Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = probiotic-derived factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1416 KiB  
Article
Bacillus spp. Potentiate the Virulence and Intracellular Invasion of A. paragallinarum in Chickens
by Jiajia Zhu, Ying Liu, Ting Gao, Yunsheng Chen, Keli Yang, Wei Liu, Kui Zhu and Danna Zhou
Animals 2025, 15(14), 2076; https://doi.org/10.3390/ani15142076 - 14 Jul 2025
Viewed by 267
Abstract
Coinfection poses severe threats to poultry health, particularly due to the complexity and resilience of multispecies interactions, increasing the difficulty of treatment. Haemophilus spp., a heterotrophic bacterium, heavily relies on extracellular growth factors acquired from other organisms or its surrounding environment. Although coinfections [...] Read more.
Coinfection poses severe threats to poultry health, particularly due to the complexity and resilience of multispecies interactions, increasing the difficulty of treatment. Haemophilus spp., a heterotrophic bacterium, heavily relies on extracellular growth factors acquired from other organisms or its surrounding environment. Although coinfections by Avibacterium paragallinarum and Bacillus have been reported, the underlying mechanism of the cooperative interaction remains poorly understood. In this study, we characterized the growth-promoting properties and nicotinamide adenine dinucleotide production of some Bacillus species, including probiotic Bacillus, to evaluate the feasibility of A. paragallinarum coinfection in vitro. Meanwhile, we determined the minimum inhibitory concentration (MIC) and population dynamics of cocultured Bacillus and A. paragallinarum to assess the effect of bacterial interactions on antibiotic efficacy. Additionally, we demonstrated that B. cereus aggravates rhinitis symptoms in chickens infected with A. paragallinarum. Our findings reveal that Bacillus spp.-derived metabolites sustain A. paragallinarum growth and enhance its survival, thereby highlighting the infection risks associated with Bacillus colonization in the respiratory tract. Full article
Show Figures

Figure 1

27 pages, 1212 KiB  
Review
Alginate Oligosaccharide and Gut Microbiota: Exploring the Key to Health
by Meiling Song, Lin Chen, Chen Dong, Minghui Tang, Yuan Wei, Depeng Lv, Quancai Li and Zhen Chen
Nutrients 2025, 17(12), 1977; https://doi.org/10.3390/nu17121977 - 11 Jun 2025
Viewed by 823
Abstract
Alginate oligosaccharide (AOS), a degradation product of alginate derived from marine brown algae, has attracted significant attention due to its potent ability to modulate gut microbiota and enhance human health. This review aims to systematically introduce current evidence on the interactions between AOS [...] Read more.
Alginate oligosaccharide (AOS), a degradation product of alginate derived from marine brown algae, has attracted significant attention due to its potent ability to modulate gut microbiota and enhance human health. This review aims to systematically introduce current evidence on the interactions between AOS and gut microbial communities, focusing on how AOS improves health through regulating gut microbiota. Initially, the structural factors of AOS that influence their functions are highlighted, including molecular weight, monomer composition, terminal structure, and chemical modifications. Importantly, AOS primarily exerts beneficial effects by adjusting gut microbiota community and outputs, which include the promotion of probiotics, the inhibition of pathogens, the balance of microbiota composition, and the increase of short-chain fatty acid production. Moreover, the discovered mechanisms underlying AOS-mediated health promotion via microbiota modulation are detailed comprehensively, specifically emphasizing intestinal barrier maintenance, antioxidation, dual-regulation of immune and inflammatory responses, pathogenic infection inhibition, metabolic improvement, uric acid excretion promotion, anti-tumor effects, and anti-skin aging. Such beneficial effects make AOS valuable in keeping healthy, preventing disorders, and intervening in diseases. Despite these findings and research progress, there are yet limitations in studying AOS–gut microbiota interactions, such as precise microbiota-targeted structural optimization, personalized nutritional interventions based on microbial characteristics, and broadening the horizon of microbiota-derived metabolic metabolomic profiles. In conclusion, advancing our understanding of the gut microbiota-centered mechanisms of AOS would probably facilitate novel nutritional strategy development for health promotion. Full article
(This article belongs to the Special Issue Bioactive Lipids and Metabolic Disease)
Show Figures

Graphical abstract

19 pages, 835 KiB  
Review
Kidney-Gut Axis in Chronic Kidney Disease: Therapeutic Perspectives from Microbiota Modulation and Nutrition
by Shu Wakino, Kazuhiro Hasegawa, Masanori Tamaki, Masanori Minato and Taizo Inagaki
Nutrients 2025, 17(12), 1961; https://doi.org/10.3390/nu17121961 - 9 Jun 2025
Viewed by 1159
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide, with an increasing incidence. One of the mechanisms of CKD progression involves a disordered inter-organ relationship between the kidneys and the intestine, known as the kidney-gut axis. In CKD, two pathological gut conditions—disturbed gut [...] Read more.
Chronic kidney disease (CKD) has a high prevalence worldwide, with an increasing incidence. One of the mechanisms of CKD progression involves a disordered inter-organ relationship between the kidneys and the intestine, known as the kidney-gut axis. In CKD, two pathological gut conditions—disturbed gut microbiota composition called uremic dysbiosis and leaky gut—contribute to the progression of CKD. Dysbiosis is associated with the increased production of gut-derived uremic toxins, leaky gut, and chronic systemic inflammation, leading to worsening uremia, which in turn aggravates the gut condition. This vicious cycle should be a target of the therapeutic strategy against CKD. The modulation of uremic dysbiosis, including prebiotics, probiotics, and synbiotics, has been a typical treatment approach, although clinical evidence for their efficacy has been insufficient. Some non-antibiotic drugs have an impact on human gut bacteria that are believed to play a role in their clinical efficacy on kidney function. Nutrition therapies, including a low-protein diet, dietary fiber, a Mediterranean diet, and whole grains, positively influence gut microbiota composition and have been linked to a decreased risk of CKD. Novel strategies are currently being explored, involving the use of postbiotics, microbiome sequencing techniques, and fecal microbiota transplantation, although clinical application remains to be tested. Human trials investigating the above-mentioned interventions remain inconclusive due to several limitations, including dietary variability and genetic factors. Future research should focus on the development of more effective probiotics, prebiotics, and microbial metabolism-modifying drugs, not only for CKD but for other systemic diseases as well. Full article
Show Figures

Figure 1

21 pages, 333 KiB  
Review
Incorporating Postbiotics into Intervention for Managing Obesity
by Emília Hijová, Izabela Bertková and Jana Štofilová
Int. J. Mol. Sci. 2025, 26(11), 5362; https://doi.org/10.3390/ijms26115362 - 3 Jun 2025
Viewed by 850
Abstract
Obesity is reaching global epidemic proportions worldwide, posing a significant burden on individual health and society. Altered gut microbiota is considered a key factor in the pathogenesis of many diseases, producing metabolites that contribute to the health-beneficial properties of postbiotics. Postbiotics, bioactive microbial [...] Read more.
Obesity is reaching global epidemic proportions worldwide, posing a significant burden on individual health and society. Altered gut microbiota is considered a key factor in the pathogenesis of many diseases, producing metabolites that contribute to the health-beneficial properties of postbiotics. Postbiotics, bioactive microbial components derived from probiotics, are emerging as a valuable strategy in modern medicine and a promising alternative for managing obesity without the need for live bacteria. This work provides a comprehensive overview of the potential health benefits of postbiotics, particularly in relation to obesity, which represents an important health challenge. Despite the encouraging insights into the health benefits of postbiotics, we highlight the need for further research to clarify the mechanisms and the specific roles of different postbiotic components. Integrating postbiotics into health interventions has the potential to enhance preventive care and significantly improve health outcomes in at-risk populations. Full article
26 pages, 948 KiB  
Review
Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions
by Yuan Gao, Yanyan Liu, Tingting Ma, Qimeng Liang, Junqi Sun, Xiaomeng Wu, Yinglong Song, Hui Nie, Jun Huang and Guangqing Mu
Foods 2025, 14(11), 1946; https://doi.org/10.3390/foods14111946 - 29 May 2025
Cited by 2 | Viewed by 2807
Abstract
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically [...] Read more.
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically to enhance microbial diversity, reinforce epithelial barrier integrity via upregulation of tight-junction proteins, and modulate immune signaling. Clinical evidence supports significant improvements in metabolic parameters (fasting glucose, lipid profiles, blood pressure) and reductions in systemic inflammation across metabolic syndrome, hypertension, and IBS cohorts. We highlight critical modulatory factors—including strain specificity, host enterotypes and FUT2 genotype, fermentation parameters, and matrix composition—that govern probiotic engraftment, postbiotic yield, and therapeutic efficacy. Despite promising short-term outcomes, current studies are limited by heterogeneous designs and brief intervention periods, underscoring the need for long-term, adaptive trials and integrative multi-omics to establish durability and causality. Looking forward, precision nutrition frameworks that harness baseline microbiota profiling, host genetics, and data-driven fermentation design will enable bespoke fermented dairy formulations, transforming these traditional foods into next-generation functional matrices for targeted prevention and management of metabolic, inflammatory, and neuroimmune disorders. Full article
Show Figures

Figure 1

31 pages, 465 KiB  
Review
The Role of Nutraceuticals and Probiotics in Addition to Lifestyle Intervention in the Management of Childhood Obesity—Part 1: Metabolic Changes
by Maria Elisabeth Street, Federica Casadei, Erika Rita Di Bari, Francesca Ferraboschi, Anna Giuseppina Montani, Anna-Mariia Shulhai and Susanna Esposito
Nutrients 2025, 17(10), 1630; https://doi.org/10.3390/nu17101630 - 9 May 2025
Viewed by 1414
Abstract
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 [...] Read more.
Childhood obesity is a growing global health issue. Its rising prevalence is linked to genetic, environmental, and lifestyle factors. Obesity in children could lead to different comorbidities and complications with an increased risk of metabolic disorders, such as insulin resistance, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). First-line treatment involves dietary modifications and lifestyle changes; however, adherence is often poor and remains a significant challenge. Pharmacotherapy, while a potential option, has limitations in availability and can cause side effects, leading to growing interest in alternative treatments, such as nutraceutical compounds. Derived from natural sources, these compounds have different anti-inflammatory, antiallergic, antioxidant, antibacterial, antifungal, neuroprotective, antiaging, antitumor, insulin-sensitizing, glucose, and lipid-lowering effects. This review describes commonly used nutraceutical compounds, such as omega-3 fatty acids, vitamin D, polyphenols (such as resveratrol and curcumin), berberine, white mulberry leaves and others, and pre- and probiotics in the management of obesity, evaluating the evidence on their mechanisms of action and efficacy in metabolic comorbidities. The evidence suggests that the integration of nutraceuticals into the diet may positively influence body mass index, glucose metabolism, lipid profiles, and gut microbiota composition and reduce inflammation in obese individuals. These effects may provide future practical guidance for clinical practice, contribute to metabolic health improvement, and potentially prevent obesity-related complications. In this first part, we discuss the effects of nutraceutical compounds on insulin sensitivity and insulin resistance, T2DM, dyslipidemia, and MASLD in addition to diet and lifestyle interventions. Full article
(This article belongs to the Special Issue Diet and Lifestyle Interventions for Child Obesity)
Show Figures

Graphical abstract

17 pages, 2758 KiB  
Article
Preventive Effect of Probiotic Leuconostoc mesenteroides H40 Against Cognitive Disorder by Anti-Inflammatory, Synaptic Plasticity Regulation, and Antioxidant Effects
by Na-Kyoung Lee, Yunjung Lee, Minhye Won, Nayeong Kim, Eunju Park and Hyun-Dong Paik
Antioxidants 2025, 14(5), 565; https://doi.org/10.3390/antiox14050565 - 8 May 2025
Viewed by 615
Abstract
Live Leuconostoc mesenteroides H40 has been reported to have probiotic properties; however, the effect of its live probiotic form on cognitive ability has not been reported. This study investigated modulatory effects of the probiotic L. mesenteroides H40 in an ICR mouse model (male) [...] Read more.
Live Leuconostoc mesenteroides H40 has been reported to have probiotic properties; however, the effect of its live probiotic form on cognitive ability has not been reported. This study investigated modulatory effects of the probiotic L. mesenteroides H40 in an ICR mouse model (male) of cognitive disorders. Cognitive disorders were induced in mice by the addition of scopolamine (1 mg/kg/day) with donepezil (2 mg/kg/day) as a medicinal control. L. mesenteroides H40 significantly attenuated scopolamine-induced cognitive disorder in the novel object recognition and Y-maze tests in a concentration-dependent manner. L. mesenteroides H40 decreased amyloid β levels, but increased β-secretase levels. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 significantly decreased following L. mesenteroides H40 treatment. Additionally, TNF-α, IL-1β, and PGE2 protein expression was decreased. Acetylcholine, acetylcholinesterase, choline acetyltransferase, brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) levels were increased in the brain tissues. The antioxidant effects of superoxide dismutase, catalase, and glutathione peroxidase were also alleviated. We demonstrated that L. mesenteroides H40 exhibits neuroprotective effects through anti-inflammatory, synaptic plasticity regulation, and antioxidant effects. Thus, the probiotic L. mesenteroides H40 could be used as a prophylactic functional food for cognitive disorders. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

20 pages, 4427 KiB  
Article
Separation and Characterization of Heterogeneity Among Various Sizes of Outer Membrane Vesicles Derived from the Probiotic Escherichia coli Nissle 1917
by Ning Li, Hongbo Xin and Keyu Deng
Membranes 2025, 15(5), 141; https://doi.org/10.3390/membranes15050141 - 5 May 2025
Cited by 1 | Viewed by 1001
Abstract
Outer membrane vesicles (OMVs) are extracellular vesicles secreted by Gram-negative bacteria with diameters of 20–250 nm. OMVs contain various biologically active substances from their parent bacteria, such as proteins, lipids, and nucleic acids. Escherichia coli Nissle 1917 (EcN) is a Gram-negative probiotic that [...] Read more.
Outer membrane vesicles (OMVs) are extracellular vesicles secreted by Gram-negative bacteria with diameters of 20–250 nm. OMVs contain various biologically active substances from their parent bacteria, such as proteins, lipids, and nucleic acids. Escherichia coli Nissle 1917 (EcN) is a Gram-negative probiotic that resides in the human intestine. EcN-derived OMVs are pivotal in modulating intestinal immune responses. However, few studies have addressed the heterogeneity of EcN-derived OMVs in terms of size, significantly limiting the research on their clinical applications. Currently, there are a lack of feasible methods for obtaining EcN-derived OMVs of different sizes. To address this knowledge gap, we developed a membrane filtration method to isolate EcN-derived OMVs of varying sizes. In this study, we first used gradient filtration to isolate high-purity EcN-derived OMVs and conducted a proteomic analysis. Subsequently, we used membrane filtration to separate the EcN-derived OMVs by size. We successfully obtained EcN-derived OMVs of three specific sizes: <50 nm, 50–100 nm, and 100–300 nm. We then performed proteomic analyses of these EcN-derived OMVs and compared their protein profiles. Finally, we compared the ability of each EcN-derived OMV type to induce RAW264.7 macrophages to secrete the pro-inflammatory factor interleukin (IL)-1β and the anti-inflammatory factor IL-10. The EcN-derived OMVs contained 646 different proteins overall; those of different sizes contained different protein types. Among them, the EcN-derived OMVs in the <50 nm group contained significantly fewer proteins (262 different types in total) than those in the 50–100 nm (1603 types) and 100–300 nm (1568 types) groups. Furthermore, the <50 nm group had fewer membrane proteins (40) than the 50–100 nm (215) and 100–300 nm (209) groups. We also found that RAW264.7 macrophages secreted different concentrations of IL-1β and IL-10 following co-incubation with the three EcN-derived OMV types. The 50–100 nm EcN-derived OMV group showed a stronger effect in terms of inducing inflammatory cytokine secretion compared to the other two groups. This study provides direct experimental evidence that EcN-derived OMVs of different sizes exhibit heterogeneous properties. Full article
Show Figures

Figure 1

15 pages, 1492 KiB  
Review
The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota
by Aleksandra Golenia and Piotr Olejnik
Antioxidants 2025, 14(5), 542; https://doi.org/10.3390/antiox14050542 - 30 Apr 2025
Cited by 2 | Viewed by 1090
Abstract
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80–90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow [...] Read more.
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80–90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow deprives neurons of essential oxygen and nutrients, triggering excitotoxicity, mitochondrial dysfunction, and excessive production of reactive oxygen and nitrogen species (RONS). Not only do these species damage cellular components, but they also activate inflammatory pathways, particularly those mediated by the transcription factor nuclear factor kappa-B (NF-κB). The pro-inflammatory milieu intensifies neuronal damage, compromises blood–brain barrier integrity, and exacerbates reperfusion-induced damage. Recent findings highlight the importance of the gut microbiota in modulating stroke outcomes, primarily through metabolic and immunological interactions along the gut–brain axis. Dysbiosis, characterised by reduced microbial diversity and an imbalance between beneficial and harmful strains, has been linked to increased systemic inflammation, oxidative stress, and worse prognoses. Specific gut-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), appear to either mitigate or intensify neuronal injury. SCFAs may strengthen the blood–brain barrier and temper inflammatory responses, whereas elevated TMAO levels may increase thrombotic risk. This narrative review consolidates both experimental and clinical data demonstrating the central role of oxidative stress in ischaemic stroke pathophysiology and explores the gut microbiota’s ability to modulate these damaging processes. Therapeutic strategies targeting oxidative pathways or rebalancing gut microbial composition, such as antioxidant supplementation, dietary modulation, probiotics, and faecal microbiota transplantation, present promising paradigms for stroke intervention. However, their widespread clinical implementation is hindered by a lack of large-scale, randomised trials. Future efforts should employ a multidisciplinary approach to elucidate the intricate mechanisms linking oxidative stress and gut dysbiosis to ischaemic stroke, thereby paving the way for novel, mechanism-based therapies for improved patient outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress in Gut Microbiota)
Show Figures

Figure 1

30 pages, 3775 KiB  
Review
Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer–Depression Comorbidity Management
by Haochen Dai, Haiyi Yang, Rui Wang, Xuanpeng Wang and Xin Zhang
Nutrients 2025, 17(9), 1505; https://doi.org/10.3390/nu17091505 - 29 Apr 2025
Viewed by 1003
Abstract
Background: Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host’s metabolism and immune function. Changes in gut microbiota [...] Read more.
Background: Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host’s metabolism and immune function. Changes in gut microbiota and their metabolites may represent key factors in preventing cancer–depression comorbidity. Methods: English publications were searched in databases including the Web of Science, Scopus, and PubMed using a series of keywords: “cancer”, “depression”, “gut microbiota”, “dietary components”, and related terms, individually or in combination. The search focused on preclinical and clinical studies describing the regulatory effects of dietary component interventions. Results: This narrative review summarizes the associations among gut microbiota, cancer, and depression, and synthesizes current evidence on the modulatory effects and mechanisms of specific dietary component interventions, including dietary patterns, probiotics, prebiotics, and diet-derived phytochemicals, on gut microbiota. On the one hand, these interventions inhibit abnormal proliferation signals in the tumor microenvironment and enhance anticancer immune responses; on the other hand, they modulate neurotransmitter homeostasis, suppress neuroinflammation, and improve mood behaviors through the gut–brain axis interactions mediated by microbial metabolites. Conclusions: The complex associations among cancer, depression, and gut microbiota require further clarification. Modulating gut microbiota composition through dietary components represents a novel therapeutic strategy for improving cancer–depression comorbidity. Regulated gut microbiota enhance immune homeostasis and intestinal barrier function, while their metabolites bidirectionally modulate one another via systemic circulation and the gut–brain axis, thereby improving both the tumor microenvironment and depressive-like behaviors in cancer patients while reducing the adverse effects of cancer. Full article
(This article belongs to the Special Issue Diet, Gut Health, and Clinical Nutrition)
Show Figures

Graphical abstract

30 pages, 2626 KiB  
Review
Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection
by Vlad Alexandru Ionescu, Camelia Cristina Diaconu, Gina Gheorghe, Mara-Madalina Mihai, Carmen Cristina Diaconu, Marinela Bostan and Coralia Bleotu
Int. J. Mol. Sci. 2025, 26(8), 3733; https://doi.org/10.3390/ijms26083733 - 15 Apr 2025
Cited by 3 | Viewed by 1867
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota [...] Read more.
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host–microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Disease and Health)
Show Figures

Figure 1

24 pages, 1598 KiB  
Review
Exploring the Role of Gut Microbiota and Probiotics in Acute Pancreatitis: A Comprehensive Review
by Enrico Celestino Nista, Simone Parello, Mattia Brigida, Giulio Amadei, Angela Saviano, Sara Sofia De Lucia, Carmine Petruzziello, Alessio Migneco and Veronica Ojetti
Int. J. Mol. Sci. 2025, 26(7), 3433; https://doi.org/10.3390/ijms26073433 - 6 Apr 2025
Cited by 2 | Viewed by 1691
Abstract
Acute pancreatitis (AP) is a common and potentially severe gastrointestinal condition characterized by acute inflammation of the pancreas. The pathophysiology of AP is multifactorial and intricate, involving a cascade of events that lead to pancreatic injury and systemic inflammation. The progression of AP [...] Read more.
Acute pancreatitis (AP) is a common and potentially severe gastrointestinal condition characterized by acute inflammation of the pancreas. The pathophysiology of AP is multifactorial and intricate, involving a cascade of events that lead to pancreatic injury and systemic inflammation. The progression of AP is influenced by many factors, including genetic predispositions, environmental triggers, and immune dysregulation. Recent studies showed a critical involvement of the gut microbiota in shaping the immune response and modulating inflammatory processes during AP. This review aims to provide a comprehensive overview of the emerging role of gut microbiota and probiotics in AP. We analyzed the implication of gut microbiota in pathogenesis of AP and the modification during an acute attack. The primary goals of microbiome-based therapies, which include probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and enteral nutrition, are to alter the composition of the gut microbial community and the amount of metabolites derived from the microbiota. By resetting the entire flora or supplementing it with certain beneficial organisms and their byproducts, these therapeutic approaches aim to eradicate harmful microorganisms, reducing inflammation and avoiding bacterial translocation and the potential microbiota-based therapeutic target for AP from nutrition to pre- and probiotic supplementation to fecal transplantation. Full article
Show Figures

Figure 1

18 pages, 260 KiB  
Article
Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers
by Helin Atan Çırpıcı and Figen Kırkpınar
Animals 2025, 15(7), 1010; https://doi.org/10.3390/ani15071010 - 31 Mar 2025
Viewed by 976
Abstract
This study aimed to evaluate the effects of encapsulated postbiotics derived from various probiotic microorganisms, alone or in combination with inulin, on the growth performance, carcass traits, organ weights, blood parameters, and mRNA expression of selected hormones in broilers. A total of 588 [...] Read more.
This study aimed to evaluate the effects of encapsulated postbiotics derived from various probiotic microorganisms, alone or in combination with inulin, on the growth performance, carcass traits, organ weights, blood parameters, and mRNA expression of selected hormones in broilers. A total of 588 one-day-old male Ross-308 chicks were randomly designated to six replicates of seven dietary treatments (initial body weight: 40.85 ± 0.56 g, per replicate, n = 14 chicks). The treatments consisted of a basal diet (C), supplemented with encapsulated postbiotics (0.30%) derived from Lactobacillus plantarum (ELP), Bacillus subtilis (EBS), or Enterococcus faecium (EEF), as well as combinations of these encapsulated postbiotics with 1.0% inulin (ELPI, EBSI, and EEFI) for six weeks. The results demonstrated that the body weight and body weight gain of birds that were fed diets supplemented with encapsulated postbiotics or their combinations with inulin significantly increased in comparison to the C group (p < 0.001). Feed intake (FI) remained unaffected during days 1–21, as did feed conversion ratios (FCR) during days 22–42, and days 1–42 demonstrated no significant differences (p > 0.05). However, FCR improved during days 1–21, and FI increased during days 22–42 and 1–42 (p < 0.05). Carcass yield, including breast, thigh, and abdominal fat yields, was enhanced (p < 0.001). Although the relative weights of the heart, spleen, pancreas, and liver were unaffected (p > 0.05), the relative weight of the bursa of Fabricius increased (p < 0.001). Serum antioxidant status and immunoglobulin A and M levels were higher, while liver enzymes, cholesterol, triglycerides, and total oxidant status were lower in the supplemented groups compared to the control group (p < 0.001). Serum glucose and protein levels remained unchanged (p > 0.05). The mRNA expression of growth hormone and insulin-like growth factor was upregulated in the supplemented groups (p < 0.001). In conclusion, encapsulated postbiotics (0.30%) derived from different probiotics, alone or combined with inulin (1.0%), positively influenced growth performance, carcass traits, and immunity in male broilers. Full article
(This article belongs to the Special Issue Novel Feed Additives in Livestock and Poultry Nutrition)
15 pages, 1909 KiB  
Article
Inhibitory Effect of Lactiplantibacillus plantarun HFY11 on Compound Diphenoxylate-Induced Constipation in Mice
by Fang Tan and Chang-Suk Kong
Biomolecules 2025, 15(3), 358; https://doi.org/10.3390/biom15030358 - 1 Mar 2025
Cited by 1 | Viewed by 771
Abstract
Lactiplantibacillus plantarun HFY11 (LP-HFY11) is a newly discovered microbial strain. This study was the first to investigate the preventive effect of LP-HFY11 on compound diphenoxylate induced constipation in mice by measuring intestinal contents, serum, and small intestinal tissue indexes. In mice suffering from [...] Read more.
Lactiplantibacillus plantarun HFY11 (LP-HFY11) is a newly discovered microbial strain. This study was the first to investigate the preventive effect of LP-HFY11 on compound diphenoxylate induced constipation in mice by measuring intestinal contents, serum, and small intestinal tissue indexes. In mice suffering from constipation, LP-HFY11 could prevent the reduction in fecal weight, particle count, and water content. The constipated mice that ingested a high LP-HFY11 dose (LP-HFY11H) expelled the first black stool faster than the model group and the drug lactulose-treated group, but they were slower than the normal group. Furthermore, the small intestine in the LP-HFY11H group had a greater propulsion rate of activated charcoal than that in the model and lactulose groups, but the propulsion rate was still lower than that in the normal group. According to hematoxylin–eosin (H&E) staining, LP-HFY11H was more effective than lactulose at reducing intestinal villi breaking and constipation-induced harm to the small intestine. Simultaneously, compared with the model group, the LP-HFY11H group had markedly increased serum levels of motilin (MTL), endothelin-1 (ET-1), vasoactive intestinal peptide (VIP), and acetylcholinesterase (AchE). Transient receptor potential vanilloid 1 (TRPV1) expression was only higher than in the normal group, but the mRNA expression of c-Kit, stem cell factor (SCF), and glial cell line-derived neurotrophic factor (GDNF) was all higher in the small intestine in the LP-HFY11H group than in the model and lactulose groups, according to the results of quantitative polymerase chain reaction (qPCR) experiments. Analysis of microbial mRNA in the small intestinal contents of the constipated mice further validated the capacity of LP-HFY11 to decrease the abundance of Firmicutes and increase the abundance of Bacteroidetes, Bifidobacteria, and Lactobacillus. This revealed that LP-HFY11, which produced better results than the drug lactulose, can control the gut microbiota of constipated mice and successfully cure constipation. LP-HFY11 has the potential to be used as a probiotic in the treatment of constipation. It has good application prospects in the food industry and biopharma. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 2184 KiB  
Article
Psychobiotic Protection of Nutritional Supplements and Probiotics in Patients Undergoing Hemodialysis: A Randomized Trial
by Eric Climent, Francisco Hevilla, Marina Padial, Guillermina Barril-Cuadrado, María Blanca, Tamara Jiménez-Salcedo, Maria López-Picasso, Ángel Nogueira-Pérez and Gabriel Olveira
Nutrients 2025, 17(4), 652; https://doi.org/10.3390/nu17040652 - 12 Feb 2025
Cited by 1 | Viewed by 1957
Abstract
Background/Objectives: The prevalence of depression and anxiety symptoms is remarkably high in malnourished individuals undergoing hemodialysis. The goal of this project was to evaluate the impact of administering an oral nutritional supplement combined with a probiotic blend on the microbiota, intestinal permeability, and [...] Read more.
Background/Objectives: The prevalence of depression and anxiety symptoms is remarkably high in malnourished individuals undergoing hemodialysis. The goal of this project was to evaluate the impact of administering an oral nutritional supplement combined with a probiotic blend on the microbiota, intestinal permeability, and depression symptoms in malnourished hemodialysis patients. Methods: With this aim, a randomized trial was conducted with three parallel groups: a control group with individualized diet, a supplement–placebo (SU-PL) group with oral nutritional supplementation (ONS), and a supplement–probiotic (SU-PR) group with ONS in conjunction with a probiotic blend. Blood and fecal samples were collected at basal time, and at 3 and 6 months. Several blood biomarkers, like zonulin, lipopolysaccharide-binding protein (LBP), lipopolysaccharide (LPS), and brain-derived neurotrophic factor (BDNF), were measured, and the fecal microbiome was sequenced with the Illumina platform. The Hospital Anxiety and Depression Scale (HADS) was used for the estimation of depression (HADS-D) and anxiety (HADS-A) symptoms, along with the standardized mental health index SF12-MH from the general health questionnaire SF-12. Results: The results showed that patients who consumed the probiotic blend maintained the LPS levels from their baseline readings and decreased their BDNF levels compared to the SU-PL or control groups. Moreover, a significant decrease in HADS-D scores (less depressive symptoms) and an increase in SF12-MH scores (higher quality of life) were found in that group in comparison to the other groups. The intervention produced an impact on the microbiome population, where the SU-PR group had reduced Akkermansia abundance with respect to the other groups, while their Acidaminococcus abundance decreased and their Barnesiella abundance increased with respect to the SU-PL group. Conclusions: Overall, the results indicate that the probiotic with the nutritional supplement could reduce the intestinal permeability biomarkers and improve depressive symptoms and quality of life in malnourished hemodialysis patients. Full article
(This article belongs to the Special Issue Diet and Microbiota–Gut–Brain Axis: A Novel Nutritional Therapy)
Show Figures

Figure 1

Back to TopTop