Design, Fabrication, and Applications of Food Composite Gels

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 8564

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
Interests: protein functionality; hydrogels; plant proteins; cold gelation; alkali-mediated treatments; complex coacervates; protein–protein interaction; protein aggregation; bioactive delivery systems; nanotechnology science

E-Mail Website
Guest Editor
Biosciences and Food Technology, School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
Interests: starch; modified starches; carbohydrates; fibre; grains
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of food composite gels represents a frontier in food science, offering exciting opportunities to enhance the nutritional, functional, and sensory properties of food products. By combining different food components, such as proteins, polysaccharides, and other bioactive ingredients, these composite gels can provide innovative solutions to meet the demands of modern consumers.

For this Special Issue, titled “Design, Fabrication, and Applications of Food Composite Gels”, we are gathering cutting-edge research and advancements in this multidisciplinary field. We invite contributions that address the following topics:

  • Novel methods for designing and fabricating food composite gels;
  • Advanced characterization techniques to understand the structure and properties of composite gels;
  • Functional applications of food composite gels in texture modification and product stabilization;
  • Nutritional and health benefits of incorporating bioactive compounds into food composite gels;
  • The role of food composite gels in the development of innovative food products;
  • Interactions between food components during gel formation and their impact on gel properties;
  • Effects of processing and storage conditions on the stability and functionality of food composite gels;
  • Applications of composite gels in encapsulation and controlled-release systems for active ingredients.

Food composite gels offer unique opportunities to enhance the functionality and health benefits of food products. Through a better understanding of the interactions between various food components and the mechanisms of gel formation, researchers can develop new materials with tailored properties to meet specific dietary needs and preferences. This Special Issue aims to provide a platform for sharing novel insights and fostering interdisciplinary collaboration in this rapidly evolving field.

We look forward to your contributions, which will help advance our understanding and applications of food composite gels, ultimately driving innovation in food science and technology.

Dr. Shima Momen
Dr. Mahsa Majzoobi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food texture
  • nutritional benefits
  • innovative food products
  • component interactions
  • hydrogel
  • protein functionality
  • plant protein
  • encapsulation
  • bioactive compounds
  • food engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

29 pages, 2820 KiB  
Article
Investigating the Synergistic Effects of Carvacrol and Citral-Edible Polysaccharide-Based Nanoemulgels on Shelf Life Extension of Chalkidiki Green Table Olives
by Konstantinos Zaharioudakis, Constantinos E. Salmas, Nikolaos D. Andritsos, Areti A. Leontiou, Dimitrios Moschovas, Andreas Karydis-Messinis, Eleni Triantafyllou, Apostolos Avgeropoulos, Nikolaos E. Zafeiropoulos, Charalampos Proestos and Aris E. Giannakas
Gels 2024, 10(11), 722; https://doi.org/10.3390/gels10110722 - 8 Nov 2024
Cited by 1 | Viewed by 1716
Abstract
Modern bioeconomy and sustainability demands lead food technology in the development of novel biobased edible food preservatives. Herein, the development and characterization of novel polysaccharide (xanthan gum and kappa-carrageenan)-based nanoemulgels (NGs) enhanced with essential oil derivatives; pure citral (CT); pure carvacrol (CV); and [...] Read more.
Modern bioeconomy and sustainability demands lead food technology in the development of novel biobased edible food preservatives. Herein, the development and characterization of novel polysaccharide (xanthan gum and kappa-carrageenan)-based nanoemulgels (NGs) enhanced with essential oil derivatives; pure citral (CT); pure carvacrol (CV); and various CT:CV ratios (25:75, 50:50, and 75:25) are presented. The obtained NGs are applied as active edible coatings for extending the shelf life of Protected Designation of Origin (PDO) green table olives of Chalkidiki. The zeta potential demonstrated the high stability of the treatments, while light scattering measurement and scanning electron microscopy images confirmed the <100 nm droplet size. EC50 indicated high antioxidant activity for all the tested samples. The fractional inhibitory concentration (FIC) confirmed the synergistic effect of NG with a CT:CV ratio at 50:50 against Staphylococcus aureus and at CT:CV ratios 25:75 and 75:25 against E. coli O157:H7. NG coatings with CT:CV ratios at 50:50 and at 25:75 effectively controlled the weight loss at 0.5%, maintained stable pH levels, and preserved the visual quality of green olives on day 21. The synergistic effect between CT and CV was confirmed as they reduced the spoilage microorganisms of yeasts and molds by 2-log [CFU/g] compared to the control and almost 1 log [CFU/g] difference from pure CT and CV-based NGs without affecting the growth of beneficial lactic acid bacteria crucial for fermentation. NGs with CT:CV ratios at 50:50 and at 25:75 demonstrated superior effectiveness in preventing discoloration and maintaining the main sensory attributes. Overall, shelf life extension was achieved in 21 compared to only 7 of the uncoated ones. Finally, this study demonstrates the potential of polysaccharide-based NGs in mixtures of CT and CV for the shelf life extension of fermented food products. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

Review

Jump to: Research

26 pages, 1316 KiB  
Review
Characteristics and Functional Properties of Bioactive Oleogels: A Current Review
by Md. Jannatul Ferdaus, Niaz Mahmud, Sudipta Talukder and Roberta Claro da Silva
Gels 2025, 11(1), 69; https://doi.org/10.3390/gels11010069 - 16 Jan 2025
Cited by 1 | Viewed by 1783
Abstract
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory [...] Read more.
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory qualities of lipid-based foods. Moreover, oleogels offer an ideal carrier for poorly water-soluble bioactive compounds. The three-dimensional structure of oleogels can protect and deliver bioactive compounds in functional food products. Bioactive compounds also affect the crystalline behavior of oleogelators, the physical properties of oleogels, and storage stability. Generally, different incorporation techniques are applied to entrap bioactive compounds in the oleogel matrix depending on their characteristics. These approaches enhance the bioavailability, controlled release, stability of bioactive compounds, and the shelf life of oleogels. The multifunctionality of oleogels extends their applications beyond fat replacements, e.g., food preservation, nutraceutical delivery, and even novel innovations like 3D food printing. Despite their potential, challenges such as large-scale production, cost efficiency, and consumer acceptance remain areas for further exploration. This review emphasizes the understanding of the relationship between the structure of oleogels and their functional properties to optimize their design in different food applications. It also highlights the latest advancements in bioactive oleogels, focusing on how they incorporate bioactive compounds such as polyphenols, essential oils, and flavonoids into oleogels. The impact of these compounds on the gelation process, storage stability, and overall functionality of oleogels is also critically examined. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

12 pages, 2689 KiB  
Review
Key Factors Influencing Gelation in Plant vs. Animal Proteins: A Comparative Mini-Review
by Mohammadreza Khalesi, Kyeesha Glenn-Davi, Nima Mohammadi and Richard J. FitzGerald
Gels 2024, 10(9), 575; https://doi.org/10.3390/gels10090575 - 3 Sep 2024
Cited by 3 | Viewed by 4296
Abstract
This review presents a comparative analysis of gelation properties in plant-based versus animal-based proteins, emphasizing key factors such as pH, ionic environment, temperature, and anti-nutritional factors. Gelation, a crucial process in food texture formation, is influenced by these factors in varying ways for [...] Read more.
This review presents a comparative analysis of gelation properties in plant-based versus animal-based proteins, emphasizing key factors such as pH, ionic environment, temperature, and anti-nutritional factors. Gelation, a crucial process in food texture formation, is influenced by these factors in varying ways for plant and animal proteins. Animal proteins, like casein, whey, meat, and egg, generally show stable gelation properties, responding predictably to pH, temperature, and ionic changes. In contrast, plant proteins such as soy, pea, wheat, and oilseed show more variable gelation, often requiring specific conditions, like the presence of NaCl or optimal pH, to form effective gels. Animal proteins tend to gel more reliably, while plant proteins require precise environmental adjustments for similar results. Understanding these factors is crucial for selecting and processing proteins to achieve desired textures and functionalities in food products. This review highlights how changing these key factors can optimize gel properties in both plant- and animal-based proteins. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

Back to TopTop