Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,228)

Search Parameters:
Keywords = problem nutrients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 590 KB  
Article
Formulation of Nutrient Solutions Using Simulated Annealing
by Juan Pablo Guerra Ibarra, Francisco Javier Cuevas de la Rosa and Aaron Junior Rocha Rocha
Agriculture 2026, 16(4), 449; https://doi.org/10.3390/agriculture16040449 - 14 Feb 2026
Viewed by 55
Abstract
Modern agriculture requires optimizing available resources to maximize production while minimizing environmental impact without increasing economic costs. Hydroponic agriculture replaces soil with inert media that provide physical support for plants but do not supply nutrients. In this type of agricultural production, fertilization with [...] Read more.
Modern agriculture requires optimizing available resources to maximize production while minimizing environmental impact without increasing economic costs. Hydroponic agriculture replaces soil with inert media that provide physical support for plants but do not supply nutrients. In this type of agricultural production, fertilization with nutrient solutions is essential, as they supply the 15 elements necessary for proper plant development. These solutions consist of mixtures of different amounts of fertilizers dissolved in water. In this context, a method based on a simulated annealing algorithm is proposed, a metaheuristic that optimizes fertilizer quantities in grams to achieve target concentrations in parts per million for six macronutrients and nine micronutrients. The algorithm addresses a multi-objective optimization problem, balancing two competing goals: first, maximizing the accuracy of the fertilizer balance to achieve the required nutritional levels, and second, minimizing the total cost of the fertilizer mixture. The algorithm’s fitness function weights the total cost of the fertilizers used and the total relative error between the concentrations obtained and those desired, allowing the relative importance of cost and accuracy in the nutrient solution to be adjusted. The results of three experiments with varying nutrient levels are presented for a 1000-L water tank. The first experiment consisted of three macronutrients and two micronutrients. The second configuration added three macronutrients and two micronutrients, for a total of ten nutrients. Finally, five micronutrients were added to complete the 15 essential nutrients for plants. It is important to note that there are several methods for calculating micronutrients that contribute to precision agriculture, increasing the complexity of finding a solution that meets established nutritional requirements. The nutrient concentrations in parts per million required for tomato cultivation during the vegetative development stage. To balance nutrient accuracy and solution cost, we applied weighting factors of 0.65, 0.75, 0.85, 0.90, 0.95, and 1.0 for accuracy. The corresponding weights for cost were calculated as the complement of these values (totaling 1). By favoring nutrient accuracy with a weighting of 1, accuracies of 0.00500, 0.02618, and 0.03077 parts per million were achieved in each experiment, respectively. Meanwhile, the lowest cost is 2.06, 2.72, and 2.70 USD for the aforementioned experiments. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

27 pages, 3518 KB  
Article
Eco-Mechanical Optimization of Composite-Amended Sandy Substrate for Alhagi sparsifolia in Arid Regions
by Meixue Zhang, Qinglin Li, Xiaofei Yang, Penghu Feng, Wenjuan Chen and Guang Yang
Plants 2026, 15(4), 605; https://doi.org/10.3390/plants15040605 (registering DOI) - 14 Feb 2026
Viewed by 91
Abstract
In response to the problems of loose soil structure and insufficient water and nutrient retention capacity of sandy bank slopes in arid regions, which constrain vegetation establishment and long-term slope stability, this study focuses on typical sandy soils in arid northwestern China. The [...] Read more.
In response to the problems of loose soil structure and insufficient water and nutrient retention capacity of sandy bank slopes in arid regions, which constrain vegetation establishment and long-term slope stability, this study focuses on typical sandy soils in arid northwestern China. The desert plant Alhagi sparsifolia, characterized by clonal root sucker reproduction, was selected as the study species to construct and optimize a composite-amended sandy substrate suitable for ecological restoration of bank slopes. Based on an orthogonal experimental design, carboxymethyl cellulose sodium (CMC), straw fibers (SF), and fly ash (FA) were combined at different proportions to assess (i) the vertical distribution of soil water and nutrients in the A. sparsifolia growth habitat, (ii) aggregate structure, (iii) plant trait responses to environmental regulation, and (iv) the shear strength of root–soil composites. The results indicate that when the contents of CMC, SF, and FA were 0.5%, 1.0%, and 5.0%, respectively, the substrate environment promoted a vertically oriented root system with pronounced lateral root development in A. sparsifolia, and the plants adopted an adaptive strategy that balances resource acquisition efficiency and environmental constraints by regulating aboveground growth allocation. This growth pattern reduced the risk of disturbances to slope stability caused by excessive aboveground biomass while maintaining the sand-fixing function of root morphological traits. This study provides a plant functional trait-based regulation strategy for ecological restoration of typical sandy slopes in arid regions, and the proposed composite substrate optimization scheme offers a feasible reference for improving vegetation establishment and substrate performance in sandy habitats. Full article
Show Figures

Figure 1

44 pages, 3809 KB  
Review
Electrochemical (Bio)Sensors Based on Nanotechnologies for the Detection of Important Biomolecules in Plants and Plant-Related Samples: The Future of Smart and Precision Agriculture
by Ioana Silvia Hosu, Radu-Claudiu Fierăscu and Irina Fierăscu
Biosensors 2026, 16(2), 107; https://doi.org/10.3390/bios16020107 - 6 Feb 2026
Viewed by 189
Abstract
Considering the present environmental concerns, nanomaterial-based methods should be applied to achieve the bioeconomic sustainability initiatives and climate change mitigation. Plants and plant extracts are one of the most underused biomass and bioactive ingredients resources. Moreover, nowadays crop loss is one of the [...] Read more.
Considering the present environmental concerns, nanomaterial-based methods should be applied to achieve the bioeconomic sustainability initiatives and climate change mitigation. Plants and plant extracts are one of the most underused biomass and bioactive ingredients resources. Moreover, nowadays crop loss is one of the main problems that the world faces, together with the depletion of natural resources, increasing population and limited arable land, leading to increased food scarcity and demand. To correctly attribute/use plant-based bioresources or to rapidly decide which farming operations should be performed before crop loss, we should be able to properly characterize plants or plant-based resources by the desired useful characteristics, such as (bio)chemical characteristics, rather than simply observing physical traits of plants (because, when these traits become visible, it may be too late for crop loss mitigation). Plant crops could be optimized, for example, using electrochemical methods that assess the nutrient uptake and nutrient use efficiency (NUE) or the oxidative stress burst encountered before crop loss, in order to improve crop yields and crop quality. Other different important analytes (such as hormones, pathogens, metabolites, etc.) or plant characteristics (such as genus, species, phylogenetic analysis, etc.) can be evaluated with these electrochemical sensors and methods. In the present review, we focus on the application of nanomaterials/nanotechnologies for the development of fast, accurate, accessible, cost-effective, sensitive and selective analytical electrochemical methods for the detection of different relevant biomolecules in plants or plant-related samples (plant extracts, plant cells, plant tissues, and/or plant-derived natural drinks/foods, as well as entire plants/plant parts), both in vivo vs. ex vivo and in situ vs. ex situ. This review systematically presents and critically discusses the outcomes of current electrochemical methods (both applied in the lab or as wearable/implantable sensors) and the future perspectives of these nanotechnology-based sensors, with an accent on wearable sensors for smart and precision agriculture, as real-world sensing technologies with significant practical impact. The novelty of this article is the abundance of electrochemical analytical parameters gathered and discussed, for such a large number of analyte categories. Full article
Show Figures

Figure 1

19 pages, 1292 KB  
Article
Evaluating the Sustainability of High-Dose Sewage Sludge Application in Fertilizing Szarvasi-1 Energy Grass Plantations
by Ferenc Fodor, Péter Nyitrai, Éva Sárvári, Csaba Gyuricza and Gyula Sipos
Plants 2026, 15(3), 392; https://doi.org/10.3390/plants15030392 - 27 Jan 2026
Viewed by 286
Abstract
The accumulation of municipal sewage sludge is a worldwide problem, although when properly treated, it can be utilized for various purposes in industry and agriculture. Due to its high nutrient content, one of its possible uses is the application as fertilizer on agricultural [...] Read more.
The accumulation of municipal sewage sludge is a worldwide problem, although when properly treated, it can be utilized for various purposes in industry and agriculture. Due to its high nutrient content, one of its possible uses is the application as fertilizer on agricultural or degraded lands with the purpose of non-food plant production. In the present study, the sustainability of dehydrated sewage sludge application was tested in Szarvasi-1 energy grass (Thinopyrum obtusiflorum cv. Szarvasi-1) plantations, with special focus on the turnover of nutrients and trace elements in two experiments conducted outdoors between 2016 and 2019. Experiment 1 was conducted in 1 m3 containers, and the treatment was started on two-year old plants in 0, 15, 22.5, and 30 Mg ha−1 doses per year applied in two or three portions to reveal the upper limit of sludge application. Experiment 2 was conducted in 100 m2 field quadrates with 0, 7.5, 15, and 22.5 Mg ha−1 doses per year applied once a year, which is in the range of the currently permitted application dose in Hungary. Soil, sludge, and plant samples, as well as physiological data, were collected. Aboveground biomass yield was measured 2–3 times per year. Increasing doses of sewage sludge significantly increased the yield compared to the controls, but the increment between the second and third doses was small. Chlorophyll content (SPAD values) increased tendentiously and partly significantly. The maximal quantum efficiency of PSII and the stomatal conductance was not improved compared to the control, whereas the relative water content of the plants was increased in Experiment 1 but not in Experiment 2 compared to the control. Malondialdehyde concentration was increased by the largest dose in Experiment 1. The concentration of macroelements, Ca, Mg, N, and S, increased in the aboveground biomass with increasing doses of sewage sludge, but even after three years, the cumulative amount removed with the harvested biomass was much smaller than the amount remaining in the soil. The total amount of K in the harvested biomass exceeded that introduced to the soil by the treatments. Micro- and trace-element concentrations did not show increasing tendency in the biomass, suggesting a slower uptake and removal rate than macroelements. The results point to the necessity to assess the real nutrient requirement and trace-element uptake by the plants as compared to the sewage sludge treatment to avoid their uncontrolled accumulation in the soil and ensure a sustainable fertilization of the plantations. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

81 pages, 1743 KB  
Review
Targeting Microorganisms in Lignocellulosic Biomass to Produce Biogas and Ensure Sanitation and Hygiene
by Christy Echakachi Manyi-Loh, Stephen Loh Tangwe and Ryk Lues
Microorganisms 2026, 14(2), 299; https://doi.org/10.3390/microorganisms14020299 - 27 Jan 2026
Viewed by 312
Abstract
Microbial components are part of the composition of all waste, including lignocellulosic biomass (e.g., agricultural, domestic, industrial, and municipal wastes) generated via human activities. If little attention is given to these wastes or if they are not adequately managed, they tend to end [...] Read more.
Microbial components are part of the composition of all waste, including lignocellulosic biomass (e.g., agricultural, domestic, industrial, and municipal wastes) generated via human activities. If little attention is given to these wastes or if they are not adequately managed, they tend to end up in the environment (soil, water, and farmland), decomposing naturally through microbial activities, producing greenhouse gases, causing eutrophication, preventing sunlight penetration, and depleting oxygen in the water. Several treatment methods are applicable to these wastes. However, anaerobic digestion is presented as the best option to properly treat the waste. It is regarded as the best technique to achieve sustainable energy development in both developing and developed countries. During anaerobic digestion, the organic matter in the waste is converted via the concerted activities of microbes belonging to different trophic levels, in the absence of oxygen, to yield biogas (renewable energy), bio-fertiliser, and sanitisation of the waste, rendering it better and safer for human handling. Varying levels of loss of bacterial viability and their antibiotic-resistance genes are observed with this process, as bacteria differ in susceptibility to temperature, pH, nutrient scarcity, and the presence of antimicrobials. Anaerobic digestion of agricultural residues and the immediate processing (post-treatment) of the digestate help to stabilise the digestate, making it safe for land applications, tackling waste management, and protecting food chains from contamination, in addition to the environment. This review focuses on the anaerobic digestion of lignocellulosic biomass, yielding biogas as energy, alongside sanitising the wastes by inactivating microbial components found therein, therefore reducing the contamination potential of the effluent or digestate discharged from the biodigester following the process. Several findings registered by different researchers through different studies performed in different countries under different scenarios while employing varying methods have been assembled in a chronological fashion to emphasise similarities and divergences or variations that deepen knowledge pertaining to the significance of the anaerobic digestion process in terms of the microbial interactions responsible for producing energy, addressing sanitisation and hygiene crisis, and the post-treatment of the digestate to ensure its use as biofertiliser. In other words, it is a comprehensive review that synthesises knowledge from multiple fields covering comparative aspects of anaerobic digestion in terms of sanitation, hygiene, and energy production and consolidates it in a single document to present and address the problem of waste management through anaerobic digestion technology. Full article
(This article belongs to the Special Issue Exploring Foodborne Pathogens: From Molecular to Safety Perspectives)
Show Figures

Figure 1

24 pages, 2908 KB  
Concept Paper
Engineered Microbial Consortium Embedded in a Biodegradable Matrix: A Triple-Action, Synthetic Biology Framework for Sustainable Post-Wildfire Restoration
by Markos Mathioudakis, Rafail Andreou, Angeliki-Maria Papapanou, Artemis-Chrysanthi Savva, Asimenia Ioannidou, Nefeli-Maria Makri, Stefanos Anagnostopoulos, Thetis Tsinoglou, Ioanna Gerogianni, Christos Giannakopoulos, Angeliki-Argyri Savvopoulou-Tzakopoulou, Panagiota Baka, Nicky Efstathiou, Soultana Delizisi, Michaela Ververi, Rigini Papi, Konstantina Psatha, Michalis Aivaliotis and Spyros Gkelis
SynBio 2026, 4(1), 3; https://doi.org/10.3390/synbio4010003 - 26 Jan 2026
Viewed by 528
Abstract
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the [...] Read more.
Wildfires are increasingly frequent and intense due to climate change, resulting in degraded soils with diminished microbial activity, reduced water retention, and low nutrient availability. In many regions, previously restored areas face repeated burning events, which further exhaust soil fertility and limit the potential for natural regeneration. Traditional reforestation approaches such as seed scattering or planting seedlings often fail in these conditions due to extreme aridity, erosion, and lack of biological support. To address this multifaceted problem, this study proposes a living, biodegradable hydrogel that integrates an engineered soil-beneficial microorganism consortium, designed to deliver beneficial compounds and nutrients combined with endemic plant seeds into a single biopolymeric matrix. Acting simultaneously as a biofertilizer, soil conditioner, and reforestation aid, this 3-in-1 system provides a microenvironment that retains moisture, supports microbial diversity restoration, and facilitates plant germination even in nutrient-poor, arid soils. The concept is rooted in circular economy principles, utilizing polysaccharides from food industry by-products for biopolymer formation, thereby ensuring environmental compatibility and minimizing waste. The encapsulated microorganisms, a Bacillus subtilis strain and a Nostoc oryzae strain, are intended to enrich the soil with useful compounds. They are engineered based on synthetic biology principles to incorporate specific genetic modules. The B. subtilis strain is engineered to break down large polyphenolic compounds through laccase overexpression, thus increasing soil bioavailable organic matter. The cyanobacterium strain is modified to enhance its nitrogen-fixing capacity, supplying fixed nitrogen directly to the soil. After fulfilling its function, the matrix naturally decomposes, returning organic matter, while the incorporation of a quorum sensing-based kill-switch system is designed to prevent the environmental escape of the engineered microorganisms. This sustainable approach aims to transform post-wildfire landscapes into self-recovering ecosystems, offering a scalable and eco-friendly alternative to conventional restoration methods while advancing the integration of synthetic biology and environmental engineering for climate resilience. Full article
Show Figures

Figure 1

13 pages, 2371 KB  
Proceeding Paper
Environmental Impacts and Sustainability of Nanomaterials in Water and Soil Systems
by Md. Nurjaman Ridoy and Sk. Tanjim Jaman Supto
Mater. Proc. 2025, 26(1), 6; https://doi.org/10.3390/materproc2025026006 - 20 Jan 2026
Viewed by 191
Abstract
Nanoparticles have become more widely applied in industrial, consumer, and therapeutic products over the past decade, and this trend is presumed to persist due to the rapid population growth, industry, urbanization, and intensive agriculture. The manufacturing of nanomaterials is not necessarily accomplished through [...] Read more.
Nanoparticles have become more widely applied in industrial, consumer, and therapeutic products over the past decade, and this trend is presumed to persist due to the rapid population growth, industry, urbanization, and intensive agriculture. The manufacturing of nanomaterials is not necessarily accomplished through eco-friendly processes. Certain nanomaterials involve heavy metals. The release of nanomaterials into the environment could result in soil and aquatic system contamination. Once released into water and soil matrices, nanoparticles undergo dynamic transformations, including aggregation, dissolution, and surface modification, which determine their transport and bioavailability and their toxicological profiles. Different studies have consistently reported adverse impacts of metal, carbon, and plastic-based nanomaterials on aquatic organisms, soil microbial community, enzymatic activities, and nutrient cycling processes, mainly through oxidative stress, disruption of the membrane, and release of metal ions. These problems have stimulated intensive research aimed at the prediction of environmental concentrations of nanoparticles in water and soil and for their ecotoxicological effect on aquatic and terrestrial ecosystems. On the other hand, nanomaterials are also showing great potential for sustainable use, such as water purification, soil remediation, immobilization of contaminants, and geotechnical soil improvement, referring to soil stabilization, strength enhancement, permeability reduction, and ground improvement, where low dosages can improve the mechanical properties and respected environmental performance. This paper deals with current research on these competing roles, examining the causes of nanotoxicity as well as their positive geotechnical and remedial applications in water and soil systems. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Materials)
Show Figures

Figure 1

32 pages, 1920 KB  
Review
A Comparative Evaluation of Soil Amendments in Mitigating Soil Salinization and Modifying Geochemical Processes in Arid Land
by Amira Batool, Kun Zhang, Fakher Abbas, Arslan Akhtar and Jiefei Mao
Agronomy 2026, 16(2), 222; https://doi.org/10.3390/agronomy16020222 - 16 Jan 2026
Viewed by 400
Abstract
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding [...] Read more.
Salinization is a growing global problem, particularly in arid and semi-arid areas, where salt concentration interferes with the soil structure, altering natural cycling, decreasing agricultural outputs, and threatening food security. Although many soil amendments have been studied, there is still a limited understanding of their interaction with soil after mixture application and the geochemical processes and long-term sustainability that govern their effects. To address this knowledge gap, this review elucidated the effectiveness and sustainability of soil amendments, biochar, humic substances, and mineral additives in restoring saline and sodic soils of arid and semi-arid region to explore the geochemical processes that underlie their impact. A systematic search of 174 peer-reviewed studies was conducted across multiple databases (Web of Science, Google Scholar, and Scopus) using relevant keywords and the findings were converted into quantitative values to evaluate the effects of biochar, gypsum, zeolite, and humic substances on key soil properties. Biochar significantly improved cation exchange capacity, nutrient retention, microbial activity, and water retention by enhancing soil porosity and capillarity, thereby increasing plant-available water. Gypsum improved phosphorus availability, while zeolite facilitated the removal of sodium and supported microbial activity. Humic substances enhanced soil porosity, water retention, and aggregate stability. When applied together, these amendments improved soil health by regulating salinity, enhancing nutrient cycling, while also stabilizing soil conditions and ensuring long-term sustainability through improved geochemical balance and reduced environmental impacts. The findings highlight the critical role of multi-functional amendments in promoting climate-resilient agriculture and long-term soil health restoration in saline-degraded regions. Further research and field implementation are crucial to optimize their effectiveness and ensure sustainable soil management across diverse agricultural environments. Full article
Show Figures

Figure 1

19 pages, 1722 KB  
Article
Light-YOLO-Pepper: A Lightweight Model for Detecting Missing Seedlings
by Qiang Shi, Yongzhong Zhang, Xiaoxue Du, Tianhua Chen and Yafei Wang
Agriculture 2026, 16(2), 231; https://doi.org/10.3390/agriculture16020231 - 15 Jan 2026
Viewed by 311
Abstract
The aim of this study was to accurately meet the demand of real-time detection of seedling shortage in large-scale seedling production and solve the problems of low precision of traditional models and insufficient adaptability of mainstream lightweight models. This study proposed a Light-YOLO-Pepper [...] Read more.
The aim of this study was to accurately meet the demand of real-time detection of seedling shortage in large-scale seedling production and solve the problems of low precision of traditional models and insufficient adaptability of mainstream lightweight models. This study proposed a Light-YOLO-Pepper seedling shortage detection model based on the improvement of YOLOv8n. This model was based on YOLOv8n. The SE (Squeeze-and-Excitation) attention module was introduced to dynamically suppress the interference of the nutrient soil background and enhance the features of the seedling shortage area. Depth-separable convolution (DSConv) was used to replace the traditional convolution, which can reduce computational redundancy while retaining core features. Based on K- means clustering, customized anchor boxes were generated to adapt to the hole sizes of 72-unit (large size) and 128-unit (small size and high-density) seedling trays. The results show that the overall mAP@0.5, accuracy and recall rate of Light-YOLO-Pepper model were 93.6 ± 0.5%, 94.6 ± 0.4% and 93.2 ± 0.6%, which were 3.3%, 3.1%, and 3.4% higher than YOLOv8n model, respectively. The parameter size of the Light-YOLO-Pepper model was only 1.82 M, the calculation cost was 3.2 G FLOPs, and the reasoning speeds with regard to the GPU and CPU were 168.4 FPS and 28.9 FPS, respectively. The Light-YOLO-Pepper model was superior to the mainstream model in terms of its lightweight and real-time performance. The precision difference between the two seedlings was only 1.2%, and the precision retention rate in high-density scenes was 98.73%. This model achieves the best balance of detection accuracy, lightweight performance, and scene adaptability, and can efficiently meet the needs of embedded equipment and real-time detection in large-scale seedling production, providing technical support for replanting automation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2517 KB  
Article
Effects of Slow-Release Fertilizer on Growth, Yield, and Quality of Ziziphus jujuba Mill. ‘Huizao’
by Xueli Wang, Ye Yuan, Shoule Wang, Tianxiang Jiang, Dingyu Fan, Juan Jin, Ying Jin, Qing Hao and Cuiyun Wu
Plants 2026, 15(2), 265; https://doi.org/10.3390/plants15020265 - 15 Jan 2026
Viewed by 267
Abstract
Aiming at the problems of tree vigor decline and unstable fruit quality caused by soil impoverishment and easy nutrient loss in the Ziziphus jujuba Mill. ‘Huizao’ (Huizao) producing areas of southern Xinjiang, the application effect of bag-controlled slow-release fertilizer (BCSRF) in this region [...] Read more.
Aiming at the problems of tree vigor decline and unstable fruit quality caused by soil impoverishment and easy nutrient loss in the Ziziphus jujuba Mill. ‘Huizao’ (Huizao) producing areas of southern Xinjiang, the application effect of bag-controlled slow-release fertilizer (BCSRF) in this region remains unclear. In this study, a field experiment was conducted with four fertilization concentration gradients, including CK (0 kg/ha), T1 (22 kg/ha), T2 (44 kg/ha), and T3 (66 kg/ha), to investigate the effects of BCSRF on soil nutrient dynamics and plant growth, as well as the fruit yield and quality of Huizao. The results showed that BCSRF could effectively maintain the supply levels of soil alkali-hydrolysable nitrogen, available phosphorus, and available potassium during key growth periods, among which the T3 treatment exhibited the most significant effect. This treatment not only significantly increased the yield per plant of Huizao by 39.34% compared with the control, but also markedly enhanced the contents of the endogenous substance, including soluble sugar and cyclic adenosine monophosphate. This study confirms that under the condition of sandy loam soil in southern Xinjiang, a single basal application of an appropriate amount of BCSRF can achieve continuous nutrient supply, simultaneously improve soil fertility and fruit quality, providing a theoretical basis and technical guidance for simplified and efficient fertilization in local jujube orchards. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

15 pages, 7992 KB  
Article
Impact of Introduced Spatholobus suberectus and Dalbergia balansae on Soil N Accumulation and P Depletion in Chinese Fir Plantations
by Qiwu Sun, Chai Lin, Lingyu Hou, Yuhong Dong, Shumeng Wei, Xiangrong Liu and Qian Wang
Forests 2026, 17(1), 110; https://doi.org/10.3390/f17010110 - 13 Jan 2026
Viewed by 225
Abstract
The introduction of understory vegetation can increase species diversity and potential productivity in forest ecosystems, which is considered a viable solution to the global problem of declining soil quality caused by deteriorating climatic conditions and human activities. The forest management model that achieves [...] Read more.
The introduction of understory vegetation can increase species diversity and potential productivity in forest ecosystems, which is considered a viable solution to the global problem of declining soil quality caused by deteriorating climatic conditions and human activities. The forest management model that achieves economic and ecological benefits by introducing legumes is widely used. However, there have been rare studies on the effects of introducing legumes under Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations on soil nutrient content and microbial diversity. In this study, we investigated the soil chemical properties, microbial diversity, and enzymatic activities in Chinese fir plantations introduced with Spatholobus suberectus (SRS), Dalbergia balansae (DRS), both species (BS), and in a monoculture plantation (CK). As indicated by the results, soil pH, total phosphorus (TP), available phosphorus (AP), available potassium (AK), urease activities, and the ratios of C:P and N:P decreased in SRS, DRS, and BS treatments, whereas soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), phosphatase, and sucrase activities increased. The decrease in soil pH and the effects of Chytridiomycota and Glomeromycota elevated phosphatase activity. Accordingly, the mineralization rate of soil phosphorus increased. This increase enhanced phosphorus availability and the risk of loss, resulting in the depletion of soil phosphorus and the inhibition of urease activity. The findings of this study reveal that the introduction of legumes effectively improves the soil microbial community and nitrogen accumulation in Chinese fir plantations while resulting in phosphorus depletion, highlighting the need for balanced nutrient management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 802 KB  
Article
Association of Blood Pressure with Metabolic Factors, Stress Levels, Physical Activity, and Nutrient Intake in Overweight or Obese Ecuadorian University Students: A Study Based on Mediation Analysis
by María Alejandra Aguirre-Quezada, María Pilar Aranda-Ramírez, María del Carmen-García and Geovanny Reiván-Ortiz
Nutrients 2026, 18(2), 201; https://doi.org/10.3390/nu18020201 - 8 Jan 2026
Viewed by 514
Abstract
Background: Obesity is a worldwide public health problem, affecting organs and systems. It is also a cardiovascular risk factor, which facilitates the development of diseases, such as arterial hypertension, dyslipidemia, and diabetes, which are used as criteria for the diagnosis of metabolically unhealthy [...] Read more.
Background: Obesity is a worldwide public health problem, affecting organs and systems. It is also a cardiovascular risk factor, which facilitates the development of diseases, such as arterial hypertension, dyslipidemia, and diabetes, which are used as criteria for the diagnosis of metabolically unhealthy obesity. Objective: To analyze the association between blood pressure and metabolic health factors, stress level, and nutrient intake in overweight and obese university students through mediation analysis. Methods: A quantitative, non-experimental, cross-sectional, correlational, and quantitative study was conducted in a sample of 230 obese/overweight university students selected by a multistage mass random sampling method. To evaluate habitual dietary intakes, a CFCA food frequency questionnaire was applied; a DASS-21 scale was used to evaluate stress; blood pressure and anthropometric data were collected; insulin levels, lipid profile, and glucose were determined using fasting blood samples. Statistical analysis was performed using univariate methods (frequencies, trend, and dispersion measures) and a mediational model. Results: The majority were young people aged 18 years (18.7%), with morning and afternoon shifts (60%), overweight (76.1%), and obese (23.9%). Not all obese people have arterial hypertension; however, an increase in BMI increases the risk of suffering from this disease. Model 1 showed that certain types of stress and sex at birth have an important relationship with diastolic blood pressure, mediated in some cases by weight. In Model 2, weight is a significant mediator in the relationship between moderate stress and systolic BP, and between sex at birth and systolic BP, thus allowing us to contribute to the understanding of how these variables are interrelated. Conclusions: This suggests that severe stress and sex at birth not only affect BP directly, but also do so through their effect on weight. Thus, both pathways contribute to understanding the relationship between stress, sex at birth, and diastolic and systolic blood pressure. Nevertheless, the results of this study provide empirical knowledge to design evidence-based prevention and treatment strategies. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

24 pages, 11322 KB  
Article
Analysis of the Long-Term Trend of Eutrophication Development in Dal Lake, India
by Irfan Ali and Elena Neverova Dziopak
Sustainability 2026, 18(2), 630; https://doi.org/10.3390/su18020630 - 8 Jan 2026
Viewed by 428
Abstract
The Dal Lake ecosystem is a vital freshwater body situated in the heart of Srinagar, Kashmir, India. It is not only a natural asset but also a cornerstone of environmental health, economic vitality, cultural heritage, and urban sustainability. In the last few decades, [...] Read more.
The Dal Lake ecosystem is a vital freshwater body situated in the heart of Srinagar, Kashmir, India. It is not only a natural asset but also a cornerstone of environmental health, economic vitality, cultural heritage, and urban sustainability. In the last few decades, the condition of the lake ecosystem and water quality has deteriorated significantly owing to the intensification of the eutrophication process. Effective integrated management of the lake is crucial for the long-term sustainable development of the region and the communities that rely on it for their livelihoods. The main reasons for eutrophication are the substantial quantity of anthropogenic pollution, especially nutrients, discharged from the catchment area of the lake and the overexploitation of the lake space and its biological resources. The research presented in this paper aimed to diagnose the state of the lake by analysing trends in eutrophication development and its long-term changes related to the catchment area and lake ecosystem relationships. The research period was 25 years, from 1997 to 2023. Land use and land cover data and water quality monitoring data, which are the basis for trophic state assessment, allowed us to analyze the long-term dynamics of eutrophication in the reservoir. For these purposes, GIS-generated thematic maps were created by using QGIS software version 3.44.1, and an appropriate methodology for quantifying eutrophication was chosen and adapted to the specifics of Dal Lake. The obtained results provide a foundation for a eutrophication management strategy that considers the specificity of the Dal Lake ecosystem and the impact of the catchment area. The outcomes highlighted the varied trophic conditions in different lake basins and the dominance of eutrophic conditions during the study period. The research highlights the complexity of the problem and underscores the need for a comprehensive lake management system. Full article
Show Figures

Figure 1

20 pages, 1096 KB  
Article
A New Ant Colony Optimization-Based Dynamic Path Planning and Energy Optimization Model in Wireless Sensor Networks for Mobile Sink by Using Mixed-Integer Linear Programming
by Fangyan Chen, Xiangcheng Wu, Zhiming Wang, Weimin Qi and Peng Li
Biomimetics 2026, 11(1), 44; https://doi.org/10.3390/biomimetics11010044 - 6 Jan 2026
Viewed by 409
Abstract
Currently, wireless sensor networks (WSNs) have been mutually applied to environmental monitoring and industrial control due to their low-cost and low-energy sensor nodes. However, WSNs are composed of a large number of energy-limited sensor nodes, which requires balancing the relationship among energy consumption, [...] Read more.
Currently, wireless sensor networks (WSNs) have been mutually applied to environmental monitoring and industrial control due to their low-cost and low-energy sensor nodes. However, WSNs are composed of a large number of energy-limited sensor nodes, which requires balancing the relationship among energy consumption, transmission delay, and network lifetime simultaneously to avoid the formation of energy holes. In nature, gregarious herbivores, such as the white-bearded wildebeest on the African savanna, employ a “fast-transit and selective-dwell” strategy when searching for water; they cross low-value regions quickly and prolong their stay in nutrient-rich pastures, thereby minimizing energy cost while maximizing nutrient gain. Ants, meanwhile, dynamically evaluate the “energy-to-reward” ratio of a path through pheromone concentration and its evaporation rate, achieving globally optimal foraging. Inspired by these two complementary biological mechanisms, our study proposes a novel ACO-conceptualized optimization model formulated via mixedinteger linear programming (MILP). By mapping the pheromone intensity and evaporation rate into the MILP energy constraints and cost functions, the model integrates discrete decision-making (path selection) and continuous variables (dwell time) by dynamic path planning and energy optimization of mobile sink, constituting multi-objective optimization. Firstly, we can achieve flexible trade-offs between multiple objectives such as data transmission delay and energy consumption balance through adjustable weight coefficients of the MILP model. Secondly, the method transforms complex path planning and scheduling problems into deterministic optimization models with theoretical global optimality guarantees. Finally, experimental results show that the model can effectively optimize network performance, significantly improve energy efficiency, while ensuring real-time performance and extended network lifetime. Full article
(This article belongs to the Special Issue Bionics in Engineering Practice: Innovations and Applications)
Show Figures

Figure 1

15 pages, 3784 KB  
Article
Identification of Novel QTLs for Iron Content and Development of KASP Marker in Wheat Grain
by Chang Liu, Zhankui Zeng, Xueyan Jing, Yue Zhao, Qunxiang Yan, Junge Bi and Chunping Wang
Agriculture 2026, 16(1), 105; https://doi.org/10.3390/agriculture16010105 - 31 Dec 2025
Viewed by 292
Abstract
Wheat (Triticum aestivum L.) is one of the most important staple crops in the world. Iron (Fe) plays a vital role in the growth and development of wheat as an essential nutrient. Meanwhile, Fe is closely associated with human health, as Fe [...] Read more.
Wheat (Triticum aestivum L.) is one of the most important staple crops in the world. Iron (Fe) plays a vital role in the growth and development of wheat as an essential nutrient. Meanwhile, Fe is closely associated with human health, as Fe deficiency anemia can cause fatigue, weakness, heart problems, and so on. In this study, quantitative trait loci (QTLs) for grain Fe content (GFeC) were detected in two populations: a recombinant inbred line (RIL) population with 175 lines derived from a cross between Avocet and Huites (AH population) genotyped with diversity array technology (DArT) and a natural population of 243 varieties (CH population) genotyped by using the 660K single-nucleotide polymorphism (SNP). Three stable QTLs (QGFe.haust-AH-5B, QGFe.haust-AH-6A, and QGFe.haust-AH-7A.2) were identified through QTL mapping with phenotypic variations of 11.55–13.63%, 3.58–9.89%, and 4.81–11.12% in the AH population in four environments. Genetic effects of QGFe.haust-AH-5B, QGFe.haust-AH-6A, and QGFe.haust-AH-7A.2 were shown to significantly increase GFeC by 8.11%, 14.05%, and 5.25%, respectively. One hundred and thirty-three significant SNPs were identified (p < 0.001) through a genome-wide association study (GWAS) for GFeC on chromosomes 1B, 2B, 3A, 3B, 5D, and 7A with phenotypic variations of 5.26–9.88% in the CH population. A novel locus was co-located within the physical interval 689.86 Mb-690.01 Mb in five environments through QTL mapping and GWAS, with one high-confidence gene, TraesCS7A02G499500, which was temporarily designated as TaqFe-7A, involved in GFeC regulation. A Kompetitive allele-specific PCR, KAFe-7A-2, was developed, which was validated in 181 natural populations. Genetic effect analysis revealed that favorable haplotype AA significantly increased GFeC by 4.64% compared to an unfavorable haplotype (p < 0.05). Therefore, this study provides the theoretical basis for cloning the GFeC gene and nutritional fortification breeding. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

Back to TopTop