Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = pro-viral function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7908 KiB  
Article
Deciphering Cowpea Resistance to Potyvirus: Assessment of eIF4E Gene Mutations and Their Impact on the eIF4E-VPg Protein Interaction
by Fernanda Alves de Andrade, Madson Allan de Luna-Aragão, José Diogo Cavalcanti Ferreira, Fernanda Freitas Souza, Ana Carolina da Rocha Oliveira, Antônio Félix da Costa, Francisco José Lima Aragão, Carlos André dos Santos-Silva, Ana Maria Benko-Iseppon and Valesca Pandolfi
Viruses 2025, 17(8), 1050; https://doi.org/10.3390/v17081050 - 28 Jul 2025
Abstract
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It [...] Read more.
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It is known that the VPg protein interacts with the host’s translation initiation factor (eIF4E), promoting viral replication. This study aimed to investigate the relationship between mutations in the cowpea eIF4E gene and resistance to CABMV. Twenty-seven cultivars were screened by PCR and bioassays for presence/absence of mutations associated with resistance or susceptibility to Potyviruses. Of the cultivars with mutations previously associated with susceptibility, 88.24% exhibited viral symptoms, while 62.5% associated with resistance remained asymptomatic. The in silico analyses revealed that non-synonymous mutations (Pro68Arg, Gly109Arg) alter the structure of the eIF4E protein, reducing its affinity to VPg. Molecular dynamics simulations also pointed to an enhanced structural stability of eIF4E in resistant cultivars and reinforced, for the first time, key mutations and the functional role of the eIF4E gene in resistance to CABMV in cowpea. Our results offer valuable insights for virus disease management and for genetic improvement programs for this important crop. Full article
(This article belongs to the Special Issue Viral Manipulation of Plant Stress Responses)
Show Figures

Graphical abstract

34 pages, 2326 KiB  
Review
Non-Coding RNAs and Immune Evasion in Human Gamma-Herpesviruses
by Tablow S. Media, Laura Cano-Aroca and Takanobu Tagawa
Viruses 2025, 17(7), 1006; https://doi.org/10.3390/v17071006 - 17 Jul 2025
Viewed by 281
Abstract
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can [...] Read more.
Herpesviruses are DNA viruses that evade the immune response and persist as lifelong infections. Human gamma-herpesviruses Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) are oncogenic; they can lead to cancer. Oncogenic viruses are responsible for 10–15% of human cancer development, which can have poor prognoses. Non-coding RNAs (ncRNAs) are RNAs that regulate gene expression without encoding proteins, and are being studied for their roles in viral immune evasion, infection, and oncogenesis. ncRNAs are classified by their size, and include long non-coding RNAs, microRNAs, and circular RNAs. EBV and KSHV manipulate host ncRNAs, and encode their own ncRNAs, regulating host processes and immune responses. Viral ncRNAs regulate host functions by post-transcriptionally modifying host RNAs, and by serving as mimics of other host RNAs, promoting immune evasion. ncRNAs in gamma-herpesvirus infection are also important for tumorigenesis, as dampening immune responses via ncRNAs can upregulate pro-tumorigenic pathways. Emerging topics such as RNA modifications, target-directed miRNA degradation, competing endogenous RNA networks, and lncRNA/circRNA–miRNA interactions provide new insights into ncRNA functions. This review compares ncRNAs and the mechanisms of viral immune evasion in EBV and KSHV, while also expanding on recent developments in the roles of ncRNAs in immune evasion, viral infection, and oncogenesis. Full article
Show Figures

Figure 1

29 pages, 1953 KiB  
Review
Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications
by Renata Maria Văruț, Dop Dalia, Kristina Radivojevic, Diana Maria Trasca, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen and Cristina Elena Singer
Pharmaceuticals 2025, 18(7), 1021; https://doi.org/10.3390/ph18071021 - 10 Jul 2025
Viewed by 846
Abstract
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of [...] Read more.
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of eosinophils, neutrophils, and other effector cells, thereby precipitating episodic exacerbations in response to viral and environmental triggers. Conventional biomarkers, including blood and sputum eosinophil counts, IgE levels, and fractional exhaled nitric oxide, facilitate phenotypic classification and guide the emerging biologic era. Monoclonal antibodies targeting IgE (omalizumab) and IL-5 (mepolizumab, benralizumab, reslizumab, depemokimab) have demonstrated the ability to reduce exacerbation frequency and improve lung function, with newer agents such as depemokimab offering extended dosing intervals. Itepekimab, an anti-IL-33 antibody, effectively engages its target and mitigates tissue eosinophilia, while CM310-stapokibart, tralokinumab, and lebrikizumab inhibit IL-4/IL-13 signaling with variable efficacy depending on patient biomarkers. Comparative analyses of these biologics, encompassing affinity, dosing regimens, and trial outcomes, underscore the imperative of personalized therapy to optimize disease control in severe asthma. Full article
Show Figures

Graphical abstract

17 pages, 2353 KiB  
Article
High TCR Degeneracy Enhances Antiviral Efficacy of HTLV-1-Specific CTLs by Targeting Variant Viruses in HAM Patients
by Ryuji Kubota, Kousuke Hanada, Mineki Saito, Mika Dozono, Satoshi Nozuma and Hiroshi Takashima
Int. J. Mol. Sci. 2025, 26(14), 6602; https://doi.org/10.3390/ijms26146602 - 10 Jul 2025
Viewed by 264
Abstract
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which [...] Read more.
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which recognize peptide–MHC class I complexes via TCRs, play a critical role in the immune response against viral infections. However, the extent to which TCR degeneracy within a population of virus-specific CTLs contributes to effective viral control remains poorly understood. In this study, we investigated the magnitude and functional relevance of TCR degeneracy in CTLs targeting an immunodominant epitope of human T-cell leukemia virus type 1 (HTLV-1) in patients with HTLV-1-associated myelopathy (HAM). Using peripheral blood mononuclear cells (PBMCs) from these patients, we quantified TCR degeneracy at the population level by comparing CTL responses to a panel of APLs with responses to the cognate epitope. Our findings demonstrated that increased TCR degeneracy, particularly at the primary TCR contact residue at position 5 of the antigen, was inversely correlated with HTLV-1 proviral load (p = 0.038, R = −0.40), despite similar functional avidity across patient-derived CTLs. Viral sequencing further revealed that CTLs with high TCR degeneracy exerted stronger selective pressure on the virus, as indicated by a higher frequency of nonsynonymous substitutions within the epitope-encoding region in patients with highly degenerate TCR repertoires. Moreover, TCR degeneracy was positively correlated with the recognition rate of epitope variants (p = 0.018, R = 0.76), suggesting that CTLs with high TCR degeneracy exhibited enhanced recognition of naturally occurring epitope variants compared to those with low TCR degeneracy. Taken together, these results suggest that virus-specific CTLs with high TCR degeneracy possess superior antiviral capacity, characterized by broadened epitope recognition and more effective suppression of HTLV-1 infection. To our knowledge, this is the first study to systematically quantify TCR degeneracy in HTLV-1-specific CTLs and evaluate its contribution to viral control in HAM patients. These findings establish TCR degeneracy as a critical determinant of antiviral efficacy and provide a novel immunological insight into the mechanisms of viral suppression in chronic HTLV-1 infection. Full article
Show Figures

Figure 1

29 pages, 2166 KiB  
Article
Characterizing Gene-Level Adaptations in the Gut Microbiome During Viral Infections: The Role of a Fucoidan-Rich Extract
by Gissel García, Josanne Soto, Carmen Valenzuela and Raul De Jesús Cano
Genes 2025, 16(7), 740; https://doi.org/10.3390/genes16070740 - 26 Jun 2025
Viewed by 488
Abstract
Background/Objectives: This study aimed to examine the effects of a Fucoidan-rich extract from Saccharina latissima (SLE-F) on differential gut microbiota composition, intestinal inflammation status, and microbial functional gene expression in participants infected with Dengue or Oropouche virus at the Hermanos Ameijeiras Hospital in [...] Read more.
Background/Objectives: This study aimed to examine the effects of a Fucoidan-rich extract from Saccharina latissima (SLE-F) on differential gut microbiota composition, intestinal inflammation status, and microbial functional gene expression in participants infected with Dengue or Oropouche virus at the Hermanos Ameijeiras Hospital in Havana, Cuba. Methods: Fecal samples were collected at baseline, day 28, and day 90 from 90 healthy adults, some of whom contracted the virus during the study period. Functional gene analysis was conducted using two approaches—the Kruskal–Wallis H test and linear discriminant analysis effect size—applied to ortholog-level data normalized by read count and gene copy number. Results: Infected participants exhibited significantly lower Lachnospiraceae-to-Enterobacteriaceae (LE) ratios, indicating increased intestinal inflammation. High-dose SLE-F treatment led to a significant reduction in the LE ratio (p = 0.006), suggesting a strong anti-inflammatory effect. Microbiome analysis revealed a shift from dysbiosis to a more balanced composition by the end of the study, characterized by increased abundances of Akkermansia muciniphila, Bifidobacterium adolescentis, and B. longum, along with decreased pro-inflammatory taxa such as Fusobacterium. Conclusions: Genetic analysis provided distinct yet complementary insights into the microbiome’s functional responses to infection and therapeutic modulation by Fucoidan. These findings highlight the therapeutic potential of high-dose Fucoidan in reducing gut inflammation and promoting microbiome recovery following viral infections. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 529 KiB  
Review
The Dual Role of TRADD in Liver Disease: From Cell Death Regulation to Inflammatory Microenvironment Remodeling
by Xueling Wang, Qiwen Tan, Di Zhang, Huan Cao, Shenghe Deng and Yu Zhang
Int. J. Mol. Sci. 2025, 26(12), 5860; https://doi.org/10.3390/ijms26125860 - 19 Jun 2025
Viewed by 626
Abstract
The global burden of liver diseases continues to rise, encompassing diverse pathologies such as viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC). In recent years, TNFR1-associated death domain protein (TRADD), a pivotal adaptor molecule in [...] Read more.
The global burden of liver diseases continues to rise, encompassing diverse pathologies such as viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC). In recent years, TNFR1-associated death domain protein (TRADD), a pivotal adaptor molecule in the TNF signaling pathway, has been found to play a dual regulatory role in the pathogenesis of liver diseases. Through its death domain, TRADD binds to TNFR1 and dynamically recruits downstream factors (e.g., TRAF2, RIPK1, FADD) to form Complex I or IIa, thereby activating pro-survival or pro-apoptotic signals that dictate hepatocyte fate and modulate the inflammatory microenvironment. This review systematically summarizes the molecular structure and functional networks of TRADD, along with its mechanistic roles in liver diseases: in HCC, TRADD expression correlates with tumor differentiation and is regulated by miRNA targeting; in ALD and MASLD, TRADD-mediated apoptosis is closely linked to fibrotic progression; and in acute liver injury, TRADD signaling is modulated by factors such as HO-1 to mitigate damage. Furthermore, TRADD inhibitors and antisense oligonucleotides demonstrate therapeutic potential. This review highlights the clinical translational value of TRADD as a diagnostic, therapeutic, and prognostic biomarker for liver diseases, providing a theoretical foundation for future precision medicine strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

29 pages, 2018 KiB  
Review
Neutrophil Spatiotemporal Regulatory Networks: Dual Roles in Tumor Growth Regulation and Metastasis
by Pengcheng Li, Feimu Fan, Bixiang Zhang, Chaoyi Yuan and Huifang Liang
Biomedicines 2025, 13(6), 1473; https://doi.org/10.3390/biomedicines13061473 - 14 Jun 2025
Viewed by 834
Abstract
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote [...] Read more.
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote genomic instability and malignant transformation. In tumor progression, neutrophils adopt context-dependent phenotypes and execute diverse functions, including polarization into anti-tumor (N1) or pro-tumor (N2) subsets; secretion of inflammatory and angiogenic mediators; formation of neutrophil extracellular traps (NETs); production of reactive oxygen and nitrogen species (e.g., H2O2 and nitric oxide); and modulation of immune cell infiltration and function within the tumor microenvironment. During metastasis, neutrophils facilitate cancer dissemination through three principal mechanisms: (1) promoting epithelial–mesenchymal transition (EMT) via inflammatory signaling, adhesion molecule interactions, and lipid metabolic support; (2) establishing pre-metastatic niches by remodeling distant organ stroma through NETs and matrix metalloproteinases; and (3) reactivating dormant tumor cells in response to chronic inflammation, viral infection, or stress hormones. Collectively, neutrophils function as central regulators across all stages of tumor evolution, influencing cancer growth, immune evasion, and metastatic progression. This review aims to provide a comprehensive synthesis of neutrophil-mediated mechanisms in the tumor microenvironment and highlight emerging strategies for neutrophil-targeted cancer therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

13 pages, 960 KiB  
Article
Immunological and Virological Responses in Patients with Monoinfection and Coinfection with Hepatitis B and C Viruses in the Brazilian Amazon
by Joseane R. Silva, Regiane M. A. Sampaio, Patrícia F. Nunes, Vanessa S. Guimarães, Camila Carla da Silva Costa, Evelen da Cruz Coelho, Micheline Vale de Souza, Luana Wanessa Cruz Almeida, Hellen T. Fuzii, Aldemir Branco Oliveira Filho and Luisa C. Martins
Trop. Med. Infect. Dis. 2025, 10(6), 166; https://doi.org/10.3390/tropicalmed10060166 - 13 Jun 2025
Viewed by 805
Abstract
Infections with the Hepatitis B (HBV) and Hepatitis C (HCV) viruses share some transmission routes, which is why coinfection with these viruses becomes common, especially in endemic areas. This study evaluated the immunological response profile, viral load, and liver damage in groups monoinfected [...] Read more.
Infections with the Hepatitis B (HBV) and Hepatitis C (HCV) viruses share some transmission routes, which is why coinfection with these viruses becomes common, especially in endemic areas. This study evaluated the immunological response profile, viral load, and liver damage in groups monoinfected with HBV or HCV and in those co-infected with HBV/HCV. The groups were composed of 22 patients monoinfected by HCV, 22 patients monoinfected by HBV, and 34 co-infected by HBV/HCV, according to serological markers and molecular biology tests. The study was carried out from December 2017 to October 2019. Virus detection employed enzyme immunoassay, Enzyme-Linked Immunosorbent Assay (ELISA), and real-time PCR, while liver function and fibrosis were assessed using biochemical tests and Fibroscan. To research the immunological profile, cytokines were quantified using the BIO-Plex Pro Human Cytokine. Comparing the groups, both mono- and co-infected patients exhibited a Th1 immune response profile. HCV monoinfection notably showed significantly elevated serum levels of INF-γ (p < 0.01) and TNF-α (p < 0.01). The viral load was significantly higher in the HCV monoinfected group when compared to the other groups. Regarding liver damage, patients with a high level of fibrosis (F4) presented significant levels of cytokines INF-γ (p < 0.001), IL-17 (p < 0.0001), and TNF-α (p < 0.0001). Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

16 pages, 3491 KiB  
Article
Erythrodermic Psoriasis in the Context of Emerging Triggers: Insights into Dupilumab-Associated and COVID-19-Induced Psoriatic Disease
by Aya Fadel, Jayakumar Nithura, Zahraa F. Saadoon, Lamia Naseer, Angelo Lopez-Lacayo, Ligia Elena Rojas Solano, Chaveli Palau Morales, Robert J. Hernandez and Hussain Hussain
Dermatopathology 2025, 12(2), 17; https://doi.org/10.3390/dermatopathology12020017 - 9 Jun 2025
Viewed by 1281
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disorder characterized by keratinocyte hyperproliferation, impaired epidermal barrier function, and immune dysregulation. The Th17/IL-23 axis plays a central role in its pathogenesis, promoting the production of key pro-inflammatory cytokines such as IL-17, IL-23, and TNF-α, which [...] Read more.
Psoriasis is a chronic immune-mediated inflammatory skin disorder characterized by keratinocyte hyperproliferation, impaired epidermal barrier function, and immune dysregulation. The Th17/IL-23 axis plays a central role in its pathogenesis, promoting the production of key pro-inflammatory cytokines such as IL-17, IL-23, and TNF-α, which sustain chronic inflammation and epidermal remodeling. Emerging evidence suggests that SARS-CoV-2 may trigger new-onset or exacerbate existing psoriasis, likely through viral protein-induced activation of toll-like receptors (TLR2 and TLR4). This leads to NF-κB activation, cytokine release, and enhanced Th17 responses, disrupting immune homeostasis. Erythrodermic psoriasis (EP), a rare and severe variant, presents with generalized erythema and desquamation, often accompanied by systemic complications, including infection, electrolyte imbalance, and hemodynamic instability. In a murine model of SARS-CoV-2 infection, we found notable cutaneous changes: dermal collagen deposition, hair follicle destruction, and subcutaneous adipose loss. Parallel findings were seen in a rare clinical case (only the third reported case) of EP in a patient with refractory psoriasis, who developed erythroderma after off-label initiation of dupilumab therapy. The patient’s histopathology closely mirrored the changes seen in the SARS-CoV-2 model. Histological evaluations also reveal similarities between psoriasis flare-ups following dupilumab treatment and cutaneous manifestations of COVID-19, suggesting a shared inflammatory pathway, potentially mediated by heightened type 1 and type 17 responses. This overlap raises the possibility of a latent connection between SARS-CoV-2 infection and increased psoriasis severity. Since the introduction of COVID-19 vaccines, sporadic cases of EP have been reported post-vaccination. Although rare, these events imply that vaccine-induced immune modulation may influence psoriasis activity. Our findings highlight a convergence of inflammatory mediators—including IL-1, IL-6, IL-17, TNF-α, TLRs, and NF-κB—across three triggers: SARS-CoV-2, vaccination, and dupilumab. Further mechanistic studies are essential to clarify these relationships and guide management in complex psoriasis cases. Full article
Show Figures

Figure 1

14 pages, 1489 KiB  
Article
Orally Dissolving Film-Based Influenza Vaccines Confer Superior Protection Compared to the Oral Administration of Inactivated Influenza Virus
by Keon-Woong Yoon, Jie Mao, Gi-Deok Eom, Su In Heo, Ki Back Chu, Mi Suk Lee and Fu-Shi Quan
Vaccines 2025, 13(6), 600; https://doi.org/10.3390/vaccines13060600 - 31 May 2025
Viewed by 607
Abstract
Background: Self-administered orally dissolving films (ODFs) encapsulating inactivated influenza vaccines represent an effective strategy for stimulating mucosal immunity. While this vaccination method offers several advantages over conventional influenza vaccines, a comparative efficacy study remains lacking. Methods: Female BALB/c mice were immunized [...] Read more.
Background: Self-administered orally dissolving films (ODFs) encapsulating inactivated influenza vaccines represent an effective strategy for stimulating mucosal immunity. While this vaccination method offers several advantages over conventional influenza vaccines, a comparative efficacy study remains lacking. Methods: Female BALB/c mice were immunized with inactivated A/PR/8/34 (H1N1) either via orogastric inoculation or through the oral mucosal delivery using pullulan and trehalose-based ODF vaccines. Each group received equivalent antigen doses across three immunizations. Humoral responses and antibody functionality were assessed using sera collected post-immunization. After lethal viral challenge, other immunological and virological parameters were determined in corresponding tissues. Body weight and survival were monitored over a 14-day period after challenge. Results: ODF vaccination elicited significantly higher virus-specific IgA levels, HAI titers, and neutralizing antibody activity than oral gavage. After the viral challenge, ODF-immunized mice exhibited stronger IgG and IgA responses in respiratory tissues, increased antibody-secreting cells in lungs and spleen, and elevated germinal center B cells and CD8+ T cell responses. Both vaccination methods reduced lung pro-inflammatory cytokines and provided full protection against lethal challenge; however, the ODF group showed lower cytokine levels, better weight maintenance, and reduced viral loads. Conclusions: ODF vaccination elicits more robust systemic and mucosal immune responses than oral vaccination and may serve as a promising alternative method of influenza vaccine delivery. Full article
(This article belongs to the Special Issue Virus Pandemics and Vaccinations)
Show Figures

Figure 1

16 pages, 2495 KiB  
Article
A Comprehensive Screening of the Interactors of Areca Palm Necrotic Ringspot Virus (ANRSV) HCPro2 Highlights the Proviral Roles of eIF4A and PGK in Viral Infection
by Li Qin, Peilan Liu, Wentao Shen, Zhaoji Dai and Hongguang Cui
Plants 2025, 14(11), 1673; https://doi.org/10.3390/plants14111673 - 30 May 2025
Viewed by 466
Abstract
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature [...] Read more.
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature a unique tandem leader protease arrangement (HCPro1-HCPro2). To elucidate HCPro2’s role, this study identified its interaction partners in infected cells using affinity purification coupled with liquid chromatography-tandem mass spectrometry, a yeast two-hybrid system, and co-immunoprecipitation. Thirteen host proteins and five viral factors (HCPro1, 6K2, VPg, NIa-Pro, NIb) were validated as HCPro2 interactors. Among the host proteins interacting with HCPro2, the expression of five genes (NbeIF4A, NbSAMS1α, NbTEF1α, NbUEP1, and NbRan2) was upregulated under the condition of viral infection, while the expression of another five genes (NbpsbS1, NbPGK, NbchIP, NbClpC1A, and NbCysPrx) was downregulated. Functional assays showed that silencing NbeIF4A or NbPGK significantly reduced viral accumulation in Nicotiana benthamiana. These findings reveal HCPro2’s network of virus-host interaction, highlighting its critical role in viral pathogenesis. Further exploration of these interactions may clarify the evolutionary significance of tandem leader proteases and inform novel plant antiviral strategies. Full article
Show Figures

Figure 1

25 pages, 1043 KiB  
Review
hnRNPH1: A Multifaceted Regulator in RNA Processing and Disease Pathogenesis
by Lijing Zhu, Wei Yi, Like Zhang, Chenyue Qiu, Ning Sun, Jingwen He, Ping Feng, Qiong Wu, Guangyi Wang and Guosheng Wu
Int. J. Mol. Sci. 2025, 26(11), 5159; https://doi.org/10.3390/ijms26115159 - 28 May 2025
Viewed by 885
Abstract
Heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) is a multifunctional RNA-binding protein (RBP) that plays a central role in post-transcriptional regulation. Through its quasi-RNA recognition motifs and low-complexity domains, hnRNPH1 specifically binds guanine-rich RNA sequences, including G-quadruplex structures, to precisely modulate multiple aspects of RNA [...] Read more.
Heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) is a multifunctional RNA-binding protein (RBP) that plays a central role in post-transcriptional regulation. Through its quasi-RNA recognition motifs and low-complexity domains, hnRNPH1 specifically binds guanine-rich RNA sequences, including G-quadruplex structures, to precisely modulate multiple aspects of RNA metabolism, such as alternative splicing, mRNA stability, translation, and subcellular localization. Accumulating evidence has implicated hnRNPH1 dysfunction in the pathogenesis of several human diseases. In cancer, hnRNPH1 often acts as a pro-tumorigenic factor, albeit in a context-dependent manner, influencing the alternative splicing of crucial oncogenes, mRNA stability, and tumor cell sensitivity to therapeutic agents. In the nervous system, hnRNPH1 is involved in neurodevelopment, neurodegenerative diseases, and drug addiction and plays an essential role in maintaining neuronal function and homeostasis. Furthermore, it exerts regulatory functions in reproductive system development and fertility and in non-neoplastic pathologies, including cardiovascular diseases, autoimmune disorders, and viral hepatitis. Given its pathophysiological significance, hnRNPH1 has emerged as a promising biomarker and therapeutic target. This review provides an overview of the structural basis and core molecular function of hnRNPH1. Its mechanisms of action and pathological significance in various diseases have also been detailed. Additionally, this review summarizes the current therapeutic strategies targeting hnRNPH1, discusses the associated challenges, outlines optimization approaches, and considers future research directions. Overall, this review aims to deepen our understanding of hnRNPH1 biology and inspire the development of novel diagnostic and therapeutic interventions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 3940 KiB  
Article
Gut Microbiota and Neurovascular Patterns in Amnestic Mild Cognitive Impairment
by Alexis B. Kazen, Laura Glass Umfleet, Fatima A. Aboulalazm, Alexander D. Cohen, Scott Terhune, Lilly Mason, Shawn Obarski, Malgorzata Franczak, Tammy Lyn Kindel, Yang Wang and John R. Kirby
Brain Sci. 2025, 15(6), 538; https://doi.org/10.3390/brainsci15060538 - 22 May 2025
Viewed by 646
Abstract
Background/Objectives: The interplay between the gut microbiome (GMB) and neurovascular function in neurodegeneration is unclear. The goal of this proof-of-concept, cross-sectional study is to identify relationships between the GMB, neurovascular functioning, and cognition in amnestic mild cognitive impairment (aMCI), the prototypical prodromal symptomatic [...] Read more.
Background/Objectives: The interplay between the gut microbiome (GMB) and neurovascular function in neurodegeneration is unclear. The goal of this proof-of-concept, cross-sectional study is to identify relationships between the GMB, neurovascular functioning, and cognition in amnestic mild cognitive impairment (aMCI), the prototypical prodromal symptomatic stage of Alzheimer’s disease (AD). Methods: Participants (n = 14 aMCI and 10 controls) provided fecal samples for GMB sequencing (16S and shotgun metagenomics), underwent MRI, and completed cognitive testing. Cerebral vascular reactivity (CVR), cerebral blood flow (CBF), and arterial transit time (ATT) were assessed. Statistical analyses evaluated the relationships between discriminatory taxa, cerebrovascular metrics, and cognition. Results: Sequencing revealed differentially abundant bacterial and viral taxa distinguishing aMCI from controls. Spearman correlations revealed that bacteria known to induce inflammation were negatively associated with CVR, CBF, and cognition, and positively associated with ATT. A reciprocal pattern emerged for the association of taxa with gut health. Conclusions: Our results provide preliminary evidence that pro-inflammatory gut bacterial and viral taxa are associated with neurovascular dysfunction and cognitive impairment in prodromal AD, highlighting their potential as candidate microbial biomarkers and targets for early intervention. Full article
Show Figures

Figure 1

41 pages, 1230 KiB  
Review
Human T-Lymphotropic Virus (HTLV): Epidemiology, Genetic, Pathogenesis, and Future Challenges
by Francesco Branda, Chiara Romano, Grazia Pavia, Viola Bilotta, Chiara Locci, Ilenia Azzena, Ilaria Deplano, Noemi Pascale, Maria Perra, Marta Giovanetti, Alessandra Ciccozzi, Andrea De Vito, Angela Quirino, Nadia Marascio, Giovanni Matera, Giordano Madeddu, Marco Casu, Daria Sanna, Giancarlo Ceccarelli, Massimo Ciccozzi and Fabio Scarpaadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 664; https://doi.org/10.3390/v17050664 - 1 May 2025
Viewed by 1556
Abstract
Human T-lymphotropic viruses (HTLVs) are deltaretroviruses infecting millions of individuals worldwide, with HTLV-1 and HTLV-2 being the most widespread and clinically relevant types. HTLV-1 is associated with severe diseases such as adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HTLV-2 [...] Read more.
Human T-lymphotropic viruses (HTLVs) are deltaretroviruses infecting millions of individuals worldwide, with HTLV-1 and HTLV-2 being the most widespread and clinically relevant types. HTLV-1 is associated with severe diseases such as adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while HTLV-2 shows a lower pathogenic potential, with occasional links to neurological disorders. HTLV-3 and HTLV-4, identified in Central Africa, remain poorly characterized but are genetically close to their simian counterparts, indicating recent zoonotic transmission events. HTLVs replicate through a complex cycle involving cell-to-cell transmission and clonal expansion of infected lymphocytes. Viral persistence is mediated by regulatory and accessory proteins, notably Tax and HBZ in HTLV-1, which alter host cell signaling, immune responses, and genomic stability. Integration of proviral DNA into transcriptionally active regions of the host genome may contribute to oncogenesis and long-term viral latency. Differences in viral protein function and intracellular localization contribute to the distinct pathogenesis observed between HTLV-1 and HTLV-2. Geographically, HTLV-1 shows endemic clusters in southwestern Japan, sub-Saharan Africa, the Caribbean, South America, and parts of the Middle East and Oceania. HTLV-2 is concentrated among Indigenous populations in the Americas and people who inject drugs in Europe and North America. Transmission occurs primarily via breastfeeding, sexual contact, contaminated blood products, and, in some regions, zoonotic spillover. Diagnostic approaches include serological screening (ELISA, Western blot, LIA) and molecular assays (PCR, qPCR), with novel biosensor and AI-based methods under development. Despite advances in understanding viral biology, therapeutic options remain limited, and preventive strategies focus on transmission control. The long latency period, lack of effective treatments, and global neglect complicate public health responses, underscoring the need for increased awareness, research investment, and targeted interventions. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 4830 KiB  
Article
PKM2 Facilitates Classical Swine Fever Virus Replication by Enhancing NS5B Polymerase Function
by Mengzhao Song, Shanchuan Liu, Yan Luo, Tiantian Ji, Yanming Zhang and Wen Deng
Viruses 2025, 17(5), 648; https://doi.org/10.3390/v17050648 - 29 Apr 2025
Viewed by 432
Abstract
Host metabolic reprogramming is a critical strategy employed by many viruses to support their replication, and the key metabolic enzyme plays important roles in virus infection. This study investigates the role of pyruvate kinase M2 (PKM2), a glycolytic enzyme with non-canonical functions, in [...] Read more.
Host metabolic reprogramming is a critical strategy employed by many viruses to support their replication, and the key metabolic enzyme plays important roles in virus infection. This study investigates the role of pyruvate kinase M2 (PKM2), a glycolytic enzyme with non-canonical functions, in the replication of classical swine fever virus (CSFV). Using PK-15 cells and piglet models, we demonstrate that CSFV infection upregulates PKM2 expression both in vitro and in vivo, creating a proviral environment. knockdown of PKM2 by siRNA reduced CSFV proliferation, while PKM2 overexpression significantly increased virus propagation, which was evaluated by viral protein synthesis, genome replication, and progeny virion production. A direct interaction between PKM2 and CSFV NS5B protein was identified by co-immunoprecipitation and GST-pulldown assays, and PKM2 affected NS5B polymerase activity in a dual-luciferase reporter assay, with PKM2 depletion reducing RdRp function by 50%. Temporal analysis of the first viral replication cycle confirmed PKM2-dependent enhancement of CSFV RNA synthesis. These findings establish PKM2 as a proviral host factor that directly binds NS5B to potentiate RdRp activity, thereby bridging metabolic adaptation and viral genome replication. This study provides new evidence of a glycolytic enzyme physically interacting and enhancing viral polymerase function, offering new information about CSFV–host interaction. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop