Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Coconut Milk Powder Agglomeration Applying a Commercially Manufactured Agglomerator
2.3. Coconut Milk Powder Agglomeration Using the Modified Fluidized Bed System
2.4. Quality Determination
2.4.1. Moisture Content
2.4.2. Tapped Bulk Density
2.4.3. Solubility
2.4.4. Glass Transition Temperature
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Z.; Gao, S.; Zhao, L.; Zhang, L.; Zhang, Y. Influence of process variables on spray agglomeration in a continuously operated horizontal fluidized bed. Powder Technol. 2020, 375, 15–23. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Wang, W.; Luo, R.; Yang, B.; Lan, D.; Wang, Y. Physicochemical properties and feasibility of coconut- oil-based diacylglycerol as an alternative fat for non-dairy creamer. Food Chem. X 2023, 19, 100749. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Plant-based milk products. In Future Foods; Academic Press: Cambridge, MA, USA, 2022; Chapter 12. [Google Scholar] [CrossRef]
- Nurhadi, B.; Maidannyk, V.A.; Djali, M.; Dwiyanti, E.H.; Editha, N.P.; Febrian, M. Physical and functional properties of agglomerated coconut sugar and honey powder using PVP as binder. Int. J. Food Prop. 2022, 25, 93–104. [Google Scholar] [CrossRef]
- Jinapong, N.; Suphantharika, M.; Jamnong, P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng. 2008, 84, 194–205. [Google Scholar] [CrossRef]
- Kilgore, S.; Johnson, J.D.; Waite-Cusic, J. Characterizing spoilage of coconut-based creamers: Problematic bacteria and potential sources. J. Food Prot. 2024, 87, 100284. [Google Scholar] [CrossRef]
- Domian, E.; Sułek, A.; Cenkier, J.; Kerschke, A. Influence of agglomeration on physical characteristics and oxidative stability of spray-dried oil powder with milk protein and trehalose. J. Food Eng. 2014, 125, 34–43. [Google Scholar] [CrossRef]
- Cuq, B.; Gaiani, C.; Turchiuli, C.; Duchateau, N. Advances in food powder agglomeration engineering. Adv. Food Nutr. Res. 2013, 69, 41–103. [Google Scholar] [CrossRef]
- Dhanalakshmi, K.; Ghosal, S.; Bhattacharya, S. Agglomeration of food powder and applications. Crit. Rev. Food Sci. Nutr. 2011, 51, 432–441. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Howes, T. Implication of glass transition for the drying and stability of dried foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Tan, H.S.; Salman, A.D.; Hounslow, M.J. Kinetics of fluidised bed melt granulation I: Effect of process variables. Chem. Eng. Sci. 2006, 61, 1585–1601. [Google Scholar] [CrossRef]
- Cuq, B.; Mandato, S.; Jeantet, R.; Saleh, K.; Ruiz, T. Agglomeration/granulation in food powder production. In Handbook of Food Powders; Bhandari, B., Bansal, N., Zhang, M., Schuck, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 150–177. [Google Scholar]
- Lee, H.; Yoo, B. Agglomeration of galactomannan gum powders: Physical, rheological, and structural characteristics. Carbohydr. Polym. 2021, 256, 117599. [Google Scholar] [CrossRef]
- Bellocq, B.; Cuq, B.; Ruiz, T.; Duri, A.; Cronin, K.; Ring, D. Impact of fluidized bed granulation on structure and functional properties of agglomerates based on durum wheat semolina. Innov. Food Sci. Emerg. Technol. 2018, 45, 73–83. [Google Scholar] [CrossRef]
- Ji, J.; Cronin, K.; Fitzpatrick, J.; Fenelon, M.; Miao, S. Effects of fluid bed agglomeration on structure and reconstitution behaviour of milk protein isolate powders. J. Food Eng. 2015, 167, 175–182. [Google Scholar] [CrossRef]
- Seo, A.; Holm, P.; Schæfer, T. Effects of droplet size and binder type on agglomerate growth in melt agglomeration. Eur. J. Pharm. Sci. 2002, 16, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Szulc, K.; Lenart, A. Surface modification of dairy powders: Effect of fluid-bed agglomeration and coating. Int. Dairy J. 2013, 33, 55–61. [Google Scholar] [CrossRef]
- Hemati, M.; Cherif, R.; Saleh, K.; Pont, V. Fluidized bed coating and granulation: Influence of process-related variables and physicochemical properties on growth kinetics. Powder Technol. 2003, 130, 18–34. [Google Scholar] [CrossRef]
- Tumpanuvatr, T.; Jittanit, W. Modification of a hybrid dryer into fluidized bed agglomerator with application to coconut milk powder agglomeration. J. ASABE 2025, 68, 761–774. [Google Scholar] [CrossRef]
- Tumpanuvatr, T.; Jittanit, W.; Surojanametakul, V. Study of hybrid dryer prototype and its application in pregerminated rough rice drying. Dry. Technol. 2018, 36, 867–877. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of AOAC International, 18th ed.; Methods 990.19 and 997.08; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Beristain, C.I.; Garcia, H.S.; Carter, E.J.V. Spray-dried encapsulation of cardamom essential oil with mesquite (Prosopis juliflora). Food Sci. Technol. 2001, 34, 398–401. [Google Scholar]
- Don, C.S.I.I.V.; Jittanit, W.; Lorjaroenphon, Y. Encapsulation of black pepper oleoresin by different wall materials using spray- or freeze-drying and quality determination. Dry. Technol. 2024, 42, 1098–1115. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioproc. Technol. 2009, 2, 89–95. [Google Scholar] [CrossRef]
- Hedayatnia, S.; Mirhosseini, H.; Tamnak, S.; Golpira, F. Improvement of glass transition and flowability of reduced-fat coffee creamer: Effect of fat replacer and fluidized bed drying. Food Bioproc. Technol. 2015, 8, 1512–1522. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Codex Standard for Milk Powders and Cream Powder (CODEX STAN 207-1999); FAO: Rome, Italy; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Fatimah, F.; Gugule, S.; Tallei, T.E. Characteristics of coconut milk powder produced with varying coconut-water ratios, tween, and guar gum concentrations. J. Appl. Sci. Res. 2017, 13, 34–44. [Google Scholar]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray drying and storage of probiotic-enriched almond milk: Probiotic survival and physicochemical properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Chever, S.; Mejean, S.; Dolivet, A.; Mei, F.; Den Boer, C.M.; Le Barzic, G.; Jeantet, R.; Schuck, P. Agglomeration during spray drying: Physical and rehydration properties of whole milk/sugar mixture powders. LWT–Food Sci. Technol. 2017, 83, 33–41. [Google Scholar] [CrossRef]
- Dewettinck, K.; Deroo, L.; Messens, W.; Huyghebaert, A. Agglomeration tendency during top-spray fluidized bed coating with gums. Lebensm. Wiss. Technol. 1998, 31, 576–584. [Google Scholar] [CrossRef]
- Freudig, B.; Hogekamp, S.; Schubert, H. Dispersion of powders in liquids in a stirred vessel. Chem. Eng. Process. 1999, 38, 525–532. [Google Scholar] [CrossRef]
- Sharma, A.; Jana, A.H.; Chavan, R.S. Functionality of milk powders and milk-based powders for end-use applications: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 518–528. [Google Scholar] [CrossRef]
- Schuck, P.; Dolivet, A.; Jeantet, R. Analytical Methods for Food and Dairy Powders; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. Coconut Milk, Raw. USDA National Nutrient Database. Available online: https://vegnt.com/foods/nuts_coconut_milk_raw_liquid_expressed_from_grated_meat_and_water.html (accessed on 23 December 2025).
- Linnenkugel, S.; Paterson, A.H.J.; Huffman, L.M.; Bronlund, J.E. Prediction of glass transition temperature of low molecular weight components and polysaccharide mixtures. J. Food Eng. 2021, 292, 110345. [Google Scholar] [CrossRef]
- Chaleepa, K.; Szepes, A.; Ulrich, J. Dry fractionation of coconut oil by melt crystallization. Chem. Eng. Res. Des. 2010, 88, 1053–1060. [Google Scholar] [CrossRef]
- Martins, J.S.; Santos, J.C.O.; da Conceicao, M.M. Comparative study of physico-chemical properties of coconut oil obtained by industrial and artisanal processes. Biotechnol. Indian J. 2020, 16, 1. [Google Scholar]
- Dehghan, M.H.G.; Kazi, M. Lyophilized chitosan/xanthan polyelectrolyte complex-based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran. J. Pharm. Res. 2014, 13, 769–784. [Google Scholar]
- Tegopoulos, S.N.; Papagiannopoulos, A.; Kyritsis, A. Hydration effects on thermal transitions and molecular mobility in xanthan gum. Phys. Chem. Chem. Phys. 2024, 26, 3462–3473. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, T. Xyloglucan-Based Polymers and Nanocomposites; DiVA Portal: Stockholm, Sweden, 2012; Available online: https://www.diva-portal.org/smash/get/diva2:574579/FULLTEXT01.pdf (accessed on 23 December 2025).


| Condition No. | Agglomerator Type | Binder Type | Rate of Binder Addition (mL/min) | Binder Volume Delivered Through Spraying (mL) | Drying Duration (min) |
|---|---|---|---|---|---|
| 1 | Commercially manufactured unit | Distilled water | 4.0 | 92 | 50 |
| 2 | Xanthan gum solution | 4.9 | 64 | 60 | |
| 3 | Xyloglucan solution | 4.0 | 76 | 50 | |
| 4 | Modified unit | Distilled water | 5.6 | 50 | 60 |
| 5 | Xanthan gum solution | 7.6 | 68 | 40 | |
| 6 | Xyloglucan solution | 5.0 | 70 | 45 |
| Parameter | Commercially Manufactured Agglomerator | Modified Agglomerator |
|---|---|---|
| Sample mass of coconut milk powder for each experiment (g) | 100 | 100 |
| Type of binder atomizing nozzle | Two-fluid nozzle | Two-fluid nozzle |
| Nozzle orifice diameter (mm) | 0.8 | 0.4 |
| Pressure of air supplied to nozzle (MPa) | 0.2 | 0.2 |
| Nozzle position above distributor plate (cm) | 12 | 7 |
| Distributor plate diameter (cm) | 7.5 | 30 |
| Drying air temperature (°C) | 50 | 50 |
| Drying air velocity range (m/s) | 0.5–1.8 | 1.5–3.0 |
| No. | Agglomerator Type | Sample Description | Moisture Content (% w.b.) | Tapped Bulk Density (g/mL) | Solubility (min) | Differential Scanning Calorimetry | ||
|---|---|---|---|---|---|---|---|---|
| Onset Temperature (°C) | Glass Transition Temperature (°C) | End Temperature (°C) | ||||||
| 1 | N/A | Coconut milk powder (unagglomerated) | 2.2 b ± 0.01 | 0.577 e ± 0.01 | 6.53 c ± 0.05 | 50.23 a ± 0.04 | 51.67 a ± 1.41 | 56.19 c ± 0.40 |
| 2 | Commercially manufactured unit | Agglomerate (binder: distilled water) | 2.2 b ± 0.01 | 0.480 d ± 0.01 | 5.29 a ± 0.21 | 53.97 c ± 1.13 | 57.02 c ± 0.24 | 57.09 c ± 0.23 |
| 3 | Agglomerate (binder: xanthan gum solution) | 2.6 d ± 0.04 | 0.465 c ± 0.00 | 5.53 b ± 0.04 | 57.14 d ± 1.13 | 59.66 d ± 0.35 | 60.08 d± 0.12 | |
| 4 | Agglomerate (binder: xyloglucan solution) | 2.4 c ± 0.01 | 0.448 b ± 0.01 | 5.56 b ± 0.03 | 56.34 d ± 0.47 | 61.67 e ± 0.12 | 64.20 e ± 0.23 | |
| 5 | Modified unit | Agglomerate (binder: distilled water) | 2.1 a ± 0.01 | 0.462 c ± 0.01 | 5.15 a ± 0.05 | 50.86 ab ± 0.49 | 53.35 b ± 0.49 | 53.54 a ± 0.31 |
| 6 | Agglomerate (binder: xanthan gum solution) | 2.5 d ± 0.01 | 0.420 a ± 0.01 | 5.49 b ± 0.09 | 52.15 b ± 0.38 | 54.86 b ± 0.48 | 54.91 b ± 0.53 | |
| 7 | Agglomerate (binder: xyloglucan solution) | 2.3 c ± 0.04 | 0.432 a ± 0.01 | 5.52 b ± 0.08 | 51.56 ab ± 0.75 | 54.76 b ± 0.59 | 54.95 b ± 0.76 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tumpanuvatr, T.; Jittanit, W. Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder. Foods 2026, 15, 210. https://doi.org/10.3390/foods15020210
Tumpanuvatr T, Jittanit W. Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder. Foods. 2026; 15(2):210. https://doi.org/10.3390/foods15020210
Chicago/Turabian StyleTumpanuvatr, Titaporn, and Weerachet Jittanit. 2026. "Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder" Foods 15, no. 2: 210. https://doi.org/10.3390/foods15020210
APA StyleTumpanuvatr, T., & Jittanit, W. (2026). Comparative Performance Evaluation Between a Modified Hybrid Dryer and a Commercially-Manufactured Fluidized Bed Agglomerator for Producing Instant Coconut Milk Powder. Foods, 15(2), 210. https://doi.org/10.3390/foods15020210
