Incorporating Postbiotics into Intervention for Managing Obesity
Abstract
1. Introduction
2. Gut Microbiota Profile and Obesity-Associated Dysbiosis
3. Postbiotics
3.1. Postbiotics with Anti-Obesity Effects in Preclinical Studies
3.1.1. Cell Wall Components
3.1.2. Biotransformation (Bioconversion) Products
3.1.3. Cell-Free Lysates
3.1.4. Bacterial Extracellular Vesicles
3.1.5. Bacteriocins
3.1.6. SCFAs
- (a)
- SCFAs exert an anti-inflammatory effect by inhibiting histone deacetylase (HDAC) activity, leading to increased histone acetylation, which alters gene expression by promoting the availability of transcription factors in promoter regions [86];
- (b)
- The initiation of signal transduction in various organs and the stimulation of the intestinal hormone release, such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), occur following SCFAs binding to G protein-coupled receptors (GPCRs). Acetate, the most abundant SCFA, positively impacts host energy metabolism by influencing gut hormones like GLP-1 and PYY. Once in the bloodstream, these hormones affect appetite, reduce lipolysis, lower pro-inflammatory cytokines, and increase energy expenditure and fat oxidation [85];
- (c)
- Butyrate acts as a ligand, or signaling molecule, for the aryl hydrocarbon receptor (AhR) and PPARγ, both of which are transcription factors that regulate gene expression. By activating these receptors, butyrate modulates gene expression and influences various aspects of gut health, metabolism, and immune responses [87].
- -
- the regulation of lipid metabolism
- -
- improving glucose homeostasis and insulin resistance
- -
- the regulation of energy intake and expenditure
- -
- the regulation of the immune system and anti-inflammatory reactions
- -
- the regulation of blood pressure
3.1.7. Other Metabolites
4. Effectiveness of Postbiotics in Clinical Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, Y.; Yang, H.; Nie, R.; Zhang, X.; Zuo, F.; Zhang, H.; Nian, X. Obesity: Pathophysiology and therapeutic interventions. Mol. Biomed. 2025, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and cardiovascular health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- World Obesity Federation. World Obesity Atlas. 2023, p. 232. Available online: http://www.worldobesity.org (accessed on 5 March 2023).
- Oh, K.K.; Gupta, H.; Min, B.H.; Ganesan, R.; Sharma, S.P.; Won, S.M.; Jeong, J.J.; Lee, S.B.; Cha, M.G.; Kwon, G.H.; et al. Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study. Cells 2022, 11, 2903. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Cantone, E.; Cassarano, S.; Tuccinardi, D.; Barrea, L.; Savastano, S.; Colao, A. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019, 9, 10–19. [Google Scholar] [CrossRef]
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Tsigalou, C.; Dalamaga, M. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep. 2020, 9, 179–192. [Google Scholar] [CrossRef]
- Cabello-Olmo, M.; Araňa, M.; Urtasun, R.; Encio, I.J.; Barajas, M. Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods 2021, 10, 1590. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The concept of postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as potential new therapeutic agents for metabolic disordersmanagement. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- Heiss, C.N.; Olofsson, E. Gut Microbiota-Dependent Modulation of Energy Metabolism. J. Innate Immun. 2018, 10, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Arora, K.; Prakash, S. Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int. J. Mol. Sci. 2020, 21, 2890. [Google Scholar] [CrossRef] [PubMed]
- Aoun, A.; Darwish, F.; Hamod, N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev. Nutr. Food Sci. 2020, 25, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, B.; Bai, J.; Zhang, Y.; Liu, C.; Suo, H.; Wang, C. Postbiotics are a candidate for new functional foods. Food Chem. X 2024, 23, 101650. [Google Scholar] [CrossRef]
- Fábryová, L. Obezita a jej manažment. Forum Diab. 2021, 10 (Suppl. S2), 180–201. [Google Scholar]
- Wang, P.X.; Deng, X.R.; Zhang, C.H.; Yuan, H.J. Gut microbiota and metabolic syndrome. Chin. Med. J. 2020, 133, 808–816. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. IARC working group on Energy Balance and Obesity. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef]
- Ramezani, F.; Pourghazi, F.; Eslami, M.; Gholami, M.; Khonsari, N.M.; Ejtahed, H.S.; Larijani, B.; Qorbani, M. Dietary fiber intake and all-cause and cause-specific mortality: An updated systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2024, 43, 65–83. [Google Scholar] [CrossRef]
- Aziz, Q.; Doré, J.; Emmanuel, A.; Guarner, F.; Quigley, E.M.M. Gut microbiota and gastrointestinal health: Current concepts and future directions. Neurogastroenterol. Motil. 2013, 25, 4–15. [Google Scholar] [CrossRef]
- Al-Assal, K.; Martinez, A.C.; Torrinhas, R.S.; Cardinelli, C.; Waitzberg, D. Gut microbiota and obesity. Clin. Nutr. Exp. 2018, 20, 60–64. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Chatelier, L.E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Scarpellini, E.; Colica, C.; Boccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; De Lorenzo, A.; Izzo, A.A.; et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019, 11, 2690. [Google Scholar] [CrossRef] [PubMed]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef]
- Cani, P.D.; Moens de Hase, E.; Van Hul, M. Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms 2021, 9, 1302. [Google Scholar] [CrossRef]
- Chakraborti, C.K. New-found link between microbiota and obesity. World J. Gastrointest. Pathophysiol. 2015, 6, 110–119. [Google Scholar] [CrossRef]
- Lemstra, M.; Bird, Y.; Nwankwo, C.; Rogers, M.; Moraros, J. Weight loss intervention adherence and factors promoting adherence: A meta-analysis. Patient Prefer. Adherence 2016, 10, 1547–1559. [Google Scholar] [CrossRef]
- Breton, J.; Galmiche, M.; Déchelotte, P. Dysbiosis gut bacteria in obesity: An overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. Microorganisms 2022, 10, 452. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8. [Google Scholar] [CrossRef]
- Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; Leitch, C.M.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014, 8, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic diseases. Gut Microbes 2021, 13, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Role of gut microbiota in the aetiology of obesity: Proposed mechanisms and review of literature. J. Obes. 2016, 2016, 7353642. [Google Scholar] [CrossRef] [PubMed]
- Sukkar, A.H.; Lett, A.M.; Frost, G.; Chambers, E.S. Regulation of energy expenditure and substrate oxidation by short-chain fatty acids. J. Endocrinol. 2019, 242, R1–R8. [Google Scholar] [CrossRef]
- López, M. EJE PRIZE 2017: Hypothalamic AMPK: A golden target against obesity? Eur. J. Endocrinol. 2017, 176, R235–R246. [Google Scholar] [CrossRef]
- Beiroa, D.; Imbernon, M.; Gallego, R.; Senra, A.; Herranz, D.; Villarroya, F.; Serrano, M.; Fernø, J.; Salvador, J.; Escalada, J.; et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014, 63, 3346–3358. [Google Scholar] [CrossRef]
- Lopez, M.; Nogueiras, R.; Tena-Sempere, M.; Dieguez, C. Hypothalamic AMPK: A canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 2016, 12, 421–432. [Google Scholar] [CrossRef]
- Martinez de Morentin, P.B.; Urisarri, A.; Couce, M.L.; Lopez, M. Molecular mechanisms of appetite and obesity: A role for brain AMPK. Clin. Sci. 2016, 130, 1697–1709. [Google Scholar] [CrossRef]
- Pindjakova, J.; Sartini, C.; Lo Re, O.; Rappa, F.; Coupe, B.; Lelouvier, B.; Pazienza, V.; Vinciguerra, M. Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic inflammation. Front. Microbiol. 2017, 8, 1157. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrick, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Tsilingiri, K.; Rescigno, M. Postbiotics: What else? Benef. Microbes 2013, 4, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (ISSAP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Zółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A step beyond pre- and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Joung, M.; Park, J.H.; Ha, S.K.; Park, H.Y. Role of postbiotics in diet-induced metabolic disorders. Nutrients 2022, 14, 3701. [Google Scholar] [CrossRef]
- Gurunathan, S.; Thangaraj, P.; Kim, J.H. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023, 13, 89. [Google Scholar] [CrossRef]
- Xu, Y.; Zang, J.; Regenstein, J.M.; Xia, W. Technological roles of microorganisms in fish fermentation: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1000–1012. [Google Scholar] [CrossRef]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Lim, A.; Baek, J.; Nam, Y.; Yoon, S.; Kim, J.H.; Kwak, J.; Lee, G.; Kim, W. Effect of postbiotic Lactiplantibacillus plantarum LRCC5282 on obesity improvement by modulation of the gut microbiome. J. Funct. Foods 2024, 123, 106622. [Google Scholar] [CrossRef]
- López-Almada, G.; Mejía-León, M.E.; Salazar-López, N.J. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024, 13, 3529. [Google Scholar] [CrossRef]
- Williams, L.; Alshehri, A.; Robichaud, B.; Cudmore, A.; Gagnon, J. The Role of the Bacterial Muramyl Dipeptide in the Regulation of GLP-1 and Glycemia. Int. J. Mol. Sci. 2020, 21, 5252. [Google Scholar] [CrossRef]
- Cavallari, J.F.; Barra, N.G.; Foley, K.P.; Lee, A.; Duggan, B.M.; Henriksbo, B.D.; Anhê, F.F.; Ashkar, A.A.; Schertzer, J.D. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice. Am. J. Physiol. Endocrinol. Metab. 2020, 318, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, H.; Arce, L.; Tomotsune, K.; Albarracin, L.; Funabashi, R.; Vera, D.; Islam, M.A.; Vizoso-Pinto, M.G.; Takahashi, H.; Sasaki, Y.; et al. Lipoteichoic Acid Is Involved in the Ability of the Immunobiotic Strain Lactobacillus plantarum CRL1506 to Modulate the Intestinal Antiviral Innate Immunity Triggered by TLR3 Activation. Front. Immunol. 2020, 11, 571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.; Kong, S.; Chen, N.; Hung, W.-L.; Zhao, W.; Zeng, Z.; Zhang, J.; Yang, Z. Lipoteichoic acid obtained from Lactobacillus paracasei via low-temperature pasteurization alleviates the macrophage inflammatory response by downregulating the NF-κB signaling pathway. J. Funct. Foods 2023, 107, 105673. [Google Scholar] [CrossRef]
- Balaguer, F.; Enrique, M.; Llopis, S.; Barrena, M.; Navarro, V.; Álvarez, B.; Chenoll, E.; Ramón, D.; Tortajada, M.; Martorell, P. Lipoteichoic acid from Bifidobacterium animalis subsp. lactis BPL1: A novel postbiotic that reduces fat deposition via IGF-1 pathway. Microb. Biotechnol. 2022, 15, 805–816. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Li, Y.; Zhou, L.; Ding, Q.; Xu, L. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Sci. Rep. 2016, 6, 36083. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Oh, N.; Park, J.; Kwon, M.; Seo, J.; Roh, S. Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2-and AMPK-mediated obesity-associated disorders in high-fat-diet-induced obese C57BL/6J mice. Cell Prolif. 2021, 54, e13039. [Google Scholar] [CrossRef]
- Lee, J.S.; Hyun, I.K.; Yoon, J.W.; Seo, H.J.; Kang, S.S. Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect. Food Sci. Anim. Resour. 2021, 41, 145–152. [Google Scholar] [CrossRef]
- Youn, H.Y.; Seo, K.H.; Kim, H.J.; Kim, Y.S.; Kim, H. Effect of postbiotics derived from kefir lactic acid bacteria-mediated bioconversion of citrus pomace extract and whey on high-fat diet-induced obesity and gut dysbiosis. Food Res. Int. 2022, 162, 111930. [Google Scholar] [CrossRef]
- Osman, A.; El-Gazzar, N.; Almanaa, T.N.; El-Hadary, A.; Sitohy, M. Lipolytic postbiotic from Lactobacillus paracasei manages metabolic syndrome in albino wistar rats. Molecules 2021, 26, 472. [Google Scholar] [CrossRef]
- Yoshitake, R.; Hirose, Y.; Murosaki, S.; Matsuzaki, G. Heat-killed Lactobacillus plantarum L-137 attenuates obesity and associated metabolic abnormalities in C57BL/6 J mice on a high-fat diet. Biosci. Microbiota Food Health 2021, 40, 84–91. [Google Scholar] [CrossRef]
- Ashrafian, F.; Shahriary, A.; Behrouzi, A.; Moradi, H.R.; Raftar, S.K.A.; Lari, A.; Hadifar, S.; Yaghoubfar, R.; Badi, S.A.; Khatami, S.; et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front. Microbiol. 2019, 10, 2155. [Google Scholar] [CrossRef] [PubMed]
- Rodovalho, V.R.; da Luz, B.S.R.; Rabah, H.; do Carmo, F.L.R.; Folador, E.L.; Nicolas, A.; Jardin, J.; Briard-Bion, V.; Blottière, H.; Lapaque, N.; et al. Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Front. Microbiol. 2020, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Champagne-Jorgensen, K.; Mian, M.F.; McVey Neufeld, K.A.; Stanisz, A.M.; Bienenstock, J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci. Rep. 2021, 11, 13756. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.; Carvalho, A.L.; Miquel-Clopés, A.; Jones, E.J.; Juodeikis, R.; Stentz, R.; Carding, S.R. Extracellular vesicles produced by the human gut commensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells. Front. Microbiol. 2022, 13, 1050271, Erratum in Front. Microbiol. 2024, 14, 1353539. https://doi.org/10.3389/fmicb.2023.1353539. [Google Scholar] [CrossRef]
- Heeney, D.D.; Zhai, Z.; Bendiks, Z.; Barouei, J.; Martinic, A.; Slupsky, C.; Marco, M.L. Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro. Gut Microbes 2019, 10, 382–397. [Google Scholar] [CrossRef]
- Mahdavi, V.; Kazerani, H.R.; Taghizad, F.; Balaei, H. The effects of the gut bacterial product, gassericin A.; on obesity in mice. Lipids Health Dis. 2025, 24, 3. [Google Scholar] [CrossRef]
- den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Soliman, M.; Kimura, K.; Ahmed, M.; Yamaji, D.; Matsushita, Y.; Okamatsu-Ogura, Y.; Makondo, K.; Saito, M. Inverse regulation of leptin mRNA expression by short-and long-chain fatty acids in cultured bovine adipocytes. Domest. Anim. Endocrinol. 2007, 33, 400–409. [Google Scholar] [CrossRef]
- Abdulrahman, A.O.; Alzubaidi, M.Y.; Nadeem, M.S.; Khan, J.A.; Rather, I.A.; Khan, M.I. Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. Int. J. Food Sci. Nutr. 2021, 72, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Lee, H.G.; Han, S.; Seo, K.H.; Kim, H. Effect of surface layer proteins derived from paraprobiotic kefir lactic acid bacteria on inflammation and high-fat diet-induced obesity. J. Agric. Food Chem. 2021, 69, 15157–15164. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.H.; Lee, H.G.; Eor, J.Y.; Jeon, H.J.; Yokoyama, W.; Kim, H. Effects of kefir lactic acid bacteria-derived postbiotic components on high fat diet-induced gut microbiota and obesity. Food Res. J. 2022, 157, 111445. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Ibrahim, S.A. Lactic acid bacteria: An essential probiotic and starter culture for the production of yoghurt. Int. J. Food Sci. Technol. 2022, 57, 7008–7025. [Google Scholar] [CrossRef]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- Liu, B.D.; Akbar, R.; Oliverio, A.; Thapa, K.; Wang, X.; Fan, G.C. Bacterial extracellular vesicles in the regulation of inflammatory response and host-microbe interactions. Shock 2024, 61, 175–188. [Google Scholar] [CrossRef]
- Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef]
- Saad, M.J.; Santos, A.; Prada, P.O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 2016, 31, 283–293. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 2018, 31, 35–51. [Google Scholar] [CrossRef]
- Reuben, R.C.; Torres, C. Bacteriocins: Potentials and prospects in health and agrifood systems. Arch. Microbiol. 2024, 206, 233. [Google Scholar] [CrossRef] [PubMed]
- Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vila, A.V.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.E.; Oosting, M.; et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gallausiaux, C.; Marinelii, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.A.G.; Canfora, E.E.; Jocken, J.W.E.; Blaak, E.E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019, 11, 1943. [Google Scholar] [CrossRef]
- Waldecker, M.; Kautenburger, T.; Daumann, H.; Busch, C.; Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 2008, 19, 587–593. [Google Scholar] [CrossRef]
- Hassan, F.-u.; Nadeem, A.; Li, Z.; Javed, M.; Liu, Q.; Azhar, J.; Rehman, M.S.-u.; Cui, K.; Rehman, S.u. Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int. J. Mol. Sci. 2021, 22, 12463. [Google Scholar] [CrossRef]
- Hung, T.V.; Suzuki, T. Dietary fermentable fibers attenuate chronic kidney disease in mice by protecting the intestinal barrier. J. Nutr. 2018, 148, 552–561. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Hung, X.; Eaves-Pyles, T.D.; Golovko, G.; et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018, 11, 752–762. [Google Scholar] [CrossRef]
- Pingitore, A.; Chambers, E.S.; Hill, T.; Maldonado, I.R.; Liu, B.; Bewick, G.; Morrison, D.J.; Preston, T.; Wallis, G.A.; Tedford, C.; et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 2017, 19, 257–265. [Google Scholar] [CrossRef]
- Li, Q.; Chen, H.; Zhang, M.; Wu, T.; Liu, R. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate ampk levels and intestinal homeostasis. Food Funct. 2019, 10, 7174–7187. [Google Scholar] [CrossRef]
- De Silva, A.; Bloom, S.R. Gut hormones and appetite control: A focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 2012, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, F.C.; Fantuzzi, G. The association of short-chain fatty acids and leptin metabolism: A systemic review. Natr. Res. 2019, 72, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, C.; An, Y.; Huang, Y.; Zhang, H.; Fu, W.; Wang, M.; Shan, Z.; Xie, J.; Yang, Y.; et al. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int. J. Mol. Sci. 2024, 25, 7379. [Google Scholar] [CrossRef] [PubMed]
- Nastasi, C.; Candela, M.; Bonefeld, C.M.; Geisler, C.; Hansen, M.; Krejsgaard, T.; Biagi, E.; Andersen, M.H.; Brigidi, P.; Ødum, N.; et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 2015, 5, 16148. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef]
- Cobo, E.R.; Kissoon-Singh, V.; Moreau, F.; Holani, R.; Chadee, K. MUC2 mucin and butyrate contribute to the synthesis of the antimicrobial peptide cathelicidin in response to entamoeba histolytica-and dextran sodium sulfate-induced colitis. Infect. Immun. 2017, 85, e00905-16. [Google Scholar] [CrossRef]
- Zadeh-Tahmasebi, M.; Duca, F.A.; Rasmussen, B.A.; Bauer, P.V.; Côté, C.D.; Filippi, B.M.; Lam, T.K.T. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J. Biol. Chem. 2016, 291, 8816–8824. [Google Scholar] [CrossRef]
- Tow, W.K.; Chee, P.Y.; Sundralingam, U.; Palanisamy, U.D. The Therapeutic Relevance of Urolithins, Intestinal Metabolites of Ellagitannin-Rich Food: A Systematic Review of In Vivo Studies. Nutrients 2022, 14, 3494. [Google Scholar] [CrossRef]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef]
- Van der Beek, C.M.; Canfora, E.E.; Lenaerts, K.; Troost, F.J.; Olde Damink, S.W.; Holst, J.J.; Masclee, A.A.M.; Dejong, C.H.C.; Blaak, E.E. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 2016, 130, 2073–2082. [Google Scholar] [CrossRef]
- Canfora, E.E.; van der Beek, C.M.; Jocken, J.W.; Goossens, G.H.; Holst, J.J.; Olde Damink, S.W.M.; Lenaerts, K.; Dejong, C.H.C.; Blaak, E.E. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Sci. Rep. 2017, 7, 2360. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, N.; Mahdavi, R.; Alizadeh, E.; Jafarabadi, M.A.; Hedayati, M.; Ghavami, A.; Alipour, S.; Alamdari, N.M.; Barati, M.; Ostadrahimi, A. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: A randomized double-blind, placebo-controlled trial. Horm. Metab. Res. 2017, 49, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.; Nocerino, R.; Paparo, L.; Bedogni, G.; Calignano, A.; Di Scala, C.; de Giovanni di Santa Severina, A.F.; De Filippis, F.; Ercolini, D.; Berni Canani, R. Therapeutic effects of butyrate on pediatric obesity: A randomized clinical trial. JAMA Netw. 2022, 5, e2244912, Erratum in JAMA Netw. 2024, 7, e2421429. https://doi.org/10.1001/jamanetworkopen.2024.21429; Erratum in JAMA Netw. 2025, 8, e259711. https://doi.org/10.1001/jamanetworkopen.2025.9711. [Google Scholar] [CrossRef] [PubMed]
- van Deuren, T.; Smolders, L.; Hartog, A.; Bouwman, F.G.; Holst, J.J.; Venema, K.; Blaak, E.E.; Canfora, E.E. Butyrate and hexanoate-enriched triglycerides increase postprandrial systemic butyrate and hexanoate in men with overweight/obesity: A double-blind placebo-controlled randomized crossover trial. Front. Nutr. 2023, 9, 1066950. [Google Scholar] [CrossRef]
- Amiri, P.; Hosseini, S.A.; Saghafi-Asl, M.; Roshanravan, N.; Tootoonchian, M. Expression of PGC-1α, PPAR-α and UCP1 genes, metabolic and anthropometric factors in response to sodium butyrate supplementation in patients with obesity: A triple-blind, randomized placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2025, 79, 249–257. [Google Scholar] [CrossRef]
- Higashikawa, F.; Noda, M.; Awaya, T.; Danshiitsoodol, N.; Matoba, Y.; Kumagai, T.; Sugiyama, M. Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016, 70, 582–587. [Google Scholar] [CrossRef]
- Nakamura, F.; Ishida, Y.; Aihara, K.; Sawada, D.; Ashida, N.; Sugawara, T.; Aoki, Y.; Takehara, I.; Takano, K.; Fujiwara, S. Effect of fragmented Lactobacillus amylovorus CP1563 on lipid metabolism in overweight and mildly obese individuals: A randomized controlled trial. Microb. Ecol. Health Dis. 2016, 27, 30312. [Google Scholar] [CrossRef]
- Sugawara, T.; Sawada, D.; Yanagihara, S.; Aoki, Y.; Takehara, I.; Sugahara, H.; Hirota, T.; Nakamura, Y.; Ishikawa, S. Daily intake of paraprobiotic Lactobacillus amylovorus CP1563 improves pre-obese conditions and affects the gut microbial community in healthy pre-obese subjects: A double-blind, randomized, placebo-controlled study. Microorganisms 2020, 8, 304. [Google Scholar] [CrossRef]
- Companys, J.; Calderón-Pérez, L.; Pla-Pagà, L.; Llauradó, E.; Sandoval-Ramirez, B.A.; Gosalbes, M.J.; Arregui, A.; Barandiaran, M.; Caimari, A.; Del Bas, J.M.; et al. Effects of enriched seafood sticks (heat-inactivated B.animalis subsp. lactis CECT 8145, inulin, omega-3) on cardiometabolic risk factors and gut microbiota in abdominally obese subjects: Randomized controlled trial. Eur. J. Nutr. 2022, 61, 3597e611. [Google Scholar] [CrossRef]
- Medina-Vera, I.; Sanchez-Tapia, M.; Noriega-López, L.; Granados-Portillo, O.; Guevara-Cruz, M.; Flores-López, A.; Avila-Nava, A.; Fernández, M.L.; Tovar, A.R.; Torres, N. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab. 2019, 45, 122–131. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: http://clinicaltrials.gov/search?cond=Obesity%20and%20Overweight&intr=Postbiotic (accessed on 7 May 2025).
Postbiotic Molecules | Origin | Preclinical Model | Anti-Obesogenic Effects | Ref. |
---|---|---|---|---|
Cell wall components | ||||
Muramyl dipeptide | murine GLUTag and human NCI-H716 cells C57BL/6J mice on HFD | ↑ glucose tolerance by stimulating GLP-1 secretion via activation of the NOD2 pathway ↓ adipose inflammation and glucose intolerance via NOD2 and IRF4 | [51] [52] | |
Lipoteichoic acid | Laciplantibacillus plantarum CRL1506 Lacticaseibacillus paracasei 6–1 Bifidobacterium animalis subsp. lactis BPL1 | porcine epithelial cells RAW 264.7 macrophages Caenorhabditis elegans | anti-inflammatory properties—↓ expression of IL-6 and MCP-1 anti-inflammatory effects through ↓ TLR4-MyD88-MAPK and NF-κB signaling pathways fat-lowering effect through IGF-1 signaling pathway in hyperglycemic conditions | [53] [54] [55] |
Exopolysaccharides | Lacticaseibacillus rhamnosus GG Lactiplantibacillus plantarum L-14 | 3T3-L1 preadipocytes C57BL/6J mice on HFD C57BL/6J mice on HFD | ↓ lipid accumulation in adipocytes through TLR2 signalisation ↓ hepatic and serum TG ↓ inflammation—↓ IL-6, MCP-1 ↓ gene expression of markers of M1-like macrophages ↓ early stage of adipogenic differentiation by upregulating AMPK signaling pathway, ↓ expression of adipogenesis markers PPARγ, C/EBPα, FABP4 ↓ TG/HDL ratio and steatohepatitis ↓ pro-inflammatory molecules leptin, IL-6, TNF-α and resistin ↑ expression of anti-inflammation markers adiponectin and Arg1 | [56] [57] |
Biotransformation (bioconversion) products | ||||
Whey medium | biotransformed by Pediococcus pentosaceus KI31 and Lactobacillus sakei KI36 | 3T3-L1 preadipocytes | ↓ differentiation of preadipocytes and intracellular lipid accumulation ↓ PPAR- γ and the genes for A-FABP and lipoprotein lipase | [58] |
Whey and polyphenol- rich citrus pomace extract | biotransformed by Lactobacillus kefiri DH5 | C57BL/6J mice on HFD | improved the adipose tissue weight/body weight ratio ↑ expression of the genes related to energy expenditure UCP-1 and PGC-1α in adipose tissue ↑ number of butyrate-producing bacteria Olsenella profusa, Anaerovorax odorimutans | [59] |
Cell-free lysates | ||||
Lacticaseibacillus paracasei | Wistar rats on HFD | ↓ total serum lipids, TG and total cholesterol ↑ AST and ALT—improvement of liver function and antioxidant enzymes—glutathione peroxidase, glutathione-s-transferase, glutathione reductase, superoxide dismutase | [60] | |
Lactiplantibacillus plantarum L-137 | C57BL/6 J mice on HFD | ↓ weight gain; improvement of metabolism—↓ glucose, cholesterol, alanine aminotransferase, and aspartate transaminase levels; ↓ LBP—improvement of intestinal permeability; ↓ adipose tissue inflammation—↓ expression of F4/80, CD11c, and IL-1β | [61] | |
Bacterial extracellular vesicles | ||||
Akkermansia muciniphila | C57BL/6 mice on HFD | ↓ food intake and body and adipose weight gain; ↑ expression of genes PPAR-α, and PPAR-γ involved in fatty acid oxidation and energy metabolism in adipose tissue ↓ inflammation associated with ↓TNF-α, IL-6 and TLR-4 expression in adipose tissue; ↓ intestinal permeability—↑ expression of ZO-1, OCLDN and CLDN-1 | [62] | |
Propionobacterium freudenreichii CIRM-BIA 129, | HT-29 cell line | are able to suppress the pro-inflammatory pathway of NF-kB and lead to overexpression of cytokines TNF-α and IL-6, while also stimulating anti-inflammatory pathways (e.g., IL-10) | [63] | |
Lacticaseibacillus rhamnosus JB-1 | murine BMDCs | activation of TLR2 and ↑ expression of immunoregulatory IL-10 | [64] | |
Bacteroides thetaiotaomicron | SPF C57BL/6 mice with DSS induced colitis murine BMDCs | upregulation of IL-10 production in colonic tissue ↑ ratio of IL-10/TNFα | [65] | |
Bacteriocins | ||||
Plantaricin EF | Lactiplantibacillus plantarum | C57BL/6J mice on HFD | ↓ body weight and food intake; improved oral glucose tolerance ↓epithelial barrier permeability—↑ expression of ZO-1 | [66] |
Gassericin A | Lactobacillus gasseri LA39 | C57Bl/6J mice on HFD | ↓ serum cholesterol, LDL, liver enzymes and improved the redox status ↓ expression of specific obesity-associated genes Zfp423 and FABP4 in abdominal adipose tissue. | [67] |
Short chain fatty acids | ||||
Acetate, propionate butyrate | dietary | C57Bl/6J mice on HFD | ↓ PPARγ expression and ↑ oxidative metabolism in liver and adipose tissue via AMPK; ↓ body weight and hepatic steatosis; improving insulin sensitivity | [68] |
Acetate, propionate butyrate | dietary | C57BL/6 J mice on HFD | ↓ body weight reduction ↑ TG hydrolysis and FFA oxidation in the adipose tissue, ↑ expressions of GPR43 and GPR41 in the adipose tissue modulation of gut microbiota composition— ↓ Firmicutes and ↑ Bacteroidetes. | [69] |
Propionate, butyrate | dietary | C57BL/6N mice on HFD | ↓ food intake, weight gain and insulin resistance ↑ of anorexigenic peptides GLP-1, PYY, and amylin | [70] |
Acetate, propionate, butyrate | bovine adipocytes | ↑ leptin expression | [71] | |
Other metabolites | ||||
Urolithins | dietary | Wistar rats on HFD | ↓ bodyweight, serum levels of cholesterol, TG and LDL-C ↑ HDL-C. ↑ increased the relative abundance of Parabacteroides and ↓ Coriobacteriaceae and Desulfovibrionacea | [72] |
Design/Target Population | Type of Postbiotics/Dose | Duration of Intervention | Control/Dose | Results | Ref. |
---|---|---|---|---|---|
Short Chain Fatty Acids (SCFAs) | |||||
Randomized, double-blind, placebo-controlled, parallel design/overweight adults BMI: 25–40 kg/m2 (n = 60) | Inulin-propionate ester/10 g/day | 24 weeks | inulin/ 10 g/day | ↓calorie intake ↓weight gain ↓intra-abdominal adipose tissue distribution ↓intrahepatocellular lipid content ↑PYY and GLP-1 secretion ↓ LDL-C and AST | [100] |
Randomized, double-blind, crossover trial/overweight/obese men BMI: 25–35 kg/m2 (n = 6) | Sodium acetate/(100 or 180 mmol/L dissolved in 120 mL 0.9% NaCl Two experimental periods: one with distal and one with proximal colonic sodium acetate infusions. | 3 days | Placebo: 120 mL 0.9% NaCl | Distal colonic acetate: ↑Fasting fat oxidation ↑PYY ↑postprandial glucose ↑insulin concentration ↓TNF-α Proximal colonic acetate: no effects on substrate metabolism, circulating hormones, or inflammatory markers | [101] |
Randomized, double-blind, crossover study/ normoglycaemic overweight/obese men BMI: 25–35 kg/m2 (n = 13) | SCFA mixtures high in either acetate (HA), propionate (HP), butyrate (HB)/ HA solution: 24 mmol Na acetate (60%), 8 mmol Na propionate (20%), 8 mmol Na butyrate (20%) HP solution: 18 mmol Na acetate (45%), 14 mmol Na propionate (35%), 8 mmol Na butyrate (20%) HB solution: 18 mmol Na acetate (45%), 8 mmol Na propionate (20%), 14 mmol Na butyrate (35%) all in 200 mL water | 4 days | Placebo: 40 mmol sodium chloride in 200 mL water | All three SCFA mixtures: ↑fasting fat oxidation ↑PYY (fasting and postprandial plasma) ↓lipolysis After HA and HP compared with placebo: ↑resting energy expenditure | [102] |
Randomized, double-blind, placebo-controlled clinical trial/ adults with type 2 diabetes mellitus BMI: 27–35 kg/m2 (n = 60) | Sodium butyrate (capsules) and inulin (powder) supplementation alone or in combination/ group A—sodium butyrate (600 mg/d) group B—inulin (10 g/d) group C—sodium butyrate (600 mg/d) and inulin (10 g/d) | 45 days | group D—Placebo: 600 mg starch capsules as well as 10g of starch powder | Treatment with sodium butyrate + inulin (group C): ↓fasting blood sugar and WHR After intervention in groups B and C: ↓WC Treatment in group A and C: ↑GLP-1 in comparison with group D | [103] |
Randomized, quadruple-blind, placebo-controlled trial/children (age 5–17 years, BMI > 95th percentile (n = 54) | Sodium butyrate (capsules)/ 20 mg/kg body weight per day | 6 months | cornstarch capsules | ↓BMI and WC ↓HOMA-IR and fasting insulin level ↓microRNA221 relative expression ↓ghrelin and IL-6 level | [104] |
Double-blind placebo-controlled randomized crossover study/ overweight/obese men BMI: 25–35 kg/m2 (n = 12) | A liquid high-fat mixed meal containing either a low (650 mg), medium (1325 mg), or high (2000 mg) dose of butyrate and hexanoate-enriched triglycerides—Akovita SCT (order in which the doses were received was randomized) | 4 days | A liquid high-fat mixed meal containing the placebo: sunflower oil | The medium and high doses of Akovita SCT: ↑ postprandial circulating butyrate and hexanoate Akovita SCT supplementation did not affect subjective appetite, GLP-1 release, metabolic parameters, or inflammatory markers compared to placebo. | [105] |
Triple-blind placebo-controlled randomized clinical trial/ obese adults BMI: 30–40 kg/m2 (n = 50) | Sodium butyrate (capsules) + hypo-caloric diet/ 600 mg/d NaB + diet included carbohydrates 55–60%, fat 25–30%, and protein 10–15% of total energy expenditure | 60 days | Placebo: 600 mg carboxymethyl cellulose | ↓BMI, weight, WHR and WC ↑PGC-1α and UCP-1 genes expression ↓ FBS, LDL–C and HDL-C | [106] |
Cell-free lysates | |||||
Randomized, double-blind, placebo-controlled study/ healthy adults BMI: 25–30 kg/m2 (n = 62) | living Pediococcus pentosaceus LP28 (powder) with dextrin, heat-killed Pediococcus pentosaceus LP28 (powder) with dextrin | 12 weeks | Placebo: dextrin only | ↓BMI, WC, body fat percentage and body fat mass not change fasting plasma glucose, HbA1c, fasting insulin, HOMA-IR, serum lipid levels | [107] |
Randomized, double-blind, placebo-controlled clinical trial/ healthy overweight and pre-obese adults BMI: 25–30 kg/m2 (n = 200) | fragmented Lactobacillus amylovorus CP1563/ 200 mg in a 500 mL bottle per subject per day | 2 weeks observation before treatment, 12 weeks treatment, and 4 weeks observation after treatment | Placebo: 500 mL bottle of the beverage per volunteer per day | ↓body fat percentage, visceral fat and whole body fat ↓ total cholesterol, triglycerides and LDL–C ↓ diastolic blood pressure ↓ plasma glucose, insulin and HOMA-IR ↓ Uric acid | [108] |
Randomized, double-blind, placebo-controlled, parallel-group study healthy adults BMI: 25.0–29.9 kg/m2 (n = 169) | fragmented Lactobacillus amylovorus CP1563 and 10- hydroxyoctadecanoic acid (10-HOA)/ 500 mL bottle of the beverage with the fragmented CP1563 containing 10-HOA per subject per day | 12 weeks | Placebo: 500 mL bottle of the beverage without the fragmented CP1563 per subject per day | ↓ abdominal visceral fat area, subcutaneous fat area, and total fat area ↓BMI and body weight ↑ genera Roseburia and Lachnospiraceae ↓ genus Collinsella | [109] |
Randomized, double-blind, placebo-controlled, parallel-group study abdominally obese adults BMI: 25.0–29.9 kg/m2 (n = 120) | Heat-treated Bifidobacterium animalis subsp.lactis CECT 8145 SIAP2, 50 g/day conventional seafood sticks + heat-treated Bifidobacterium animalis subsp. lactis CECT 8145 + 370 mg/day EPA and DHA + 1.7 g/day inulin | 12 weeks | Placebo: 50 g/day conventional seafood sticks | ↓ insulin and HOMA-IR ↓ pulse pressure in women SIAP2 consumption: negative association between glycemic parameter reduction and Alistipes finegoldii and Ruminococcaceae. In the acute single dose-study 4-h, SIAP2 consumption: ↓ postprandial circulating triglyceride | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijová, E.; Bertková, I.; Štofilová, J. Incorporating Postbiotics into Intervention for Managing Obesity. Int. J. Mol. Sci. 2025, 26, 5362. https://doi.org/10.3390/ijms26115362
Hijová E, Bertková I, Štofilová J. Incorporating Postbiotics into Intervention for Managing Obesity. International Journal of Molecular Sciences. 2025; 26(11):5362. https://doi.org/10.3390/ijms26115362
Chicago/Turabian StyleHijová, Emília, Izabela Bertková, and Jana Štofilová. 2025. "Incorporating Postbiotics into Intervention for Managing Obesity" International Journal of Molecular Sciences 26, no. 11: 5362. https://doi.org/10.3390/ijms26115362
APA StyleHijová, E., Bertková, I., & Štofilová, J. (2025). Incorporating Postbiotics into Intervention for Managing Obesity. International Journal of Molecular Sciences, 26(11), 5362. https://doi.org/10.3390/ijms26115362