Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation, Identification, and Characterisation of Lactic Acid Bacteria
2.2. Isolation, Identification, and Characterization of Toxigenic Fungi
2.3. Screening of LAB for Probiotic Attributes
2.3.1. Acid Tolerance Assay
2.3.2. Phenol Tolerance Assay
2.3.3. Bile Salt Tolerance Assay
2.3.4. Antibiotic Susceptibility Test
2.3.5. Cell Surface Hydrophobicity
2.3.6. Antibacterial Activity Assay of Maize-Derived LAB Isolates
2.4. Screening for Antifungal Activity of Maize-Derived LAB Isolates
2.4.1. Inhibition of Fungal Isolates by Viable LAB Cells
2.4.2. Inhibition of Fungi by Cell-Free Supernatants of LAB Cells
2.5. Statistical Analyses
3. Results
3.1. Identification of the Isolates
3.2. Screening of Isolates for Potential Probiotics
3.2.1. Acid Tolerance
3.2.2. Phenol Tolerance
3.2.3. Bile Salt Tolerance
3.2.4. Susceptibility of the Isolated LAB Strains to Antibiotics
3.2.5. Cell Surface Hydrophobicity
3.2.6. Antagonistic Activity of LAB Against Selected Bacterial Pathogens
3.3. Antifungal Activity of Viable LAB and Their Cell-Free Supernatants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMEs | Aminoglycoside-modifying enzymes |
| CFS | Cell-free supernatant |
| CFU | Colony-forming units |
| GRAS | Generally regarded as safe |
| LAB | Lactic acid bacteria |
| rDNA | Ribosomal deoxyribonucleic acid |
| PBS | Phosphate buffer saline |
| PDA | Potato dextrose agar |
| PCR | Polymerase chain reaction |
References
- Poutanen, K. Past and future of cereal grains as food for health. Trends Food Sci. Technol. 2012, 25, 58–62. [Google Scholar] [CrossRef]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef]
- Chen, H.; Yan, X.; Du, G.; Guo, Q.; Shi, Y.; Chang, J.; Wang, X.; Yuan, Y.; Yue, T. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms. Crit. Rev. Food Sci. Nutr. 2021, 63, 2544–2558. [Google Scholar] [CrossRef]
- Alberts, J.F.; van Zyl, W.H.; Gelderblom, W.C.A. Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins. Front. Microbiol. 2016, 7, 548. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.I.; Akbar, A.; Anwar, M.; Shafee, M.; Saida, H.; Razzaq, A.; Rehman, F. Eco-friendly bacteria biodegradation of mycotoxins. Pure Appl. Biol. 2020, 9, 1708–1717. [Google Scholar] [CrossRef]
- Shokryazdan, P.; Jahromi, M.F.; Liang, J.B.; Ho, Y.W. Probiotics: From Isolation to Application. J. Am. Coll. Nutr. 2017, 36, 666–676. [Google Scholar] [CrossRef]
- Abushelaibi, A.; Al-Mahadin, S.; El-Tarabily, K.; Shah, N.P.; Ayyash, M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT Food Sci. Technol. 2017, 79, 316–325. [Google Scholar] [CrossRef]
- Fraqueza, M.J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food Microbiol. 2015, 212, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Guyot, J. Cereal-based fermented foods in developing countries: Ancient foods for modern research. Int. J. Food Sci. Technol. 2012, 47, 1109–1114. [Google Scholar] [CrossRef]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A.; Asker, D.; Awad, T.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Bucheli, J.E.V.; Park, Y.J.; Suh, D.H.; Jung, E.S.; Gombossy de Melo Franco, D.B.; Ivanova, I.V.; Holzapfel, W.H.; Todorov, S.D. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J. Appl. Microbiol. 2021, 132, 311–330. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Nguyen, D.-T.; Park, Y.-S.; Hwang, K.-Y.; Cho, Y.-S.; Kang, K.-D.; Yoon, J.-H.; Yu, J.-D.; Yee, S.-T.; Ahn, Y.-H.; et al. Organic acid profiling analysis in culture media of lactic acid bacteria by gas chromatography-mass spectrometry. Mass Spectrom. Lett. 2012, 3, 74–77. [Google Scholar] [CrossRef]
- Ryu, E.H.; Yang, E.J.; Woo, E.R.; Chang, H.C. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol. 2014, 41, 19–26. [Google Scholar] [CrossRef]
- Yang, E.; Chang, H. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 2010, 139, 56–63. [Google Scholar] [CrossRef]
- Clare, D.; Swaisgood, H. Bioactive milk peptides: A prospectus. J. Dairy Sci. 2000, 83, 1187–1195. [Google Scholar] [CrossRef]
- Khan, S.U. Probiotics in dairy foods: A review. Nutr. Food Sci. 2014, 44, 71–88. [Google Scholar] [CrossRef]
- Gueimonde, M.; Collado, M.C. Metagenomics and probiotics. Clin. Microbiol. Infect. 2012, 18, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Lamont, J.R.; Wilkins, O.; Bywater-Ekegärd, M.; Smith, D.L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Mokhtari, S.; Jafari, S.M.; Sharma, S. Barley-based probiotic food mixture: Health effects and future prospects. Crit. Rev. Food Sci. Nutr. 2022, 62, 7961–7975. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, I.; Ben Moussa, O.; Khaldi, T.E.M.; Kebouchi, M.; Soligot, C.; Le Roux, Y.; Hassouna, M. Functional invitro screening of Lactobacillus strains isolated from Tunisian camel raw milk toward their selection as probiotic. Small Rumin. Res. 2016, 137, 91–98. [Google Scholar] [CrossRef]
- Bharathi, D.; Rajalakshmi, G.; Komathi, S. Optimization and production of lipase enzyme from bacteria strains isolated from petrol spilled soil. J. King Saud Univ.—Sci. 2019, 31, 898–901. [Google Scholar] [CrossRef]
- Makete, G.; Aiyegoro, O.A.; Thantsha, M.S. Isolation, Identification and Screening of Potential Probiotic Bacteria in Milk from South African Saanen Goats. Probiotics Antimicrob. Proteins 2017, 9, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Aasa, A.; Njobeh, P.; Fru, F. Incidence of filamentous fungi in some food commodities from Ivory Coast. J. Agric. Food Res. 2022, 8, 100304. [Google Scholar] [CrossRef]
- Padmavathi, T.; Bhargavi, R.; Priyanka, P.R.; Niranjan, N.R.; Pavitra, P.V. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J. Genet. Eng. Biotechnol. 2018, 16, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.G.; El Sohaimy, S.A.; El-Sahn, M.A.; Youssef, M.M. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann. Agric. Sci. 2016, 61, 65–75. [Google Scholar] [CrossRef]
- CLSI M100-Ed34; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2024.
- Yerlikaya, O.; Saygili, D.; Akpinar, A. Evaluation of antimicrobial activity and antibiotic susceptibility profiles of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains isolated from commercial yoghurt starter cultures. Food Sci. Technol. 2021, 41, 418–425. [Google Scholar] [CrossRef]
- Bouguerra, A.; Harzallah, D.; Yasin, I.S.M.; Silvaraj, S.; Bakli, S.; Rabhi, N.E.H. Characterization of probiotic lactic acid bacteria isolated from Algerian camel milk invitro. Int. Sci. Res. J. 2020, 76, 244–256. [Google Scholar] [CrossRef]
- Srikham, K.; Daengprok, W.; Niamsup, P.; Thirabunyanon, M. Characterization of Streptococcus salivarius as new probiotics derived from human breast milk and their potential on proliferative inhibition of liver and breast cancer cells and antioxidant activity. Front. Microbiol. 2021, 12, 797445. [Google Scholar] [CrossRef]
- Khalil, A.A.; Abou-Gabal, A.E.; Elfaramawy, A.M.; Khaled, A.E.; Abdellate, A.A. Lactic Acid Bacteria as antimycotic and antimycotoxins agents against toxigenic Fusarium species associated to maize grains stored in Egyptian Markets. J. Pure Appl. Microbiol. 2013, 7, 93–105. [Google Scholar]
- Alemohammad, S.M.A.; Noori, S.M.R.; Samarbafzadeh, E.; Noori, S.M.A. The role of the gut microbiota and nutrition on spatial learning and spatial memory: A mini review based on animal studies. Mol. Biol. Rep. 2022, 49, 1551–1563. [Google Scholar] [CrossRef]
- Björkroth, J.; Dicks, L.M.; Endo, A. The genus Weissella. In Lactic Acid Bacteria; Holzapfel, W.H., Wood, B.J.B., Eds.; John Wiley & Sons Ltd: Chichester, West Sussex, UK, 2014; pp. 417–428. [Google Scholar] [CrossRef]
- García-Hernández, Y.; Pérez-Sánchez, T.; Boucourt, R.; Balcázar, J.L.; Nicoli, J.R.; Moreira-Silva, J.; Rodríguez, Z.; Fuertes, H.; Nuñez, O.; Albelo, N.; et al. Isolation, characterization, and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Veter-Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Kubow, S.; Sadiq, F.A. Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers. LWT 2019, 104, 70–75. [Google Scholar] [CrossRef]
- Soliemani, O.; Salimi, F.; Rezaei, A. Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 and evaluation of its anti-biofilm activity. Arch. Microbiol. 2022, 204, 419. [Google Scholar] [CrossRef]
- Giraffa, G. Enterococci from foods. FEMS Microbiol. Rev. 2002, 26, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Cui, H.; Li, Y.; Sun, Y.; Qiu, H.-J. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild Boar as potential probiotics. Front. Veter-Sci. 2020, 7, 49. [Google Scholar] [CrossRef]
- Le, B.; Yang, S.H. Isolation of Weissella strains as potent probiotics to improve antioxidant activity of salted squid by fermentation. J. Appl. Biol. Chem. 2018, 61, 93–100. [Google Scholar] [CrossRef]
- Panda, S.H.; Goli, J.K.; Das, S.; Mohanty, N. Production, optimization, and probiotic characterization of potential lactic acid bacteria producing siderophores. AIMS Microbiol. 2017, 3, 88–107. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Jung, D.S. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT-Food Sci. Technol. 2015, 63, 437–444. [Google Scholar] [CrossRef]
- Jafari-Nasab, T.; Khaleghi, M.; Farsinejad, A.; Khorrami, S. Probiotic potential and anticancer properties of Pediococcus sp. isolated from traditional dairy products. Biotechnol. Rep. 2021, 29, e00593. [Google Scholar] [CrossRef]
- Neut, C.; Mahieux, S.; Dubreuil, L. Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics? Med. Mal. Infect. 2017, 47, 477–483. [Google Scholar] [CrossRef]
- Abriouel, H.; Casado Muñoz, M.D.C.; Lavilla Lerma, M.L.; Pérez Montoro, B.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.-S.; Franz, C.M.A.P.; Galvez, A.; et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, W.; Guo, H.; Pan, L.; Zhang, H.; Sun, T. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 2015, 50, 250–258. [Google Scholar] [CrossRef]
- Aghamohammad, S.; Rohani, M. Antibiotic resistance and the alternatives to conventional antibiotics: The role of probiotics and microbiota in combating antimicrobial resistance. Microbiol. Res. 2022, 267, 127275. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycoside: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef]
- Vasiee, A.; Falah, F.; Behbahani, B.A.; Tabatabaee-Yazdi, F. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J. Biosci. Bioeng. 2020, 130, 471–479. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef]
- Ortiz, A.C.S.; Gonzalez, A.L.; Cordova, A.I.C.; Montes, R.E.; Miranda, M.d.C.F.; Suastegui, J.M.M. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat. Am. J. Aquat. Res. 2015, 43, 123–136. [Google Scholar] [CrossRef]
- Nascimento, L.C.S.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Probiotic potential and safety of enterococci strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Lakra, A.K.; Domdi, L.; Hanjon, G.; Tilwani, Y.M.; Arul, V. Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 2020, 125, 109261. [Google Scholar] [CrossRef]
- Akpinar, A.; Yerlikaya, O. Some potential beneficial properties of Lacticaseibacillus paracasei subsp. paracasei and Leuconostoc mesenteroides strains originating from raw milk and kefir grains. J. Food Process. Preserv. 2021, 45, e15986. [Google Scholar] [CrossRef]
- Arqués, J.L.; Rodríguez, E.; Langa, S.; Landete, J.M.; Medina, M. Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens. BioMed Res. Int. 2015, 2015, 584183. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Ari, M.M.; Ohadi, E.; Talebi, M.; Zadeh, M.H.; Emamie, A.D.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2021, 36, e24093. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, S.A. Fungal mycotoxins in foods: A review. Cogent Food Agric. 2016, 2, 1213127. [Google Scholar] [CrossRef]
- Khushboo; Karwal, A.; Malik , T. Characterization and selection of probiotic lactic acid bacteria from different sources for development of functional foods. Front Microbiol 2023, 14, 1170725. [Google Scholar] [CrossRef]
- Leyva Salas, M.; Thierry, A.; Lemaître, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Lê, S.; Mounier, J.; Valence, F.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 1787. [Google Scholar] [CrossRef]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef]
- Saladino, F.; Luz, C.; Manyes, L.; Fernández-Franzón, M.; Meca, G. In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control 2016, 67, 273–277. [Google Scholar] [CrossRef]
- Karami, S.; Roayaei, M.; Zahedi, E.; Bahmani, M.; Mahmoodnia, L.; Hamzavi, H.; Rafieian-Kopaei, M. Antifungal effects of Lactobacillus species isolated from local dairy products. Int J Pharm Investig 2017, 7, 77–81. [Google Scholar] [CrossRef]







| Antibiotic | Resistance | Moderate | Susceptible |
|---|---|---|---|
| Chloramphenicol | ≤13 | 14–17 | ≥18 |
| Erythromycin | ≤13 | 14–17 | ≥18 |
| Fusidic acid | ≤15 | 16–20 | ≥21 |
| Oxacillin | 6–8 | 9–19 | ≥20 |
| Penicillin G | 6–8 | 9–19 | ≥20 |
| Streptomycin | ≤12 | - | ≥13 |
| Tetracycline | ≤14 | 15–18 | ≥19 |
| Serial Number | Strain Number | Nomenclature | Similarity (%) | Accession Number |
|---|---|---|---|---|
| 1 | A05M | Enterococcus durans | 100 | OR794489.1 |
| 2 | A011M | Enterococcus durans | 97 | OR567519.1 |
| 3 | A014M | Enterococcus durans | 97 | |
| 4 | A015M | Enterococcus durans | 96 | OR793151.1 |
| 5 | A04M | Enterococcus faecium | 96 | OR793166.1 |
| 6 | A102M | Leuconostoc citreum | 99 | OR600361.1 |
| 7 | A016M | Leuconostoc citreum | 92 | OR794488.1 |
| 8 | A021M | Pediococcus pentosaceus | 99 | OR643697.1 |
| 9 | A025M | Pediococcus pentosaceus | 96 | |
| 10 | A052M | Pediococcus pentosaceus | 96 | OR794367.1 |
| 11 | A056M | Pediococcus pentosaceus | 95 | OR591164.1 |
| 12 | A02M | Pediococcus pentosaceus | 87 | - |
| 13 | A07M | Pediococcus pentosaceus | 92 | - |
| 14 | A017M | Pediococcus pentosaceus | 79 | - |
| 15 | A054M | Pediococcus pentosaceus | 94 | - |
| 16 | A03M | Weissella viridescens | 95 | OR569669.1 |
| 17 | A035M | Weissella viridescens | 86 | - |
| 18 | A036M | Weissella viridescens | 86 | - |
| 19 | A045M | Weissella viridescens | 98 | - |
| 20 | A048M | Weissella viridescens | 90 | - |
| 21 | A049M | Weissella viridescens | 90 | - |
| 22 | A039M | Weissella viridescens | 98 | - |
| 23 | A051M | Weissella viridescens | 94 | - |
| Isolates | Antibiotics | |||||||
|---|---|---|---|---|---|---|---|---|
| C (25 µg) | E (5 µg) | FC (10 µg) | OX (5 µg) | NO (5 µg) | PG (1 Unit) | S (10 µg) | T (25 µg) | |
| W. viridescens A03M | S | R | R | R | R | R | R | S |
| E. faecium A04M | S | S | MS | R | MS | MS | R | S |
| E. durans A05M | S | S | R | R | R | MS | R | S |
| E. durans A011M | S | MS | MS | R | R | MS | R | S |
| E. durans A015M | S | MS | R | R | MS | MS | R | S |
| L. citreum A102M | MS | MS | R | R | R | S | R | S |
| L. citreum A016M | S | S | MS | R | MS | MS | R | S |
| P. pentosaceus A021M | S | S | R | R | R | MS | R | S |
| P. pentosaceus A052M | MS | R | R | R | R | R | R | R |
| P. pentosaceus A056M | S | S | R | R | R | R | R | MS |
| Antibiotics | n = 10 | ||
|---|---|---|---|
| R (%) | MS (%) | S (%) | |
| Chloramphenicol | 0 | 20 | 80 |
| Erythromycin | 20 | 30 | 50 |
| Fusidic acid | 70 | 30 | 0 |
| Oxacillin | 100 | 0 | 0 |
| Novobiocin | 70 | 30 | 0 |
| Penicillin G | 30 | 60 | 10 |
| Streptomycin | 100 | 0 | 0 |
| Tetracycline | 10 | 10 | 80 |
| LAB Isolates | Bacterial Pathogens (Mean Diameter of Inhibition Zone (mm ± SD) | ||
|---|---|---|---|
| E. coli | S. aureus | L. monocytogenes | |
| W. viridescens OR569669.1 | 15.0 ± 1.0 | 14.0 ± 1.5 | 11.0 ± 0.5 |
| E. faecium OR793166.1 | 15.0 ± 1.5 | 15.0 ± 3.5 | 18.0 ± 1.0 |
| E. durans OR794489.1 | 21.0 ± 1.1 | 17.0 ± 0.5 | 14.0 ± 1.1 |
| E. durans OR567519.1 | 16.0 ± 1.1 | 11.0 ± 2.0 | 14.0 ± 1.5 |
| L. citreum OR600361.1 | 14.7 ± 1.1 | 16.7 ± 1.5 b | 12.0 ± 1.5 |
| E. durans OR793151.1 | 14.7 ± 0.5 | 11.0 ± 2.0 | 6.0 ± 2.1 |
| L. citreum OR794488.1 | 18.3 ± 0.5 a | 13.0 ± 1.0 ab | 14.0 ± 0.5 |
| P. pentosaceus OR643697.1 | 14.3 ± 1.5 | 14.0 ± 0.0 | 17.0 ± 0.5 bc |
| P. pentosaceus OR794367.1 | 8.0 ± 1.4 a | 0 ± 0.0 | 6.0 ± 0.5 ac |
| P. pentosaceus OR591164.1 | 13.0 ± 0.0 | 12.5 ± 2.1 | 18.7 ± 1.5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aasa, A.O.; Malgas, S.; Thantsha, M.S. Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives. Foods 2026, 15, 209. https://doi.org/10.3390/foods15020209
Aasa AO, Malgas S, Thantsha MS. Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives. Foods. 2026; 15(2):209. https://doi.org/10.3390/foods15020209
Chicago/Turabian StyleAasa, Adeola O., Samkelo Malgas, and Mapitsi Silvester Thantsha. 2026. "Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives" Foods 15, no. 2: 209. https://doi.org/10.3390/foods15020209
APA StyleAasa, A. O., Malgas, S., & Thantsha, M. S. (2026). Maize-Derived Lactic Acid Bacteria with Probiotic Traits and Antifungal Activity: Candidate Functional Starter Cultures and Bio-Preservatives. Foods, 15(2), 209. https://doi.org/10.3390/foods15020209

