Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,514)

Search Parameters:
Keywords = probiotic properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4503 KB  
Article
Evaluation of Probiotic and Antimicrobial Properties of Patulin-Degrading Latilactobacillus sakei KMP17 and Its Fermentation
by Zi-Qi Yang, Xin-Ru Wen, Chun-Zhi Jin, Taihua Li, Feng-Jie Jin, Hyung-Gwan Lee and Long Jin
Foods 2026, 15(2), 234; https://doi.org/10.3390/foods15020234 - 9 Jan 2026
Abstract
Lactic acid bacteria (LAB), as significant probiotics, hold immense application potential across diverse fields. This study systematically evaluated the probiotic properties and patulin degradation capabilities of four LAB strains with potent antimicrobial effects, previously isolated from Kimchi: Weissella cibaria (KM4 and KM14), Latilactobacillus [...] Read more.
Lactic acid bacteria (LAB), as significant probiotics, hold immense application potential across diverse fields. This study systematically evaluated the probiotic properties and patulin degradation capabilities of four LAB strains with potent antimicrobial effects, previously isolated from Kimchi: Weissella cibaria (KM4 and KM14), Latilactobacillus sakei KMP17, and Leuconostoc mesenteroides KM35. All exhibited favorable environmental tolerance, adhesion capacity, and safety, along with the potential to degrade patulin. Out of these, L. sakei KMP17 demonstrated outstanding probiotic characteristics, high safety, and PAT degradation potential. Further investigation revealed that viable cell metabolism is the primary mechanism for PAT degradation by L. sakei KMP17, and PAT induction was hypothesized to stimulate the production of specific degradation enzymes. Concurrent whole-genome sequencing confirmed the high safety and significant probiotic potential of L. sakei KMP17. This research provides high-quality candidate strains and a theoretical foundation for the application of LAB in the field of food mycotoxin biodegradation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 3127 KB  
Article
Optimization of the Probiotic Fermentation Process of Ganoderma lucidum Juice and Its In Vitro Immune-Enhancing Potential
by Dilireba Shataer, Xin Liu, Yanan Qin, Jing Lu, Haipeng Liu and Liang Wang
Foods 2026, 15(2), 227; https://doi.org/10.3390/foods15020227 - 8 Jan 2026
Viewed by 32
Abstract
Fermented products have recently garnered substantial interest in both research and commercial contexts. Although probiotic fermentation is predominantly practiced with dairy, fruits, vegetables, and grains, its application to dual-purpose food-medicine materials like Ganoderma lucidum has been comparatively underexplored. In this study, Ganoderma lucidum [...] Read more.
Fermented products have recently garnered substantial interest in both research and commercial contexts. Although probiotic fermentation is predominantly practiced with dairy, fruits, vegetables, and grains, its application to dual-purpose food-medicine materials like Ganoderma lucidum has been comparatively underexplored. In this study, Ganoderma lucidum fermented juice (GFJ) served as the substrate and was fermented with five probiotic strains. The optimal inoculation ratios—determined by employing a uniform design experiment—were as follows: Bifidobacterium animalis 6.05%, Lacticaseibacillus paracasei 9.52%, Lacticaseibacillus rhamnosus 6.63%, Pediococcus pentosaceus 21.38%, and Pediococcus acidilactici 56.42%. Optimal fermentation parameters established by response surface methodology included 24 h of fermentation at 37 °C, a final cell density of 5 × 106 CFU/mL, and a sugar content of 4.5 °Brix. Experiments with RAW264.7 macrophages revealed that GFJ significantly promoted both phagocytic activity and nitric oxide (NO) secretion, indicating enhanced immune characteristics as a result of fermentation. Untargeted metabolomics profiling of GFJ across different fermentation stages showed upregulation of functional metabolites, including polyphenols, prebiotics, functional oligosaccharides, and Ganoderma triterpenoids (GTs)—notably myricetin-3-O-rhamnoside, luteolin-7-O-glucuronide, raffinose, sesamose, and Ganoderma acids. These increments in metabolic compounds strongly correlate with improved functional properties in GFJ, specifically heightened superoxide dismutase activity and immunomodulatory capacity. These results highlight an effective approach for developing functionally enriched fermented products from medicinal fungi, with promising applications in functional food and nutraceutical industries. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

25 pages, 5259 KB  
Article
Pseudomonas spp. Isolated from the Rhizosphere of Angelica sinsensis (Oliv.) Diels and the Complementarity of Their Plant Growth-Promoting Traits
by Shengli Zhang, Xiuyue Xiao, Ying Sun, Rong Guo, Dong Lu, Yonggang Wang and Xiaopeng Guo
Agronomy 2026, 16(2), 161; https://doi.org/10.3390/agronomy16020161 - 8 Jan 2026
Viewed by 30
Abstract
Pseudomonas has been revealed as an important member of plant probiotics, with its rich species diversity implying complementary plant growth-promoting (PGP) traits. However, information on Pseudomonas species in the microecology of Angelica sinensis and medicinal plants in general remains to be further investigated. [...] Read more.
Pseudomonas has been revealed as an important member of plant probiotics, with its rich species diversity implying complementary plant growth-promoting (PGP) traits. However, information on Pseudomonas species in the microecology of Angelica sinensis and medicinal plants in general remains to be further investigated. This study examined the microecological characteristics, PGP traits, and their underlying molecular mechanisms of Pseudomonas. Filling this gap will provide an important reference for microbial community design centered on dominant functional bacterial genera. In this study, we characterized the microecological traits, PGP properties, and their underlying molecular mechanisms of Pseudomonas strains. Microbiome analysis identified Pseudomonas as the dominant genus in the rhizosphere and a core endophytic genus, exerting significant influences on both (path coefficients = 0.971, 0.872). Comparative phenomics suggested potential functional complementarity among different strains. Our observations revealed significant differentiation in PGP traits: P. umsongensis X08 showed exceptional performance in IAA and siderophore production (IAA: 1.24 mg/mL, siderophore halo diameter: 2.04 cm); P. frederiksbergensis X06 exhibited advantages in ACC deaminase activity and potassium solubilization; and P. allii X32 demonstrated high organic phosphorus solubilization capability (3.98 mg/L). Finally, genomic data revealed that P. allii X32 possesses a rich repertoire of PGP-related genes and metabolic pathways, providing a basis for establishing molecular mechanistic hypotheses for these traits. In summary, Pseudomonas strains from different species, which exhibit complementary probiotic functions without antagonism in the A. sinensis microecosystem, provide valuable microbial resources for the ecological cultivation of A. sinensis. Full article
Show Figures

Figure 1

25 pages, 16856 KB  
Article
Bupleuri Radix Polysaccharides Alleviate MASLD by Regulating Muribaculaceae-Derived SCFAs in the Gut–Liver Axis
by Yang Yang, Hong Wang, Yiqing Gu, Ruiyu Wu, Wenqing Qin, Ranyun Chen, Guifang Fan, Xiaoyong Xue, Jianhang Lan, Zixi Huang, Qi Han and Runping Liu
Int. J. Mol. Sci. 2026, 27(2), 637; https://doi.org/10.3390/ijms27020637 - 8 Jan 2026
Viewed by 36
Abstract
Bupleuri radix has demonstrated therapeutic potential in treating liver disorders, and polysaccharides are one of its main bioactive components; however, the effects of Bupleuri radix polysaccharides (BRP) on metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. This study aimed to identify the BRP [...] Read more.
Bupleuri radix has demonstrated therapeutic potential in treating liver disorders, and polysaccharides are one of its main bioactive components; however, the effects of Bupleuri radix polysaccharides (BRP) on metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. This study aimed to identify the BRP fractions with anti-MASLD activity and elucidate their underlying mechanisms. We prepared BRP and characterized its physicochemical properties. It markedly alleviated liver injury and restored intestinal barrier function in MASLD. The correlation analysis between transcriptomics and targeted metabolomics showed that BRP restored intestinal acetic acid and propionic acid, with acetic acid activating AMPK and propionic acid promoting cholesterol efflux and metabolism in the liver, thereby reducing lipid accumulation in hepatocytes. Mechanistically, 16S RNA sequencing and diversity analysis indicated that BRP enriched short chain fatty acids (SCFAs)-producing bacteria, such as the genus Muribaculaceae, and inhibited pro-inflammatory microbiota. Interestingly, Paramuribaculum intestinale (P. intestinale), a representative species in the genus Muribaculaceae, synergistically enhanced BRP in improving liver and colonic mucosal damage in MASLD. In conclusion, our findings revealed that BRP improved MASLD by regulating Muribaculaceae-derived SCFAs in the gut–liver axis and could be used in combination with probiotics as a novel therapeutic strategy for MASLD. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 5955 KB  
Article
Screening and Probiotic Property Analysis of High Exopolysaccharide-Producing Lactic Acid Bacteria from Sayram Yogurt
by Xudong Zhao, Kaiyue Wang, Zhaojun Ban, Jia Li, Xingqian Ye, Wei Liu, Xiaoyu Wang, Heng Xu, Heng Zhang, Hui Zhang, Zisheng Yang and Longying Pei
Microorganisms 2026, 14(1), 140; https://doi.org/10.3390/microorganisms14010140 - 8 Jan 2026
Viewed by 39
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria (LAB) are bioactive polymers with significant potential for human health. This study aimed to isolate and systematically evaluate the in vitro probiotic properties of high exopolysaccharide-producing LAB strains from traditional Sayram yogurt. From fifteen strains, six [...] Read more.
Exopolysaccharides (EPSs) produced by lactic acid bacteria (LAB) are bioactive polymers with significant potential for human health. This study aimed to isolate and systematically evaluate the in vitro probiotic properties of high exopolysaccharide-producing LAB strains from traditional Sayram yogurt. From fifteen strains, six strains with high exopolysaccharide production were identified using 16Sr DNA sequencing. We assessed their probiotic potential by testing acid resistance, bile salt tolerance, tolerance to artificial gastrointestinal fluid, self-aggregation, hydrophobicity, safety, antibacterial activity, and antioxidant capacity. Results showed these six strains exhibited a strong tolerance to acid, bile salts, and artificial gastrointestinal fluids, and had high self-aggregation abilities and surface hydrophobicity. The isolated strains exhibited varying degrees of sensitivity to the tested antibiotics, with no hemolysis, suggesting good safety. In addition, their cell-free supernatants significantly inhibited the growth of Staphylococcus aureus and showed stronger antioxidant activity than cell lysates. In conclusion, the six LAB strains screened in this study possess excellent in vitro probiotic properties and have potential value for further development, providing a preliminary strain reserve and theoretical reference for subsequent research and related product development. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 2152 KB  
Article
Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives
by Adeola O. Aasa, Samkelo Malgas and Mapitsi Silvester Thantsha
Foods 2026, 15(2), 209; https://doi.org/10.3390/foods15020209 - 7 Jan 2026
Viewed by 139
Abstract
Contamination of agricultural products such as maize by fungi is a significant concern worldwide, as it can compromise food safety and quality. In recent years, the use of microorganisms as natural food preservatives has gained interest. Probiotic lactic acid bacteria (LAB) and their [...] Read more.
Contamination of agricultural products such as maize by fungi is a significant concern worldwide, as it can compromise food safety and quality. In recent years, the use of microorganisms as natural food preservatives has gained interest. Probiotic lactic acid bacteria (LAB) and their metabolites are considered a promising strategy to reduce fungal growth and limit other food contaminants. This study aimed to characterize, screen and compare the probiotic properties and antifungal activity of LAB of maize origin. A total of 23 LAB isolates obtained from untreated maize grains were identified through 16S rRNA gene sequencing as Weissella viridenscens (34.7%), Pediococcus pentosaceus (34.7%), Enterococcus durans (17.4%), Leuconostoc citreum (9%), and Enterococcus faecium (4.3%). All isolates demonstrated acid, phenol, and bile salt tolerance; surface hydrophobicity; and antagonistic activity against selected bacterial foodborne pathogens. Notably, Enterococcus sp. showed the strongest inhibitory activity against Escherichia coli ATCC 5211 (21 mm inhibition zone) and Staphylococcus aureus (17 mm inhibition zone), whereas Pediococcus sp. exhibited the highest antagonistic effect against Listeria monocytogenes (18.7 mm inhibition zone). Furthermore, E. durans and P. pentosaceus demonstrated the strongest antifungal activity, effectively inhibiting the growth of Alternaria tenuissima (F22FR) and Fusarium oxysporum (F44FR), respectively. Overall, all the LAB strains isolated from this study showed considerable potential for use in the food industry as probiotics, starter cultures for functional food fermentations, bio-preservatives and biocontrol agents against toxigenic fungi and pathogenic bacteria, with E. durans standing out for its exceptional performance. Future research will explore the ability of these isolates and/or their enzymes to degrade mycotoxins commonly found in maize, a staple food in many African countries. Full article
Show Figures

Figure 1

27 pages, 5839 KB  
Article
Lipopeptides from Bacillus Probiotics Can Target Transmembrane Receptors NOX4, EGFR, PDGFR, and OCTN2 Involved in Oxidative Stress and Oncogenesis
by Evgeniya Prazdnova, Fadi Amirdzhanov, Anuj Ranjan and Radomir Skripnichenko
BioTech 2026, 15(1), 4; https://doi.org/10.3390/biotech15010004 - 6 Jan 2026
Viewed by 94
Abstract
Bacillus-derived lipopeptides are known to possess diverse biological activities, including antimicrobial and anticancer properties, though the mechanisms of such effects at the molecular level remain incompletely understood. We investigated whether non-ribosomal peptide metabolites from Bacillus can directly interact with transmembrane receptors implicated [...] Read more.
Bacillus-derived lipopeptides are known to possess diverse biological activities, including antimicrobial and anticancer properties, though the mechanisms of such effects at the molecular level remain incompletely understood. We investigated whether non-ribosomal peptide metabolites from Bacillus can directly interact with transmembrane receptors implicated in oxidative stress regulation and cancer progression (NOX4, EGFR, PDGFR, and OCTN2) using molecular docking and 200 ns molecular dynamics simulations of 11 lipopeptide metabolites. Molecular docking revealed several strong ligand–protein interactions, with plipastatin and fengycin emerging as lead compounds demonstrating the highest binding affinities to multiple receptors. For NOX4, iturin D showed the strongest docking score of −7.85 kcal/mol. Fengycin demonstrated a high docking score of −7.38 kcal/mol for PDGFR and −8.1 kcal/mol for EGFR. Plipastatin showed the strongest docking scores of −11.12 kcal/mol for EGFR and −8.7 kcal/mol for OCTN2. Molecular dynamics simulations confirmed complex stability for these lead compounds, with protein RMSD remaining stable at ~1.5 Å and ligand RMSD between 1.9 and 6 Å over 200 ns. Our findings suggest that plipastatin and fengycin may act as modulators of key receptors involved in oxidative stress and cancer-related signaling. However, those in silico predictions require experimental validation. This work provides the first computational evidence of potential lipopeptide–receptor interactions and establishes a foundation for future experimental investigation of probiotic-derived therapeutics. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Figure 1

16 pages, 2342 KB  
Article
Valorization of Hericium erinaceus By-Products for β-Glucan Recovery via Pulsed Electric Field-Assisted Alkaline Extraction and Prebiotic Potential Analysis
by Tannaporn Jeenpitak, Alisa Pattarapisitporn, Pipat Tangjaidee, Tabkrich Khumsap, Artit Yawootti, Suphat Phongthai, Seiji Noma and Wannaporn Klangpetch
Foods 2026, 15(1), 145; https://doi.org/10.3390/foods15010145 - 2 Jan 2026
Viewed by 332
Abstract
Hericium erinaceus is a well-known edible fungus rich in β-glucans, widely recognized for its immune-boosting and prebiotic properties. This study used a pulsed electric field (PEF) combined with alkaline extraction to improve β-glucan yield from H. erinaceus by-products. The treated residues were extracted [...] Read more.
Hericium erinaceus is a well-known edible fungus rich in β-glucans, widely recognized for its immune-boosting and prebiotic properties. This study used a pulsed electric field (PEF) combined with alkaline extraction to improve β-glucan yield from H. erinaceus by-products. The treated residues were extracted with hot water or 7.5% NaOH. The results exhibited that PEF pretreatment followed by NaOH extraction gave the highest β-glucan yield (25 g/100 g) and purity (56.93%). SEM images revealed greater cell wall damage in NaOH-treated samples, while FTIR spectroscopy confirmed clear β-glycosidic linkages. The optimal conditions of PEF investigated by response surface methodology (RSM) were electric field strength 10 kV/cm, frequency 12 Hz, and mushroom/water ratio 8.44%, yielding β-glucan content of 50.14%. The extracted β-glucan demonstrated high prebiotic potential, supporting probiotic Lactobacillus spp. growth, enhancing short-chain fatty acids production, and resisting gastrointestinal digestion. Overall, this study demonstrates the broader potential of PEF-assisted alkaline extraction to support sustainable food processing, valorization of agro-industrial by-products, and the development of functional ingredients for modern food industry applications. Full article
Show Figures

Figure 1

25 pages, 12788 KB  
Article
The Effect of Fructooligosaccharide and Inulin Addition on the Functional, Mechanical, and Structural Properties of Cooked Japonica Rice
by Bing Dai, Ruijun Chen, Shiyu Chang, Zheng Wei, Xiaohong Luo, Jiangzhang Wu and Xingjun Li
Gels 2026, 12(1), 48; https://doi.org/10.3390/gels12010048 - 1 Jan 2026
Viewed by 206
Abstract
To test whether fructooligosaccharide (FOS) and inulin (INU) molecules can improve the hardness of cooked rice through forming a hydrogel network, we added FOS or INU at 0%, 3%, 5%, 7%, and 10% concentrations to two cooking japonica rice and compared the cooking [...] Read more.
To test whether fructooligosaccharide (FOS) and inulin (INU) molecules can improve the hardness of cooked rice through forming a hydrogel network, we added FOS or INU at 0%, 3%, 5%, 7%, and 10% concentrations to two cooking japonica rice and compared the cooking and textural parameters, the pasting, thermal, and thermo-mechanical properties, and the microstructure of the cooked rice. General Linear Model Univariate (GLMU) analysis revealed that, compared with no oligofructose addition, both FOS and INU addition reduced the rice cooking time and increased the gruel solid loss. The addition of these dietary fibers (DFs) to cooking rice lowered the hardness, adhesiveness, springiness, gumminess, and chewiness of the rice, but maintained the cohesiveness and increased the resilience. Compared with no oligofructose addition, FOS and INU addition improved the smell, taste, and total sensory score of cooked rice. The addition of these DFs significantly decreased the trough, peak, final, breakdown, and setback viscosities, but increased the pasting temperature and peak time. Both FOS and INU addition decreased the enthalpy of gelatinization but increased the peak and conclusion temperature of gelatinization of rice flour paste. After the retrograded flour pastes were kept at 4 °C for 21 days, both FOS and INU significantly increased amylopectin aging compared with no oligofructose addition. The FOS-added and INU-added rice doughs had a higher dough development time and stability time, gelatinization peak torque, setback torque, and gelatinization speed, with a lower protein weakening degree, amylase activity, breakdown torque, heating speed, and enzymatic hydrolysis speed. Compared with no oligofructose addition, both FOS and INU addition reduced the amorphous region of starch and β-sheet percentage, but increased the percentages of random coils, α-helixes, and β-turns in cooked rice. Principal component analysis (PCA) further demonstrated that the gruel solid loss, cooked rice hardness, chewiness, gumminess, taste, and the peak, trough, breakdown, final, and setback viscosities were sensitive parameters for evaluating the effects of species and the amount of oligofructose addition on rice quality. The microstructure showed that FOS or INU addition induced thickening of the matrix walls and an increase in the pore size, forming a soft and evenly swollen structure. These results suggest that FOS or INU addition inhibits amylose recrystallization but maintains amylopectin recrystallization in cooked rice, with INU addition producing greater improvements in the texture and sensory scores of cooked rice compared withFOS addition. This study provides evidence of the advantages of adding DFs and probiotics such as INU and FOS to cooked rice. Full article
(This article belongs to the Special Issue Application of Composite Gels in Food Processing and Engineering)
Show Figures

Figure 1

31 pages, 1927 KB  
Review
Genetic Engineering and Encapsulation Strategies for Lacticaseibacillus rhamnosus Enhanced Functionalities and Delivery: Recent Advances and Future Approaches
by Leontina Grigore-Gurgu, Florentina Ionela Leuștean-Bucur and Gabriela-Elena Bahrim
Foods 2026, 15(1), 123; https://doi.org/10.3390/foods15010123 - 1 Jan 2026
Viewed by 195
Abstract
This review addresses the recent advances made through various genetic engineering techniques to improve the properties of Lacticaseibacillus rhamnosus, not only for industrial applications, but also for the health-related benefits. However, due to the strict regulations on microorganisms intended for human consumption, [...] Read more.
This review addresses the recent advances made through various genetic engineering techniques to improve the properties of Lacticaseibacillus rhamnosus, not only for industrial applications, but also for the health-related benefits. However, due to the strict regulations on microorganisms intended for human consumption, concerning the insufficient characterization degree of the newly isolated strains and the lack of data regarding the safety of the genetically modified (GM) variants, the feasibility of bringing such L. rhamnosus strains to the market and their safety prospects were evaluated. Given their multiple in vivo functions in the contexts of synbiotic and symbiotic functionality, L. rhamnosus strains are more than classic probiotics and need furthermore attention. In the functional food context, this review highlights the impact of L. rhamnosus derived bioactives on the human gut–organ axis, pointing out recently demonstrated molecular mechanisms of action with the host’s gut microbiome to reduce the negative effects of obesity and its related metabolic disorders, as well as depression and Parkinson’s disease, as the major challenges confronting humans today. Beyond that, considering L. rhamnosus delivery and its postbiotics accessibility to consumers via functional foods, notable progress was made to enhance their stability by developing various encapsulation systems, which are also emphasized. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

21 pages, 1062 KB  
Article
Chia Seed Gel Powder as a Clean-Label Enhancer of Texture, Physicochemical Quality, Antioxidant Activity, and Prebiotic Function in Probiotic Low-Fat Yogurt
by Mahmoud E. A. Hamouda, Ratul Kalita, Abdelfatah K. Ali, Pratibha Chaudhary, Pramith U. Don, Omar A. A. Abdelsater, Anjali Verma and Yaser Elderwy
Processes 2026, 14(1), 145; https://doi.org/10.3390/pr14010145 - 31 Dec 2025
Viewed by 519
Abstract
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using [...] Read more.
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using 0–2.5% CSGP, including Control (0% CSGP), YOG1 (0.5% CSGP), YOG2 (1.0% CSGP), YOG3 (1.5% CSGP), YOG4 (2.0% CSGP), and YOG5 (2.5% CSGP). Results showed that increasing CSGP levels noticeably enhanced the total solids, protein content, viscosity, hardness, and water-holding capacity of the PLFY (p < 0.05), while consistently reducing syneresis. Antioxidant activity also rose with higher CSGP concentrations, with YOG5 exhibiting the greatest DPPH scavenging activity (35.12%). Confocal laser scanning microscopy revealed a denser and more uniform protein network in PLFY fortified with CSGP, consistent with rheological measurements showing increased storage (G′) and loss (G″) moduli. Probiotic viability significantly increased (p < 0.05) in CSGP-added samples, indicating a potential prebiotic effect of CSGP. Sensory results demonstrated that although higher CSGP levels slightly darkened the yogurt color, body, texture, flavor, and total sensory scores improved markedly, with YOG5 gaining the highest total score (81.77). The results demonstrate that CSGP acts as a highly effective, multifunctional ingredient that enhances texture, stability, probiotic viability, and antioxidant capacity, making it a strong clean-label candidate for developing high-quality, functional probiotic low-fat yogurt. Full article
Show Figures

Graphical abstract

17 pages, 1817 KB  
Article
Topical Delivery of Autochthonous Lactic Acid Bacteria Using Calcium Alginate Microspheres as a Probiotic Carrier System with Enhanced Therapeutic Potential
by Sigita Jeznienė, Emilija Mikalauskienė, Aistė Jekabsone and Aušra Šipailienė
Pharmaceuticals 2026, 19(1), 66; https://doi.org/10.3390/ph19010066 - 29 Dec 2025
Viewed by 174
Abstract
Background/Objectives: Three distinct strains of lactic acid bacteria (LAB), isolated from naturally fermented bread sourdough and representing the local autochthonous microflora, were selected to evaluate their potential probiotic properties. In addition, we evaluated whether these strains could be used in topical formulations. Methods: [...] Read more.
Background/Objectives: Three distinct strains of lactic acid bacteria (LAB), isolated from naturally fermented bread sourdough and representing the local autochthonous microflora, were selected to evaluate their potential probiotic properties. In addition, we evaluated whether these strains could be used in topical formulations. Methods: We evaluated probiotic properties such as the ability to co-aggregate with pathogens, antimicrobial activity, inhibition of pathogenic biofilms, and ability to adhere to human keratinocyte cells. Further, bacteria were encapsulated in calcium alginate microspheres using the emulsification/external gelation method, and their viability in topical formulations was assessed. Results: LAB significantly inhibited biofilm formation by the tested pathogens with complete inhibition observed in certain cases. The strength and specificity of these probiotic effects varied depending on the LAB strain and the target pathogen. Furthermore, among the tested strains, L. reuteri 182 exhibited the highest adhesion rates, reaching 77.94 ± 1.84%. In the context of potential topical applications, the preservative present in the formulation completely inactivated the planktonic cells of L. reuteri 182. In contrast, encapsulation within a biopolymeric system conferred protection against the preservative’s bactericidal effect. After 35 days of storage at room temperature, viable cell counts reached 5.94 ± 0.06 lg CFU/g. Conclusions: Our findings confirm that local LAB strains, specifically L. reuteri 182 and L. plantarum F1, possess essential probiotic characteristics and can be effectively incorporated into preservative-containing topical formulations via efficient encapsulation strategies. This underscores the potential of these topical probiotics for skin health and highlights the need for clear regulatory guidance to ensure their safe and effective application. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 1587 KB  
Article
Evaluation of the Probiotic Potential of Bacillus spp. Strains Isolated from River Bottom Sediments
by Maria Sergeevna Mazanko, Elena Viktorovna Mazanko, Sergey Aleksandrovich Emelyantsev, Svetlana Valeryevna Kozmenko and Dmitry Vladimirovich Rudoy
Environments 2026, 13(1), 13; https://doi.org/10.3390/environments13010013 - 25 Dec 2025
Viewed by 262
Abstract
The study aimed to evaluate bottom sediments as a promising source of probiotic bacteria for aquaculture applications. Bacillus strains were selected as the most suitable bacterial species for application in the food industry. Initially, seven Bacillus spp. strains were isolated from the intestinal [...] Read more.
The study aimed to evaluate bottom sediments as a promising source of probiotic bacteria for aquaculture applications. Bacillus strains were selected as the most suitable bacterial species for application in the food industry. Initially, seven Bacillus spp. strains were isolated from the intestinal contents of healthy sterlet specimens; however, none of them demonstrated high potential probiotic properties. Subsequently, bottom sediments were considered as a source of probiotic strains. In the bottom sediments, bacilli exist in a vegetative form and constitute an integral part of the microbial community. A total of 120 Bacillus spp. strains were isolated and comprehensively analyzed. Proteolytic and amylolytic activities were detected at moderate levels in almost all isolated strains. Most isolates exhibited low or negligible antioxidant, DNA-protective, and antimicrobial activities; however, a small group of strains showed high values of these properties. Principal component and cluster analyses indicated the co-existence of three life strategies of bacilli in bottom sediments. These findings highlight the high probiotic potential of bacilli from bottom sediments and support their suitability as novel probiotics for enhancing the health and productivity of aquatic organisms in aquaculture. Full article
Show Figures

Graphical abstract

31 pages, 2497 KB  
Review
Production of Kefir and Kefir-like Beverages: Fundamental Aspects, Advances, and Future Challenges
by Marta Abajo Justel, Eduardo Balvis Outeiriño and Nelson Pérez Guerra
Processes 2026, 14(1), 73; https://doi.org/10.3390/pr14010073 - 25 Dec 2025
Viewed by 814
Abstract
Nowadays, consumer demand for functional foods with health benefits has grown significantly. In response to this trend, a variety of potentially probiotic foods have been developed—most notably kefir and kefir-like beverages, which are highly appreciated for their tangy flavor and health-promoting properties. Traditionally, [...] Read more.
Nowadays, consumer demand for functional foods with health benefits has grown significantly. In response to this trend, a variety of potentially probiotic foods have been developed—most notably kefir and kefir-like beverages, which are highly appreciated for their tangy flavor and health-promoting properties. Traditionally, kefir is made by fermenting cow’s milk with milk kefir grains, although milk from other animals—such as goats, ewes, buffalo, camels, and mares—is also used. Additionally, non-dairy versions are made by fermenting plant-based milks (such as coconut, almond, soy, rice, and oat) with the same type of grains, or by fermenting fruit and vegetable juices (e.g., apple, carrot, fennel, grape, tomato, prickly pear, onion, kiwifruit, strawberry, quince, pomegranate) with water kefir grains. Despite their popularity, many aspects of kefir production remain poorly understood. These include alternative production methods beyond traditional batch fermentation, kinetic studies of the process, and the influence of key cultivation variables—such as temperature, initial pH, and the type and concentration of nutrients—on biomass production and fermentation metabolites. A deeper understanding of the fermentation process can enable the production of kefir beverages tailored to meet diverse consumer preferences. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

22 pages, 1586 KB  
Article
Comparative Analysis of Gut Microbiota Between Fast-Growing and Slow-Growing Short-Finned Eels, Anguilla bicolor pacifica, and the Application of Bacillus tropicus FG2 as a Probiotic to Enhance Growth Performance of Eels
by Yi-Yuan Liang, Shao-Yang Hu and Chun-Hung Liu
Animals 2026, 16(1), 54; https://doi.org/10.3390/ani16010054 - 24 Dec 2025
Viewed by 227
Abstract
This study aims to investigate the differences in microbial community structure between fast-growing (FG) and slow-growing (SG) short-finned eels, Anguilla bicolor pacifica, using high-throughput 16S rDNA sequencing, and to evaluate the potential probiotic properties of Bacillus tropicus isolated from eel intestinal microbiota [...] Read more.
This study aims to investigate the differences in microbial community structure between fast-growing (FG) and slow-growing (SG) short-finned eels, Anguilla bicolor pacifica, using high-throughput 16S rDNA sequencing, and to evaluate the potential probiotic properties of Bacillus tropicus isolated from eel intestinal microbiota to enhance growth performance. High-throughput 16S rDNA sequencing revealed no significant differences in the α-diversity between FG and SG eels. Bacterial genera such as Cetobacterium, Clostridium, and Bacteroides were predominant in both groups, with Edwardsiella, Aeromonas, and Fusobacterium being more abundant in SG eels, suggesting a higher presence of potential pathogens. The analysis of the relative abundance of gut microorganisms revealed that SG eels harbored higher levels of potentially pathogenic bacteria, including Edwardsiella tarda and Aeromonas jandaei. In contrast, FG eels exhibited a greater abundance of the potential probiotic B. tropicus. Six strains of bacteria with relative abundance were isolated from the FG group, displaying superior digestive enzyme activity, including protease, lipase, amylase, cellulase, xylanase, and phytase, particularly strain FG2. Phylogenetic analysis confirmed that FG2 was closely related to B. tropicus. A virulence assessment confirmed the non-pathogenic nature of B. tropicus FG2, supporting its probiotic potential. Furthermore, feeding eels a diet supplemented with B. tropicus FG2 significantly enhanced growth performance, as evidenced by increased final weight percentages of weight gain and total production per tank (p < 0.05), while the proximate composition of the dorsal muscle showed an increase in lipid content (p < 0.05). These findings highlight B. tropicus FG2 as a promising probiotic for aquaculture applications. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

Back to TopTop