You are currently on the new version of our website. Access the old version .
MicroorganismsMicroorganisms
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

27 January 2026

Targeting Microorganisms in Lignocellulosic Biomass to Produce Biogas and Ensure Sanitation and Hygiene

,
and
1
Centre of Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9301, South Africa
2
Estate and Infrastructure, Central University of Technology, Bloemfontein 9301, South Africa
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Exploring Foodborne Pathogens: From Molecular to Safety Perspectives

Abstract

Microbial components are part of the composition of all waste, including lignocellulosic biomass (e.g., agricultural, domestic, industrial, and municipal wastes) generated via human activities. If little attention is given to these wastes or if they are not adequately managed, they tend to end up in the environment (soil, water, and farmland), decomposing naturally through microbial activities, producing greenhouse gases, causing eutrophication, preventing sunlight penetration, and depleting oxygen in the water. Several treatment methods are applicable to these wastes. However, anaerobic digestion is presented as the best option to properly treat the waste. It is regarded as the best technique to achieve sustainable energy development in both developing and developed countries. During anaerobic digestion, the organic matter in the waste is converted via the concerted activities of microbes belonging to different trophic levels, in the absence of oxygen, to yield biogas (renewable energy), bio-fertiliser, and sanitisation of the waste, rendering it better and safer for human handling. Varying levels of loss of bacterial viability and their antibiotic-resistance genes are observed with this process, as bacteria differ in susceptibility to temperature, pH, nutrient scarcity, and the presence of antimicrobials. Anaerobic digestion of agricultural residues and the immediate processing (post-treatment) of the digestate help to stabilise the digestate, making it safe for land applications, tackling waste management, and protecting food chains from contamination, in addition to the environment. This review focuses on the anaerobic digestion of lignocellulosic biomass, yielding biogas as energy, alongside sanitising the wastes by inactivating microbial components found therein, therefore reducing the contamination potential of the effluent or digestate discharged from the biodigester following the process. Several findings registered by different researchers through different studies performed in different countries under different scenarios while employing varying methods have been assembled in a chronological fashion to emphasise similarities and divergences or variations that deepen knowledge pertaining to the significance of the anaerobic digestion process in terms of the microbial interactions responsible for producing energy, addressing sanitisation and hygiene crisis, and the post-treatment of the digestate to ensure its use as biofertiliser. In other words, it is a comprehensive review that synthesises knowledge from multiple fields covering comparative aspects of anaerobic digestion in terms of sanitation, hygiene, and energy production and consolidates it in a single document to present and address the problem of waste management through anaerobic digestion technology.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.