Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,224)

Search Parameters:
Keywords = prioritized

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9992 KB  
Article
Learning-Based Multi-Objective Optimization of Parametric Stadium-Type Tiered-Seating Configurations
by Metin Arel and Fikret Bademci
Mathematics 2026, 14(3), 410; https://doi.org/10.3390/math14030410 (registering DOI) - 24 Jan 2026
Abstract
Parametric tiered-seating design can be framed as a constrained multi-objective optimization problem in which a low-dimensional decision vector is evaluated by a deterministic operator with sequential feasibility rejection and visibility constraints. This study introduces an oracle-preserving, learning-assisted screening workflow, where a multi-output multilayer [...] Read more.
Parametric tiered-seating design can be framed as a constrained multi-objective optimization problem in which a low-dimensional decision vector is evaluated by a deterministic operator with sequential feasibility rejection and visibility constraints. This study introduces an oracle-preserving, learning-assisted screening workflow, where a multi-output multilayer perceptron (MLP) is used only to prioritize candidates for evaluation. Here, multi-output denotes a single network trained to predict the full objective vector jointly. Candidates are sampled within bounded decision ranges and evaluated by an operator that propagates section-coupled geometric state and enforces hard clearance thresholds through a Vertical Sightline System (VSS), i.e., a deterministic row-wise sightline/clearance evaluator that enforces hard clearance thresholds. The oracle-evaluated set is reduced to its mixed-direction Pareto-efficient subset and filtered by feature-space proximity to a fixed validation reference using nearest-neighbor distances in standardized 11-dimensional features, yielding a robustness-oriented pool. A compact shortlist is derived via TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution; used here strictly as a post-Pareto decision-support ranking rule), and preference uncertainty is assessed by Monte Carlo weight sampling from a symmetric Dirichlet distribution. In an archived run under a fixed oracle budget, 1235 feasible designs are evaluated, producing 934 evaluated Pareto solutions; proximity filtering retains 187 robust candidates and TOPSIS reports a traceable top-30 shortlist. Stability is supported by concentrated top-k frequencies under weight perturbations and by audits under single-feature-drop ablations and tested rounding precisions. Overall, the workflow enables reproducible multi-objective screening and reporting for feasibility-dominated seating design. Full article
Show Figures

Figure 1

19 pages, 10092 KB  
Article
Short-Term Degradation of Aquatic Vegetation Induced by Demolition of Enclosure Aquaculture Revealed by Remote Sensing
by Sheng Xu, Ying Xu, Guanxi Chen and Juhua Luo
Remote Sens. 2026, 18(3), 400; https://doi.org/10.3390/rs18030400 (registering DOI) - 24 Jan 2026
Abstract
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved [...] Read more.
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved water-quality in the middle and lower reaches of the Yangtze River (MLRYR) basin. However, its ecological benefits for key biotic components, particularly AV communities, remain unclear. To address this knowledge gap, this study utilized Landsat and Sentinel-1 satellite imagery to analyze the dynamic evolution of enclosure aquaculture (EA) and AV in 25 lakes (>10 km2) within the MLRYR basin from 1989 to 2023. A U-Net deep learning model was employed to extract EA data (2016–2023), and a vegetation and bloom extraction algorithm was applied to map different AV groups (1989–2023). Results indicate that by 2023, 88% (22/25) of the lakes had completed EA removal. Over the 34-year period, floating/emergent aquatic vegetation (FEAV) exhibited fluctuating trends, while submerged aquatic vegetation (SAV) demonstrated a significant decline, particularly during the EA demolition phase (2016–2023), when its area sharply decreased from 804.8 km2 to 247.3 km2—a reduction of 69.3%. Spatial comparative analysis further confirmed that SAV degradation was substantially more severe in EA removal areas than in EA retention areas. This study demonstrates that EA demolition, while beneficial for improving water quality, exerts significant short-term negative impacts on AV. These findings highlight the urgent need for lake governance policies to shift from single-objective management toward integrated strategies that equally prioritize water-quality improvement and ecological restoration. Future efforts should enhance targeted restoration in EA removal areas through active vegetation recovery and habitat reconstruction, thereby preventing catastrophic regime shifts to phytoplankton-dominated turbid-water states in lake ecosystems. Full article
26 pages, 1779 KB  
Article
Integrating Ecological Suitability and Development Priorities for Coastal Spatial Optimization: A Case Study of Xiamen Bay, China
by Yanhong Lin, Chao Liu, Shuo Wang, Faming Huang, Xin Zhao and Wenjia Hu
Land 2026, 15(2), 208; https://doi.org/10.3390/land15020208 (registering DOI) - 24 Jan 2026
Abstract
Balancing protection and development is essential for mitigating anthropogenic threats and achieving sustainable development in coastal regions. However, integrated spatial planning that links marine protected areas (MPAs) with developed spaces and incorporates land–sea coordination remains insufficiently explored—despite global frameworks such as the “Post-2020 [...] Read more.
Balancing protection and development is essential for mitigating anthropogenic threats and achieving sustainable development in coastal regions. However, integrated spatial planning that links marine protected areas (MPAs) with developed spaces and incorporates land–sea coordination remains insufficiently explored—despite global frameworks such as the “Post-2020 Global Biodiversity Framework” advocating for such integration. In this study, we used Xiamen, a typical bay city in China, as an example, assessed its habitat suitability through the MaxEnt model, and determined its key development areas through hotspot analysis, aiming to coordinate protection and development, as well as land and marine utilization in coastal areas. The results indicate the following: (1) existing protected areas require adjustments; (2) multiple development hotspots overlap, while several cold spots with limited potential for functional development were identified; (3) prioritizing MPAs in decision-making led to an approximate 42.8% increase in MPA coverage in Xiamen. Overall, this study produced a comprehensive plan that integrates both ecological and social objectives. Full article
26 pages, 3375 KB  
Article
Is More Green Space Always Better for Healthy Aging? Exploring Spatial Threshold and Mediation Effects in the United States
by Jing Yang, Pengcheng Li, Jiayi Li and Jinliu Chen
Land 2026, 15(2), 207; https://doi.org/10.3390/land15020207 (registering DOI) - 24 Jan 2026
Abstract
Green space equity is increasingly recognized as a critical environmental condition for healthy aging, yet existing research often overlooks how different green space attributes—accessibility and diversity—are associated with distinct dimensions of older adults’ health. Limited attention has been paid to their nonlinear threshold [...] Read more.
Green space equity is increasingly recognized as a critical environmental condition for healthy aging, yet existing research often overlooks how different green space attributes—accessibility and diversity—are associated with distinct dimensions of older adults’ health. Limited attention has been paid to their nonlinear threshold effects or to the social pathways through which green spaces influence health outcomes. Using the United States county-level panel data from 2020 to 2023, this study integrates fixed-effects models, Extreme Gradient Boosting (XGBoost), and mediation analysis to examine the associations between green accessibility measured by the Two-Step Floating Catchment Area (2SFCA) method, and green diversity measured by the Shannon Index, on the general, physical, and mental health of older adults. Findings indicate that (1) higher green accessibility is associated with better general health, whereas green diversity shows a stronger association with physical health, reflecting its link to more heterogeneous ecosystem service environments. (2) Green accessibility demonstrates the threshold effect, in which the strength of association with health becomes steeper once accessibility approaches higher levels. (3) Green space equity is linked to health partly through social structures. Education clustering and marital stability mediate the associations with general health, while mental health appears to depend more on the social interaction opportunities embedded within green environments than on their physical attributes alone. The study proposes an integrated “physical environment–social structure–health outcome” framework and a threshold-oriented spatial intervention strategy, highlighting the need to prioritize improvements in green accessibility in underserved areas and prioritizing green diversity and age-friendly social functions where accessibility is already high. These findings offer evidence for designing inclusive, health-oriented urban environments for aging populations. Full article
Show Figures

Figure 1

17 pages, 9958 KB  
Article
Medial Malleolar Fracture Fixation with Stainless Steel, Titanium, Magnesium, and PLGA Screws: A Finite Element Analysis
by Mehmet Melih Asoglu, Volkan Kızılkaya, Ali Levent, Huseyin Kursat Celik, Ozkan Kose and Allan E. W. Rennie
J. Funct. Biomater. 2026, 17(2), 59; https://doi.org/10.3390/jfb17020059 (registering DOI) - 24 Jan 2026
Abstract
Background: Implant material may influence interfragmentary mechanics in medial malleolar (MM) fracture fixation. This study aimed to compare stainless steel, titanium, magnesium, and PLGA screws under identical conditions using finite element analysis (FEA). Methods: A CT-based ankle model with a unilateral oblique MM [...] Read more.
Background: Implant material may influence interfragmentary mechanics in medial malleolar (MM) fracture fixation. This study aimed to compare stainless steel, titanium, magnesium, and PLGA screws under identical conditions using finite element analysis (FEA). Methods: A CT-based ankle model with a unilateral oblique MM fracture (θ = 60° to the medial tibial plafond) was fixed with two parallel M4 × 35 mm screws placed perpendicular to the fracture plane (inter-axial distance 13 mm). Contacts were defined as nonlinear frictional, and each screw was assigned a pretension force of 2.5 N. Static single-leg stance was simulated with physiologic tibia/fibula load sharing. Four scenarios differed only by screw material. Primary outputs were interfragmentary micromotion (maximum sliding and gap). Secondary measures included fracture interface contact/frictional stresses, screw/bone von Mises stress, global construct displacement, and average tibiotalar cartilage contact pressure. Results: Interfragmentary micromotion increased as screw stiffness decreased. Maximum sliding was 32.2–33.8 µm with stainless steel/titanium, 40.4 µm with magnesium, and 65.0 µm with PLGA; corresponding gaps were 31.2–32.0 µm with stainless steel and titanium, 31.2 µm with magnesium, and 54.1 µm with PLGA, respectively. Interface stresses followed the same pattern: contact pressure (3.18–3.24 MPa for stainless steel/titanium/magnesium vs. 4.29 MPa for PLGA); frictional stress (1.46–1.49 MPa vs. 1.98 MPa). Peak screw von Mises stress was highest in stainless steel (104.1 MPa), then titanium (73.4 MPa), magnesium (47.4 MPa), and PLGA (17.9 MPa). Global axial displacement (0.26–0.27 mm) and average tibiotalar cartilage contact pressure (0.73–0.75 MPa) were essentially unchanged across materials. All conditions remained below commonly cited thresholds for primary bone healing (gap < 100 µm); however, PLGA exhibited a reduced safety margin. Conclusions: Under identical geometry and loading conditions, titanium and stainless steel yielded the most favorable interfragmentary mechanics for oblique MM fixation; magnesium showed intermediate performane, and PLGA produced substantially greater micromotion and interface stresses. These findings support the use of metallic screws when maximal initial stability is required and suggest that magnesium may be a selective alternative when reducing secondary implant removal is prioritized. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

23 pages, 1103 KB  
Article
Validation of the Qualified Air System in the Pharmaceutical Industry
by Ignacio Emilio Chica Arrieta, Vladimir Llinás Chica, Angela Patricia González Parias, Ainhoa Rubio-Clemente and Edwin Chica
Sci 2026, 8(2), 25; https://doi.org/10.3390/sci8020025 (registering DOI) - 24 Jan 2026
Abstract
The present study describes the ten-year (2014–2024) validation of a Class 100,000ISO 8 qualified air system used in the manufacture of non-sterile pharmaceutical dosage forms in a GMP-certified facility. The lifecycle evaluation included design, installation, qualification, continuous operation, environmental monitoring, cleaning and disinfection [...] Read more.
The present study describes the ten-year (2014–2024) validation of a Class 100,000ISO 8 qualified air system used in the manufacture of non-sterile pharmaceutical dosage forms in a GMP-certified facility. The lifecycle evaluation included design, installation, qualification, continuous operation, environmental monitoring, cleaning and disinfection verification, and annual third-party validation. The system was assessed for critical parameters, including air renewal rates, airflow directionality, the integrity of high-efficiency particulate air (HEPA) filters and ultra-low penetration air (ULPA) filters, environmental recovery times, and non-viable particle counts. Particle monitoring focused on 0.5 μm and 1.0 μm channels within the 0.5–5 μm range specified by ISO 14644-1 for ISO 8 areas. The 0.5–1.0 μm range was prioritized because it provides higher statistical representativeness for evaluating filter performance and controlling fine particulate dispersion, which is particularly relevant in non-sterile pharmaceutical production, while larger particles (>5 μm) are more critical in aseptic processes. The influence of personnel and air exchange rates on cleanliness was also assessed during the final years of the study. Results demonstrate that continuous, systematic validation ensures the controlled environmental conditions required for pharmaceutical production and supports the sustained quality and safety of the finished products. This study provides a technical reference for engineers, pharmacists, and quality professionals involved in cleanroom design, qualification, and regulatory compliance. Full article
22 pages, 659 KB  
Article
Young Adults’ Perceptions of Sustainable Diets: A Comparison Across Five High- and Middle-Income Countries
by Jess Haines, Kate Parizeau, Katherine F. Eckert, Fumi Hayashi, Yukari Takemi, Siti Helmyati, Widjaja Lukito, Ludovica Principato, Martina Toni, Nimbe Torres, Diana De Jesús-Jacintos and Wendelin Slusser
Challenges 2026, 17(1), 5; https://doi.org/10.3390/challe17010005 (registering DOI) - 24 Jan 2026
Abstract
Sustainable diet transitions are required to protect human and planetary health, and consumers are important food systems actors who can foster positive changes. However, little is known about how consumers perceive the concept of sustainable diets. This study explored perceptions of sustainable diets [...] Read more.
Sustainable diet transitions are required to protect human and planetary health, and consumers are important food systems actors who can foster positive changes. However, little is known about how consumers perceive the concept of sustainable diets. This study explored perceptions of sustainable diets across five high- and middle-income countries: Japan, Indonesia, Italy, Canada, and Mexico. Semi-structured interviews were conducted with 184 young adults (30–45 per country), and transcripts were analyzed using values coding to understand the values, attitudes, and beliefs that shape behaviours related to sustainable diets. Results revealed that defining “sustainable eating” was challenging for participants across all countries. While participants’ values regarding sustainable diets were often context-specific with marked differences across countries, common themes across countries included concern about food waste and packaging and the belief that sustainability should be the responsibility of all actors across the food system, not just the individual. These findings indicate that food policy should address both individual and systemic dimensions of food sustainability, specifically prioritizing strategies for waste and packaging infrastructure. Furthermore, public health strategies must be values-oriented and culturally tailored to ensure they resonate with local consumer priorities. Full article
Show Figures

Figure 1

22 pages, 2619 KB  
Article
Probiotics Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 Alleviate Cognitive Dysfunction in Alzheimer’s Disease Models: A Dual-Screening Study in Drosophila and Mice
by Jia Liu, Guoqing Ren, Siyi Niu, Yongshuai Liu, Yuqing Zhao, Zhenou Sun, Qiaomei Zhu, Jixiang Zhang, Yufeng Mao, Zhengqi Liu, Qingbin Guo and Huanhuan Liu
Foods 2026, 15(3), 429; https://doi.org/10.3390/foods15030429 (registering DOI) - 24 Jan 2026
Abstract
Identifying probiotics that modulate the gut–brain axis is vital for non-pharmacological Alzheimer’s disease (AD) therapy. Through a staged screening from transgenic Drosophila to a D-galactose/AlCl3-induced murine model, Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 were prioritized for their ability to improve [...] Read more.
Identifying probiotics that modulate the gut–brain axis is vital for non-pharmacological Alzheimer’s disease (AD) therapy. Through a staged screening from transgenic Drosophila to a D-galactose/AlCl3-induced murine model, Lactobacillus acidophilus LA4 and Lacticaseibacillus paracasei F5 were prioritized for their ability to improve climbing indices and reduce Aβ deposition and AChE activity. In AD mice, LA4 and F5 significantly ameliorated cognitive deficits and anxiety-like behaviors. Mechanistically, both strains reduced hippocampal Aβ1–42 and p-Tau levels, inhibited AChE, suppressed pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), and enhanced antioxidant enzymes (SOD, GSH-Px). 16S rRNA analysis revealed restored Firmicutes/Bacteroidetes ratios and enrichment of SCFA-producers (Muribaculaceae, Dubosiella). Metabolomics highlighted remodeled purine and arginine pathways, with strain-specific effects on primary bile acid biosynthesis/sphingolipid metabolism (LA4) and butanoate metabolism/nicotinate and nicotinamide metabolism (F5). Consequently, LA4 and F5 alleviate AD pathology by restructuring microbial and metabolic profiles, thereby mitigating neuroinflammation and oxidative stress. These findings confirm the potential of specific probiotics as functional food ingredients for the prevention and adjuvant treatment of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Application of Probiotics in Foods and Human Health)
Show Figures

Graphical abstract

14 pages, 1111 KB  
Article
Should Super-Selective Intra-Arterial Chemoradiotherapy Be Prioritized over Surgical Resection for Locally Advanced Oral Cavity Cancer?
by Beng Gwan Teh, Wataru Kobayashi, Kosei Kubota, Shinya Kakehata, Norihiko Narita and Yoshihiro Tamura
Cancers 2026, 18(3), 365; https://doi.org/10.3390/cancers18030365 (registering DOI) - 24 Jan 2026
Abstract
Background/Objectives: Super-selective intra-arterial chemoradiotherapy (SSIACRT) is an alternatively effective treatment for locally advanced oral cavity cancer although no comparative studies on prognosis between SSIACRT and surgical resection with or without post-operative radiotherapy (S+R) have been reported. This study aimed to compare the 5-year [...] Read more.
Background/Objectives: Super-selective intra-arterial chemoradiotherapy (SSIACRT) is an alternatively effective treatment for locally advanced oral cavity cancer although no comparative studies on prognosis between SSIACRT and surgical resection with or without post-operative radiotherapy (S+R) have been reported. This study aimed to compare the 5-year survival rate and Quality of Life (QoL) between S+R and SSIACRT for locally advanced oral cavity cancer. Methods: From a total of 326 patients with stage III and IV oral cavity cancer treated between 2000–2020 at a single institution, 149 patients treated with S+R and SSIACRT were analyzed by using Propensity Score Matching (PSM) method, a pseudo-randomized controlled trial, and the matched cases were retrospectively evaluated. The 5-year survival rate and QoL were evaluated using the Kaplan–Meier method and the University of Washington QoL questionnaire, respectively. Log-rank test and Cox proportional hazards model were used to compare 5-year survival rate and to assess factors affecting survival rates, respectively. Paired t-test was used to compare QoL. Results: To compare the 5-year survival rate and QoL between S+R and SSIACRT, 48 and 15 cases were matched after PSM. The 149 cases were further evaluated for covariates affecting survival rates. The 5-year disease-specific survival rate and 5-year crude survival rate were 52.4% and 44.3% for S+R and 71.3%, and 62.9% for SSIACRT, respectively. There was no statistical difference in survival rates between both treatments, based on Log-rank test analysis. Treatment method was the only independent variable that influenced survival rates. SSIACRT showed better statistical difference in QoL evaluation, specifically in appearance, activity, recreation, swallowing, speech, shoulder, taste, mood, and total score. Conclusions: Propensity score-matched analysis demonstrated survival outcomes that were comparable to, and not inferior to, S+R. However, SSIACRT was associated with superior quality-of-life outcomes compared with S+R, as shown by Cox proportional hazards modeling. These findings suggest that SSIACRT is an effective treatment option and, from a quality-of-life perspective, may be considered a preferable approach in the management of locally advanced oral cavity cancer. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

21 pages, 2093 KB  
Article
From Pixels to Carbon Emissions: Decoding the Relationship Between Street View Images and Neighborhood Carbon Emissions
by Pengyu Liang, Jianxun Zhang, Haifa Jia, Runhao Zhang, Yican Zhang, Chunyi Xiong and Chenglin Tan
Buildings 2026, 16(3), 481; https://doi.org/10.3390/buildings16030481 - 23 Jan 2026
Abstract
Under the pressing imperative of achieving “dual carbon” goals and advancing urban low-carbon transitions, understanding how neighborhood spatial environments influence carbon emissions has become a critical challenge for enabling refined governance and precise planning in urban carbon reduction. Taking the central urban area [...] Read more.
Under the pressing imperative of achieving “dual carbon” goals and advancing urban low-carbon transitions, understanding how neighborhood spatial environments influence carbon emissions has become a critical challenge for enabling refined governance and precise planning in urban carbon reduction. Taking the central urban area of Xining as a case study, this research establishes a high-precision estimation framework by integrating Semantic Segmentation of Street View Images and Point of Interest data. This study employs a Geographically Weighted XGBoost model to capture the spatial non-stationarity of emission drivers, achieving a median R2 of 0.819. The results indicate the following: (1) Socioeconomic functional attributes, specifically POI Density and POI Mixture, exert a more dominant influence on carbon emissions than purely visual features. (2) Lane Marking General shows a strong positive correlation by reflecting traffic pressure, Sidewalks exhibit a clear negative correlation by promoting active travel, and Building features display a distinct asymmetric impact, where the driving effect of high density is notably less pronounced than the negative association observed in low-density areas. (3) The development of low-carbon neighborhoods should prioritize optimizing functional mixing and enhancing pedestrian systems to construct resilient and low-carbon urban spaces. This study reveals the non-linear relationship between street visual features and neighborhood carbon emissions, providing an empirical basis and strategic references for neighborhood planning and design oriented toward low-carbon goals, with valuable guidance for practices in urban planning, design, and management. Full article
(This article belongs to the Special Issue Low-Carbon Urban Planning: Sustainable Strategies and Smart Cities)
29 pages, 952 KB  
Article
University–Business Link for Sustainable Territorial Development Through the Principles for Responsible Investment in Agriculture and Food Systems (CSA-IRA): Working with People in the Dominican Republic
by Milagros del Pilar Panta Monteza, Ubaldo Eberth Dedios Espinoza, Gustavo Armando Gandini and Jorge Luis Carbajal Arroyo
Sustainability 2026, 18(3), 1179; https://doi.org/10.3390/su18031179 - 23 Jan 2026
Abstract
There is little evidence of the implementation of the Principles for Responsible Investment in Agriculture and Food Systems between universities and businesses, and there is even less research that prioritizes people and implements sustainable development with a territorial focus. In this article, we [...] Read more.
There is little evidence of the implementation of the Principles for Responsible Investment in Agriculture and Food Systems between universities and businesses, and there is even less research that prioritizes people and implements sustainable development with a territorial focus. In this article, we address a form of collaborative work that integrates academia with business, where the Principles for Responsible Investment in Agriculture and Food Systems (CFS-RIA) are seen as an opportunity to promote and strengthen the management of a business in the communities where it operates, and determine a new way of working from its links with the university. The experience is developed in the provinces of Santiago Rodríguez, Valverde (Mao), and Dajabón in the Dominican Republic, with the aim of contributing, using this new approach, to economic, social, environmental, and governance development in the territory. The conceptual and methodological basis for the university–business link is Working With People, a model that integrates key elements of planning such as social learning, collaborative participation, and project management models. The main catalysts of the experience are the business values and the stakeholders who insert the principles into their programs and projects. Among these is an innovative Family Social Responsibility Program with female entrepreneurs and organic banana production. It is concluded that the implementation of the CFS-RIA Principles has a significant impact on the sustainable development of the region and that the university–business link reinforces the social responsibility of companies, providing an opportunity for the entry of new actors. Full article
Show Figures

Figure 1

20 pages, 1011 KB  
Article
From Perception to Practice: Identifying and Ranking Human Factors Driving Unsafe Industrial Behaviors
by Azim Karimi, Esmaeil Zarei and Ehsanollah Habibi
Safety 2026, 12(1), 14; https://doi.org/10.3390/safety12010014 - 23 Jan 2026
Abstract
Unsafe behaviors remain a major contributor to workplace accidents within broader safety-management systems. Acknowledging the essential influence of organizational and leadership factors, this study focuses on systematically identifying and prioritizing individual-level determinants of unsafe behavior through an integrated qualitative–quantitative methodology to clarify their [...] Read more.
Unsafe behaviors remain a major contributor to workplace accidents within broader safety-management systems. Acknowledging the essential influence of organizational and leadership factors, this study focuses on systematically identifying and prioritizing individual-level determinants of unsafe behavior through an integrated qualitative–quantitative methodology to clarify their specific role within the wider safety framework. Grounded Theory analysis of semi-structured interviews with 40 industry professionals yielded a conceptual model encompassing demographic characteristics, general health, individual competencies, personality traits, and psychological factors. Subsequently, the Fuzzy Delphi Method, applied with 20 domain experts, validated and ranked these determinants. The analysis highlighted risk perception as the most influential factor, followed by work experience, skill level, knowledge, and risk-taking propensity, whereas variables such as family welfare, substance use, and self-display exhibited relatively minor effects. These findings reveal the multidimensional nature of unsafe behavior and underscore the importance of focusing on high-impact personal attributes to enhance workplace safety. By recognizing that many individual factors are shaped by organizational and psychosocial conditions, the study provides evidence-based insights for developing integrated safety management and targeted intervention strategies in industrial settings. Full article
Show Figures

Figure 1

24 pages, 3789 KB  
Article
The Resilient and Intelligent Management of Cross-Regional Mega Infrastructure: An Integrated Evaluation and Strategy Study
by Xiangnan Song, Ziwei Jin, Jindao Chen and Jiamei Ma
Appl. Sci. 2026, 16(3), 1179; https://doi.org/10.3390/app16031179 - 23 Jan 2026
Abstract
Cross-regional mega infrastructure (CrMI) is vital for sustaining economic vitality and social connectivity but is increasingly threatened by climate extremes and fragmented management. This study develops a targeted and interpretable evaluation system integrating 5 dimensions and 37 indicators. And social network analysis (SNA) [...] Read more.
Cross-regional mega infrastructure (CrMI) is vital for sustaining economic vitality and social connectivity but is increasingly threatened by climate extremes and fragmented management. This study develops a targeted and interpretable evaluation system integrating 5 dimensions and 37 indicators. And social network analysis (SNA) with clustering methods is applied to the Hong Kong–Zhuhai–Macao Bridge as a representative case. Key indicators are classified into “Management Focuses,” “Management Challenges,” and “Management Sensitives,” reflecting varying levels of influence, feedback efficiency, and control capacity. The results reveal that the sustainable operation and maintenance management of CrMI should prioritize economic development while simultaneously strengthening resilience and intelligence. However, environmental protection remains a major challenge, and public attention and inter-regional cooperation are critical for management sensitivity. By embedding resilience intelligence into sustainable evaluation, this study advances sustainability theory and offers a more feasible and forward-looking pathway to sustaining CrMI under conditions of accelerating uncertainty. Full article
26 pages, 2406 KB  
Article
Ecological Change in Minnesota’s Carbon Sequestration and Oxygen Release Service: A Multidimensional Assessment Using Multi-Temporal Remote Sensing Data
by Donghui Shi
Remote Sens. 2026, 18(3), 391; https://doi.org/10.3390/rs18030391 - 23 Jan 2026
Abstract
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is [...] Read more.
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is comparable across units for management prioritization. Using Minnesota, USA, we integrated satellite-derived net primary productivity (NPP; 1998–2021) with a Quantity–Intensity–Structure (Q–I–S) framework to quantify CSOR, detect trends and change points (Mann–Kendall and Pettitt tests), map spatial clustering and degradation risk (Exploratory Spatial Data Analysis, ESDA), and attribute natural and human drivers (principal component regression and GeoDetector). CSOR increased overall from 1998 to 2021, with a marked shift around 2013 from a slight, variable decline to sustained recovery. Spatially, CSOR showed a persistent north–south gradient, with higher and improving services in northern Minnesota and lower, more degraded services in the south; persistent degradation was concentrated in a central high-risk belt. The Q–I–S framework also revealed inconsistencies between total supply and condition, identifying high-supply yet degrading areas and low-supply areas with recovery potential that are not evident from the totals alone. Climate variables primarily controlled CSOR quantity and structure, whereas human factors more strongly influenced intensity; the interactions of the two further shaped observed patterns. These results provide an interpretable and transferable basis for diagnosing degradation and prioritizing restoration under long-term environmental change. Full article
13 pages, 470 KB  
Review
From Computational Cognition to Neuroarchitecture: Tracing the Past and Future Potential of Brain-Informed Design
by Michael O’Neill
Buildings 2026, 16(3), 478; https://doi.org/10.3390/buildings16030478 - 23 Jan 2026
Abstract
This paper traces the intellectual foundations of neuroarchitecture, the design of environments informed by how the brain processes spatial information,from its origins in 1970s environmental psychology and later connectionist philosophy to its contemporary state. While early computational approaches prioritized speed and efficiency for [...] Read more.
This paper traces the intellectual foundations of neuroarchitecture, the design of environments informed by how the brain processes spatial information,from its origins in 1970s environmental psychology and later connectionist philosophy to its contemporary state. While early computational approaches prioritized speed and efficiency for engineering tasks like pattern recognition, a prescient group of pioneers pursued a different path. They developed biologically plausible neural network models that prioritized neural realism over computational performance. These networks embraced the complex realities of biological brains, incorporating excitatory and inhibitory dynamics, local learning rules, and hierarchical knowledge representation. We examine how the philosophical frameworks developed during this formative period established the theoretical foundation for meaningful interdisciplinary collaboration between neuroscience and design. The field has since expanded significantly through our contemporary understanding of neurodiversity. This broader perspective has the potential to transform neuroarchitecture from a niche research area into a comprehensive approach for creating environments that support cognitive performance and brain health for everyone. Full article
(This article belongs to the Special Issue BioCognitive Architectural Design)
Back to TopTop