatic identification system trajectory analysis for illicit fishing detection, global effort mapping, electronic bycatch monitoring, protected species tracking, and multi-sensor vessel surveillance in fisheries management. Acoustic echogram automation, convolutional neural network-based fish detection, edge-computing architectures, and marine-domain foundation models are foundational developments in sensing infrastructure. Implementation challenges include performance degradation across habitat and seasonal transitions, insufficient standardized multi-region datasets for rare and protected taxa, inadequate incorporation of model uncertainty into management decisions, and structural inequalities in data access and technology adoption among smallholder producers. Standardized multi-region benchmarks with rare-taxa coverage, calibrated uncertainty quantification in assessment and control systems, domain-robust energy-efficient algorithms, and privacy-preserving data partnerships are our priorities. These integrated priorities enable transition from experimental prototypes to a reliable, collaborative infrastructure for sustainable wild capture and farmed aquatic systems. Full article
Show Figures

Figure 1

18 pages, 9445 KB  
Article
Integrated Electrochemical–Electrolytic Conversion of Oilfield-Produced Water into Hydrogen
by Pengjun Fan, Guangping Zha, Chao Zhang, Weikang Han, Fuli Wang, Bin Dong and Wenming Jiang
Processes 2026, 14(1), 173; https://doi.org/10.3390/pr14010173 - 5 Jan 2026
Viewed by 122
Abstract
This study tackles the challenge of treating high-oil (≥90 mg/L) and high-salinity (Cl ≥ 6900 mg/L) oilfield-produced water for green hydrogen production. An integrated technology combining electrochemical cascade purification (EDCF: electro-demulsification–coagulation–flotation) with alkaline water electrolysis is developed. The EDCF process effectively reduces [...] Read more.
This study tackles the challenge of treating high-oil (≥90 mg/L) and high-salinity (Cl ≥ 6900 mg/L) oilfield-produced water for green hydrogen production. An integrated technology combining electrochemical cascade purification (EDCF: electro-demulsification–coagulation–flotation) with alkaline water electrolysis is developed. The EDCF process effectively reduces oil, suspended solids, and turbidity to <10 mg/L, <20 mg/L, and <20 NTU, respectively, meeting stringent feedwater criteria for electrolysis. An asymmetric electrolysis strategy employing a nickel felt anode/Raney nickel cathode system achieves a low cell voltage of 1.856 V at 1 A/cm2 in 6 M KOH at 85 °C, with 96.58% H2 purity. Crucially, separate anolyte/catholyte (0.5/6 M KOH) mitigates Cl corrosion, enabling stable 240 h operation (96.66% ± 0.5% H2 purity) in a duplex steel electrolyzer. The work establishes comprehensive boundary conditions for scalable hydrogen production from treated produced water. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 397 KB  
Article
Influence of Nitrogen Sources on Physiological Processes and Morphological Development of Yellow Passion Fruit Seedlings
by Gilmara da Silva Rangel, Thais de Souza Pastor, Vinicius Rodrigues Ferreira, Tayná de Oliveira Costa, Regiane Carla Bolzan Carvalho, Murilo de Oliveira Souza, Ana Paula Candido Gabriel Berilli and Savio da Silva Berilli
Nitrogen 2026, 7(1), 8; https://doi.org/10.3390/nitrogen7010008 - 5 Jan 2026
Viewed by 125
Abstract
Nitrogen is the nutrient most required by plants and plays a central role in agricultural productivity due to its involvement in essential nutrients. This study evaluated the effects of different nitrogen sources on the physiological and morphological development of yellow passion fruit ( [...] Read more.
Nitrogen is the nutrient most required by plants and plays a central role in agricultural productivity due to its involvement in essential nutrients. This study evaluated the effects of different nitrogen sources on the physiological and morphological development of yellow passion fruit (Passiflora edulis Sims) seedlings. The experiment followed a randomized block design with six treatments (water, urea, ammonium sulfate, potassium nitrate, calcium nitrate, and magnesium nitrate), six replicates per treatment, and two plants per plot. An equal amount of nitrogen was supplied to all treatments, while the urea treatment excluded the additional macronutrients present in the other fertilizers (S, K, Ca, and Mg), allowing us to assess whether the benefits were exclusively attributable to the nitrogen source. The results indicated that ammonium sulfate and calcium nitrate promoted better root system development, while ammonium sulfate also improved shoot growth and physiological characteristics. Multivariate analysis revealed that CP1 explained most of the variability between treatments, highlighting the contribution of these sources compared to the control. Overall, fertilization with ammonium sulfate produced the best results, indicating that it is a more efficient nitrogen source for seedling development. Full article
Show Figures

Figure 1

Back to TopTop