Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Preparation of Postbiotics Derived from Probiotics Strain and Encapsulation Process
2.3. Animals, Housing and Experimental Design
2.4. Growth Performance Data Collection
2.5. Carcass Characteristics and Internal Organs
2.6. Collection of Blood Samples for Serum Biochemical Analyses
2.7. mRNA Extraction of GHR and IGF-1 Genes
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, V.C.; Shim, W.Y.; Patel, S.K.S.; Gong, C.; Lee, J.K. Recent developments in antimicrobial growth promoters in chicken health: Opportunities and challenges. Sci. Total Environ. 2022, 834, 155300. [Google Scholar] [CrossRef] [PubMed]
- Santonja, G.G.; Georgitzikis, K.; Scalet, B.M.; Montobbio, P.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-70214-3. ISSN 1831-9424. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Fouad, H.; Quesnell, R.; Sakai, L. The effect of a postbiotic produced by stabilized non-viable Lactobacilli on the health, growth performance, immunity, and gut status of colisepticaemic broiler chickens. Trop. Anim. Health Prod. 2022, 54, 286. [Google Scholar] [CrossRef] [PubMed]
- Micciche, A.; Rothrock, M.J., Jr.; Yang, Y.; Ricke, S.C. Essential oils as an intervention strategy to reduce Campylobacter in poultry production: A review. Front. Microbiol. 2019, 10, 1058. [Google Scholar] [CrossRef]
- Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult. Sci. 2017, 96, 966–975. [Google Scholar] [CrossRef]
- Saleh, A.A.; Shukry, M.; Farrag, F.; Soliman, M.M.; Abdel-Moneim, A.M.E. Effect of feeding wet feed or wet feed fermented by Bacillus licheniformis on growth performance, histopathology and growth and lipid metabolism marker genes in broiler chickens. Animals 2021, 11, 83. [Google Scholar] [CrossRef]
- Axelsson, L.; Rud, I.; Naterstad, K.; Blom, H.; Renckens, B.; Boekhorst, J.; Kleerebezem, M.; van Hijum, S.; Siezen, R.J. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J. Bacteriol. 2012, 194, 2391–2392. [Google Scholar] [CrossRef]
- Vimon, S.; Angkanaporn, K.; Nuengjamnong, C. Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance, cecal microbiome and gut integrity of broiler chickens in a tropical climate. Anim. Biosci. 2023, 36, 1252–1262. [Google Scholar] [CrossRef]
- Song, X.; Lin, Z.; Yu, C.; Qiu, M.; Peng, H.; Jiang, X.; Du, H.; Li, Q.; Liu, Y.; Zhang, Z.; et al. Effects of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers. J. Anim. Physiol. Anim. Nutr. 2022, 106, 575–585. [Google Scholar] [CrossRef]
- Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef]
- Foligné, B.; Peys, E.; Vandenkerckhove, J.; Dewulf, J.; Breton, J.; Pot, B. Spores from two distinct colony types of the strain Bacillus subtilis PB6 substantiate anti-inflammatory probiotic effects in mice. Clin. Nutr. 2012, 31, 987–994. [Google Scholar] [CrossRef]
- Mohamed, T.M.; Sun, W.; Bumbie, G.Z.; Elokil, A.A.; Mohammed, K.A.F.; Zebin, R.; Hu, P.; Wu, L.; Tang, Z. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front. Microbiol. 2022, 12, 798350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Ji, L.; Zhang, L.; Zhao, L.; Guo, Y.; Wei, H.; Lu, L. Bacillus subtilis improves antioxidant capacity and optimizes inflammatory state in broilers. Anim. Biosci. 2024, 37, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.F.; Ferreira, C.L.L.F. The genus Enterococcus as probiotic: Safety concerns. Braz. Arch. Biol. Technol. 2013, 56, 457–466. [Google Scholar] [CrossRef]
- Wang, W.; Cai, H.; Zhang, A.; Chen, Z.; Chang, W.; Liu, G.; Deng, X.; Bryden, W.L.; Zheng, A. Enterococcus faecium modulates the gut microbiota of broilers and enhances phosphorus absorption and utilization. Animals 2020, 10, 1232. [Google Scholar] [CrossRef]
- Kochkina, E.; Andreeva, A.; Torshkov, A.; Dymova, V.; Altynbekov, O.; Sycheva, M. Metabolic response of broiler chickens to different doses of Enterococcus faecium ICIS 96 in the diet. Can. J. Vet. Res. 2024, 88, 19–23. [Google Scholar]
- Lee, T.; Pang, S.; Abraham, S.; Coombs, G.W. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. J. Glob. Antimicrob. Resist. 2019, 16, 36–47. [Google Scholar] [CrossRef]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef]
- Cicenia, A.; Scirocco, A.; Carabotti, M.; Pallotta, L.; Marignani, M.; Severi, C. Postbiotic activities of lactobacilli-derived factors. J. Clin. Gastroenterol. 2014, 48, 18–22. [Google Scholar] [CrossRef]
- Fang, S.; Fan, X.; Xu, S.; Gao, S.; Wang, T.; Chen, Z.; Li, D. Effects of dietary supplementation of postbiotic derived from Bacillus subtilis ACCC 11025 on growth performance, meat yield, meat quality, excreta bacteria, and excreta ammonia emission of broiler chicks. Poult. Sci. 2024, 5, 103444. [Google Scholar] [CrossRef]
- Li, D.; Fang, S.; He, F.; Fan, X.; Wang, T.; Chen, Z.; Wang, M. Postbiotic derived from Bacillus subtilis ACCC 11025 improves growth performance, mortality rate, immunity, and tibia health in broiler chicks. Front. Vet. Sci. 2024, 11, 1414767. [Google Scholar] [CrossRef]
- Danladi, Y.; Loh, T.C.; Foo, H.L.; Akit, H.; Md Tamrin, N.A.; Naeem Azizi, M. Effects of postbiotics and paraprobiotics as replacements for antibiotics on growth performance, carcass characteristics, small intestine histomorphology, immune status and hepatic growth gene expression in broiler chickens. Animals 2022, 12, 917. [Google Scholar] [CrossRef] [PubMed]
- Doski, J.M.M.; Kareem, K.Y. The effects of different levels of postbiotic and phytobiotic combination as feed additives on carcass, lipid profile, meat quality, and tibia bone in broiler chickens. Kirkuk Univ. J. Agric. Sci. 2023, 14, 227–241. [Google Scholar] [CrossRef]
- Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Akit, H.; Samsudin, A.A. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet. Res. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef]
- Contreras-López, G.; Carrillo-López, L.M.; Vargas-Bello-Pérez, E.; García-Galicia, I.A. Microencapsulation of feed additives with potential in livestock and poultry production: A systematic review. Chil. J. Agric. Anim. Sci. 2024, 40, 229–249. [Google Scholar] [CrossRef]
- Natsir, M.H.; Sjofjan, O.; Widodo, E.; Ardiansah, I.; Widyastuti, E.S. Effect of either non-encapsulated or encapsulated acidifier-phytobiotic-probiotic on performance, intestinal characteristics and intestinal microflora of local hybrid ducks. Livest. Res. Rural Dev. 2019, 31, 1–5. [Google Scholar]
- Van Immerseel, F.; Fievez, V.; De Buck, J.; Pasmans, F.; Martel, A.; Haesebrouck, F.; Ducatelle, R. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult. Sci. 2004, 83, 69–74. [Google Scholar]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef]
- Danilova, M.A.; Epova, E.Y.; Trubnikova, E.V.; Badrutdinov, N.V.; Kokoreva, A.S.; Pusev, M.S.; Isakova, E.P. Encapsulated phytase produced by recombinant Yarrowia lipolytica exhibits high efficiency on broiler chickens in low dosage. Appl. Sci. 2022, 12, 11999. [Google Scholar] [CrossRef]
- Reineccius, G.A. Carbohydrates for flavor encapsulation. Food Technol. 1991, 45, 144–147. [Google Scholar]
- Gouin, S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar]
- Liermann, W.; Frahm, J.; Berk, A.; Böschen, V.; Dänicke, S. Fine grinding or expanding as pre-treatment for pelleting in processing diets varying in dietary rapeseed expeller proportions: Investigations on performance, visceral organs, and immunological traits of broilers. Front. Vet. Sci. 2020, 7, 550092. [Google Scholar]
- SPSS. SPSS for Windows, Released 25.0 version; SPPS Inc.: Chicago, IL, USA, 2017.
- Thanh, N.T.; Loh, T.C.; Foo, H.L.; Hair-Bejo, M.; Azhar, B.K. Inhibitory activity of different combinations of metabolites from different strains of L. plantarum against pathogens. In Proceedings of the 29th Symposium of Malaysian Society for Microbiology, Kuala Terengganu, Malaysia, 24–26 November 2007; p. 55. [Google Scholar]
- Rosyidah, M.R.; Loh, T.C.; Foo, H.L.; Cheng, X.F.; Bejo, M.H. Effect of feeding metabolites and acidifier on growth performance, faecal characteristics and microflora in broiler chickens. Asian-Australas. J. Anim. Sci. 2011, 24, 1178–1185. [Google Scholar]
- Xia, Y.; Kong, J.; Zhang, G.; Zhang, X.; Seviour, R.; Kong, Y. Effects of dietary inulin supplementation on the composition and dynamics of cecal microbiota and growth- related parameters in broiler chickens. Poult. Sci. 2019, 98, 6942–6953. [Google Scholar] [CrossRef]
- Soren, S.; Mandal, G.P.; Mondal, S.; Pradhan, S.; Mukherjee, J.; Banerjee, D.; Pakhira, M.C.; Amla; Mondal, A.; Nsereko, V.; et al. Efficacy of Saccharomyces cerevisiae Fermentation Product and Probiotic Supplementation on Growth Performance, Gut Microflora and Immunity of Broiler Chickens. Animals 2024, 14, 866. [Google Scholar] [CrossRef]
- Jansseune, S.C.; Lammers, A.; van Baal, J.; Blanc, F.; van der Laan, M.H.P.; Calenge, F.; Hendriks, W.H. Diet composition influences probiotic and postbiotic effects on broiler growth and physiology. Poult. Sci. 2024, 103, 103650. [Google Scholar] [CrossRef]
- Abdel-Hafeez, H.M.; Saleh, E.S.; Tawfeek, S.S.; Youssef, I.M.; Abdel-Daim, A.S. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australas. J. Anim. Sci. 2016, 30, 672–682. [Google Scholar] [CrossRef]
- Mohammed, M.Y.; Kareem, K.Y. A comparison study of probiotic, postbiotic and prebiotic on performance and meat quality of broilers. Tikrit J. Agric. Sci. 2022, 22, 24–32. [Google Scholar] [CrossRef]
- Kareem, K.Y.; Loh, T.C.; Foo, H.L.; Asmara, S.A.; Akit, H.; Abdulla, N.R.; FoongOoi, M. Carcass, meat and bone quality of broiler chickens fed with postbiotic and prebiotic combinations. Int. J. Probiotics Prebiotics 2015, 10, 23. [Google Scholar]
- Etim, N.N.; Oguike, M.A. Haematology and serum biochemistry of rabbit does fed Aspilia africana. Niger. J. Agric. Food Environ. 2011, 7, 21–127. [Google Scholar]
- He, T.; Long, S.; Mahfuz, S.; Wu, D.; Wang, X.; Wei, X.; Piao, X. Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. Animals 2019, 9, 985. [Google Scholar] [CrossRef] [PubMed]
- Shafik, B.M.; Kamel, E.R.; Mamdouh, M.; Elrafaay, S.; Nassan, M.A.; El-Bahy, S.M.; El-Tarabany, M.S.; Manaa, E.A. Performance, blood lipid profile, and the expression of growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) genes in purebred and crossbred quail lines. Animals 2022, 12, 1245. [Google Scholar] [CrossRef]
- Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.S.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA 2016, 113, E7554–E7563. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Starter (1–21 Day) | Finisher (22–42 Day) |
---|---|---|
Corn | 526.13 | 638.30 |
Soybean meal 46CP | 254.14 | 235.01 |
Sunflower meal 35 CP | 30.00 | - |
Corn gluten meal 62CP | 28.00 | 34.55 |
Canola meal 34.5CP | 21.00 | - |
Wheat broken | 60.00 | 18.03 |
DDGS | 20.00 | - |
Meat and bone meal | 20.00 | 36.51 |
Acid oil | 10.00 | 25.00 |
Salt | 1.80 | 1.77 |
DCP | 9.28 | - |
Calcium carbonate | 6.22 | - |
Sodium bicarbonate | 1.77 | 1.15 |
Methionine | 2.80 | 2.48 |
Lysine | 3.61 | 3.11 |
Vitamins and minerals premix 1 | 2.50 | 2.50 |
Cholin chloride, mash 70% | 1.24 | 0.99 |
Threonine 98 | 1.01 | 0.60 |
Anticoccidial | 0.50 | - |
Calculated composition | ||
Dry matter % | 88.16 | 88.02 |
Ash % | 5.53 | 4.25 |
Crude protein % | 22.04 | 20.00 |
Crude fat % | 3.63 | 5.22 |
Crude fiber % | 3.50 | 2.57 |
Metabolic energy Kcal/kg diet | 2882 | 3120 |
Lysine % | 1.31 | 1.17 |
Methionine % | 0.63 | 0.56 |
Methionine + cystine % | 0.99 | 0.88 |
Tryptophan % | 0.24 | 0.20 |
Calcium % | 0.90 | 0.63 |
Available Phosphor % | 0.52 | 0.41 |
Gene | Primer Name | Primer Sequence (5′-3′) | Accession No | Product Length (bp) |
---|---|---|---|---|
IGF-1 | F | CAGTTCGTATGTGGAGACAGAG | >NM_001004384.3 | 103 |
B | AGCAGCACTCATCCACTATTC | >NM_001004384.3 | 103 | |
GH | F | GGACTGATGGAAACCTCACTAC | >NM_001397092.1 | 84 |
B | CCGGACATTCTTTCCAGTCTT | >NM_001397092.1 | 84 | |
ACTB | F | TGGGCCAGAAAGACAGCTAC | >NM_205518.1 | 82 |
B | CCGTGTTCAATGGGGTACTT | >NM_205518.1 | 82 |
Items | 1 Treatment | SEM 2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | ELP | EBS | EEF | ELPI | EBSI | EEFI | |||
BW, g | |||||||||
initial | 40.29 | 41.34 | 40.64 | 40.84 | 40.93 | 41.14 | 40.80 | 0.13 | 0.429 |
days 21 | 647.67 f | 670.14 c | 696.34 a | 658.45 e | 676.54 b | 698.81 a | 667.22 d | 2.68 | <0.001 |
days 42 | 2203.29 c | 2293.19 b | 2348.11 a | 2268.38 b | 2300.81 b | 2352.45 a | 2279.18 b | 8.98 | <0.001 |
BWG, g | |||||||||
days 1–21 | 607.37 f | 628.80 c | 655.68 a | 617.61 e | 635.61 b | 657.67 a | 626.42 d | 2.65 | <0.001 |
days 22–42 | 1555.62 b | 1623.05 a | 1653.78 a | 1609.92 a | 1624.26 a | 1655.64 a | 1611.95 a | 6.90 | <0.001 |
days 1–42 | 2162.99 c | 2251.85 b | 2307.46 a | 2227.54 b | 2259.87 b | 2312.31 a | 2238.38 b | 8.90 | <0.001 |
FI, g | |||||||||
days 1–21 | 898.78 | 904.78 | 917.32 | 902.44 | 905.44 | 920.09 | 904.29 | 2.25 | 0.083 |
days 22–42 | 2572.82 b | 2664.15 a | 2676.21 a | 2637.59 a | 2670.77 a | 2676.21 a | 2650.54 a | 8.95 | 0.013 |
days 1–42 | 3471.60 b | 3568.45 a | 3593.53 a | 3540.05 a | 3576.23 a | 3596.30 a | 3555.33 a | 9.85 | 0.005 |
FCR | |||||||||
days 1–21 | 1.48 a | 1.44 b | 1.40 c | 1.46 b | 1.42 bc | 1.40 c | 1.44 b | 0.00 | <0.001 |
days 22–42 | 1.65 | 1.64 | 1.62 | 1.64 | 1.64 | 1.62 | 1.64 | 0.00 | 0.801 |
days 1–42 | 1.60 | 1.58 | 1.56 | 1.59 | 1.58 | 1.56 | 1.59 | 0.00 | 0.075 |
Items | 1 Treatment | SEM 2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | ELP | EBS | EEF | ELPI | EBSI | EEFI | |||
Carcass weight, g | 1459.83 d | 1554.42 b | 1620.58 a | 1513.33 c | 1559.83 b | 1621.67 a | 1520.83 c | 6.03 | <0.001 |
Carcass yield, % | 65.70 d | 67.74 b | 68.83 a | 66.56 c | 67.76 b | 69.00 a | 66.71 c | 0.13 | <0.001 |
Breast, g | 560.50 d | 614.17 b | 649.50 a | 596.83 c | 620.83 b | 654.67 a | 600.17 c | 3.45 | <0.001 |
Breast yield, % | 25.23 c | 26.76 b | 27.69 a | 26.25 b | 26.97 b | 27.83 a | 26.33 b | 0.06 | <0.001 |
Thigh, g | 425.17 d | 468.50 b | 490.67 a | 454.92 c | 470.67 b | 491.17 a | 457.84 c | 2.36 | <0.001 |
Thigh yield, % | 19.14 c | 20.67 ab | 21.62 a | 20.04 b | 20.80 ab | 21.76 a | 20.33 b | 0.02 | <0.001 |
Abdominal fat, g | 10.50 | 10.42 | 10.37 | 10.45 | 10.42 | 10.37 | 10.43 | 0.01 | 0.267 |
Abdominal fat yield, % | 0.49 a | 0.46 c | 0.44 d | 0.47 b | 0.45 c | 0.44 d | 0.47 b | 0.01 | <0.001 |
Items | 1 Treatment | SEM 2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | ELP | EBS | EEF | ELPI | EBSI | EEFI | |||
Heart, % | 0.49 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.00 | 0.342 |
Liver, % | 2.02 | 2.06 | 2.08 | 2.05 | 2.06 | 2.08 | 2.06 | 0.00 | 0.228 |
Spleen, % | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.00 | 0.386 |
Bursa of Fabricius, % | 0.13 b | 0.15 a | 0.15 a | 0.15 a | 0.15 a | 0.15 a | 0.15 a | 0.00 | 0.002 |
Pancreas, % | 0.24 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.00 | 0.272 |
Items | 1 Treatment | SEM 2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | ELP | EBS | EEF | ELPI | EBSI | EEFI | |||
AST, U/L | 228.90 a | 214.73 bc | 211.33 c | 219.10 b | 213.29 bc | 210.03 c | 218.31 b | 1.17 | <0.001 |
ALT, U/L | 22.88 a | 21.43 b | 21.30 b | 21.67 b | 21.39 b | 21.30 b | 21.51 b | 0.12 | 0.001 |
ALP, U/L | 3553.67 a | 2942.00 b | 2880.00 b | 3007.50 b | 2941.67 b | 2878.33 b | 3001.33 b | 57.02 | <0.001 |
GGT, U/L | 16.67 a | 13.53 b | 13.16 bc | 14.50 b | 13.33 b | 12.67 c | 14.00 b | 0.24 | <0.001 |
LDH, U/L | 864.50 a | 756.83 c | 749.83 d | 767.83 b | 753.17 c | 749.50 d | 765.17 bc | 6.16 | <0.001 |
Chol, mg/dL | 119.35 a | 115.50 bc | 112.17 c | 116.33 ab | 115.33 bc | 112.16 c | 116.33 ab | 0.57 | 0.003 |
TG, mg/dL | 39.50 a | 35.67 bc | 34.67 c | 35.83 b | 35.17 bc | 34.33 c | 35.80 b | 6.90 | <0.001 |
Glu, mg/dL | 171.33 | 165.67 | 164.33 | 166.00 | 164.67 | 164.00 | 165.50 | 0.78 | 0.182 |
TP, g/dL | 3.71 | 3.67 | 3.64 | 3.67 | 3.64 | 3.62 | 3.68 | 0.01 | 0.076 |
TAS, mmol/L | 2.00 c | 2.33 a | 2.21 ab | 2.16 b | 2.34 a | 2.25 ab | 2.17 b | 0.02 | <0.001 |
TOS, µmol/L | 8.11 a | 6.52 bc | 6.89 b | 6.94 b | 6.41 c | 6.62 bc | 6.92 b | 0.09 | <0.001 |
IgA, mg/dL | 10.38 c | 11.63 a | 11.46 ab | 11.32 b | 11.66 a | 11.60 a | 11.38 b | 0.07 | <0.001 |
IgM, mg/dL | 6.55 c | 8.15 ab | 8.04 ab | 7.87 b | 8.24 a | 8.09 ab | 7.96 ab | 0.09 | <0.001 |
Items | 1 Treatment | SEM 2 | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | ELP | EBS | EEF | ELPI | EBSI | EEFI | |||
GH | 1.00 c | 3.65 b | 3.82 a | 3.62 b | 3.67 b | 3.83 a | 3.63 b | 0.04 | <0.001 |
IGF-1 | 1.00 c | 5.67 b | 6.31 a | 5.59 b | 5.69 b | 6.31 a | 5.60 b | 0.27 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atan Çırpıcı, H.; Kırkpınar, F. Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers. Animals 2025, 15, 1010. https://doi.org/10.3390/ani15071010
Atan Çırpıcı H, Kırkpınar F. Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers. Animals. 2025; 15(7):1010. https://doi.org/10.3390/ani15071010
Chicago/Turabian StyleAtan Çırpıcı, Helin, and Figen Kırkpınar. 2025. "Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers" Animals 15, no. 7: 1010. https://doi.org/10.3390/ani15071010
APA StyleAtan Çırpıcı, H., & Kırkpınar, F. (2025). Effects of Supplementation with Encapsulated Different Postbiotics, Alone or with Inulin, on Growth Performance, Carcass and Organ Characteristics, Blood Parameters, Growth Hormone, and Insulin-like Growth Factor mRNA in Broilers. Animals, 15(7), 1010. https://doi.org/10.3390/ani15071010