Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = primary liquid culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

19 pages, 4247 KiB  
Article
Assessing CFTR Function and Epithelial Morphology in Human Nasal Respiratory Cell Cultures: A Combined Immunofluorescence and Electrophysiological Study
by Roshani Narayan Singh, Vanessa Mete, Willy van Driessche, Heymut Omran, Wolf-Michael Weber and Jörg Grosse-Onnebrink
Int. J. Mol. Sci. 2025, 26(15), 7618; https://doi.org/10.3390/ijms26157618 - 6 Aug 2025
Abstract
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an [...] Read more.
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an in vitro model of human airway epithelia. Air–liquid interface (ALI) cultures were established from nasal brushings of healthy controls (HC) and CF patients with biallelic CFTR variants. ALI layer thickness was similar between groups (HC: 62 ± 13 µm; CF: 55 ± 9 µm). Immunofluorescence showed apical CFTR expression in HC, but reduced or absent signal in CF cultures. MTECC enabled continuous measurement of transepithelial resistance (Rt), potential difference (PD), and conductance (Gt). Gt was significantly reduced in CF cultures compared to HC (0.825 ± 0.024 vs. −0.054 ± 0.016 mS/cm2), indicating impaired cAMP-inducible ion transport by CFTR. Treatment of CF cultures with elexacaftor, tezacaftor, and ivacaftor (Trikafta®) increased Gt, reflecting partial restoration of CFTR function. These findings demonstrate the utility of MTECC in detecting functional differences in CFTR activity and support its use as a platform for evaluating CFTR-modulating therapies. Our model may contribute to the development of personalized treatment strategies for CF patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
L-Lysine from Bacillus subtilis M320 Induces Salicylic-Acid–Dependent Systemic Resistance and Controls Cucumber Powdery Mildew
by Ja-Yoon Kim, Dae-Cheol Choi, Bong-Sik Yun and Hee-Wan Kang
Int. J. Mol. Sci. 2025, 26(14), 6882; https://doi.org/10.3390/ijms26146882 - 17 Jul 2025
Viewed by 334
Abstract
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime [...] Read more.
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime systemic acquired resistance (SAR) pathways in cucumber plants. Liquid chromatography–mass spectrometry analysis identified L-lysine as the primary bioactive metabolite in the BSM320 culture filtrate. Foliar application of purified L-lysine significantly reduced powdery mildew symptoms, lowering disease severity by up to 92% at concentrations ≥ 2500 mg/L. However, in vitro spore germination assays indicated that L-lysine did not exhibit direct antifungal activity, indicating that its protective effect is likely mediated through the activation of plant immune responses. Quantitative reverse transcription PCR revealed marked upregulation of key defense-related genes encoding pathogenesis-related proteins 1 and 3, lipoxygenase 1 and 23, WRKY transcription factor 20, and L-type lectin receptor kinase 6.1 within 24 h of treatment. Concurrently, salicylic acid (SA) levels increased threefold in lysine-treated plants, confirming the induction of an SA-dependent SAR pathway. These findings highlight L-lysine as a sustainable, residue-free priming agent capable of enhancing broad-spectrum plant immunity, offering a promising approach for amino acid-based crop protection. Full article
Show Figures

Figure 1

8 pages, 197 KiB  
Communication
Repeated Detection of Bartonella DNA in Feline Placenta: Potential Implications for Placental and Fetal Development
by Charlotte O. Moore, Ricardo Maggi, Kelli Ferris and Edward B. Breitschwerdt
Animals 2025, 15(14), 2041; https://doi.org/10.3390/ani15142041 - 11 Jul 2025
Viewed by 294
Abstract
The domestic cat is the primary reservoir host of three flea-borne Bartonella species, one of which (Bartonella henselae) causes reduced fertility and reproductive failure in experimentally infected cats. Vertical transmission of Bartonella has been documented only in B-cell deficient mice, but [...] Read more.
The domestic cat is the primary reservoir host of three flea-borne Bartonella species, one of which (Bartonella henselae) causes reduced fertility and reproductive failure in experimentally infected cats. Vertical transmission of Bartonella has been documented only in B-cell deficient mice, but not immunocompetent animals. As many free-roaming cats are chronically infected with Bartonella and may be immunocompromised by environmental stress or coinfection, we attempted to isolate Bartonella from the fetal and placental tissues of pregnant queens spayed during trap–neuter–release. Four samples from each tissue (ovary, uterus, fetus, and placenta) were split for direct DNA extraction, liquid culture, and culture on a blood agar plate. Samples from infected queens were inoculated into liquid media and sampled weekly for three weeks for DNA extraction and plating. Bartonella DNA was sequenced directly from 28% (5/18) of the free-roaming queens. For these five queens, liquid enrichment culture was attempted in duplicate for fetal and placental samples. Bartonella clarridgeiae DNA was amplified using qPCR liquid enrichment cultures from the placentas of two cats. These findings suggest that viable Bartonella organisms are present in feline reproductive tissue. Additional studies are needed to assess the transplacental transmission of Bartonella spp. and Bartonella’s influence on fetal development. Full article
(This article belongs to the Section Companion Animals)
16 pages, 13905 KiB  
Article
Replication of Vectored Herpesvirus of Turkey (HVT) in a Continuous, Microcarrier-Independent Suspension Cell Line from Muscovy Duck
by Karoline Mähl, Deborah Horn, Sirine Abidi, Benedikt B. Kaufer, Volker Sandig, Alexander Karlas and Ingo Jordan
Vaccines 2025, 13(7), 714; https://doi.org/10.3390/vaccines13070714 - 30 Jun 2025
Viewed by 472
Abstract
Background/Objectives: More than 33 billion chickens are industrially raised for meat and egg production globally and vaccinated against Marek’s disease virus (MDV). The antigenically related herpesvirus of turkey (HVT) is used as a live-attenuated vaccine, commonly provided as a recombinant vector to protect [...] Read more.
Background/Objectives: More than 33 billion chickens are industrially raised for meat and egg production globally and vaccinated against Marek’s disease virus (MDV). The antigenically related herpesvirus of turkey (HVT) is used as a live-attenuated vaccine, commonly provided as a recombinant vector to protect chickens against additional unrelated pathogens. Because HVT replicates in a strictly cell-associated fashion to low levels of infectious units, adherent primary chicken or duck embryo fibroblasts are infected, dislodged from the cultivation surface and distributed as cryocultures in liquid nitrogen to the site of application. Although viable cells are complex products, application of infected cells in ovo confers protection even in presence of maternal antibodies. Methods/Results: The aim of our study was to determine whether a continuous cell line in a scalable cultivation format can be used for production of HVT-based vaccines. The AGE1.CR cell line (from Muscovy duck) was found to be highly permissive in adherent cultures. Propagation in suspension, however, initially gave very low yields. The induction of cell-to-cell contacts in carrier-independent suspensions and a metabolic shock improved titers to levels suitable for vaccine production (>105 infectious units/mL after infection with multiplicity of 0.001). Conclusions: Production of HVT is challenging to scale to large volumes and the reliance on embryonated eggs from biosecure facilities is complex. We demonstrate that a cell-associated HVT vector can be propagated in a carrier-independent suspension culture of AGE1.CR cells in chemically defined medium. The fed-batch production is independent of primary cells and animal-derived material and can be scaled to large volumes. Full article
(This article belongs to the Special Issue Animal Herpesviruses: 2nd Edition)
Show Figures

Figure 1

18 pages, 17059 KiB  
Article
Unraveling Potential Compounds of Uncaria gambir (W.Hunter) Roxb. as Antikeloid Agent: In Silico, In Vitro and Ex Vivo Experimental Validation
by Sri Suciati Ningsih, Sri Widia A. Jusman, Rahimi Syaidah, Muhamad Arif Budiman, Alfi Khatib and Fadilah Fadilah
Biologics 2025, 5(3), 18; https://doi.org/10.3390/biologics5030018 - 27 Jun 2025
Viewed by 434
Abstract
Background/Objectives: Keloid treatment remains challenging due to limited effectiveness and patient dissatisfaction. Herbal-based therapy offers promising alternatives that require further investigation. Uncaria gambir (W.Hunter) Roxb., an original plant from Indonesia, possesses an antifibrotic effect. However, its potential as an antifibrotic agent in keloid [...] Read more.
Background/Objectives: Keloid treatment remains challenging due to limited effectiveness and patient dissatisfaction. Herbal-based therapy offers promising alternatives that require further investigation. Uncaria gambir (W.Hunter) Roxb., an original plant from Indonesia, possesses an antifibrotic effect. However, its potential as an antifibrotic agent in keloid management remains unclear. This study aims to bridge this gap by evaluating the bioactive compound from gambir and its effects on keloid fibroblast primary culture. Methods: The bioactive compounds of gambir extract and fractions (ethanol, hexane, and ethyl acetate fractions) were identified by using liquid chromatography–mass spectrometry (LCMS/MS) analysis. The mechanism of gambir bioactive compounds for keloid was predicted using the compound–protein interaction network and enrichment analysis, and validated using molecular docking and dynamic simulation. The experimental study results, including cytotoxic and bioactivity effects, were represented as IC50 and selectivity index (SI) values, and the ex vivo analysis of keloid tissue explants. Results: Uncariagambiriine was identified as the most potent compound with the lowest binding energy and high stability to the core protein targets: AKT1 and TGFB1. The ethanol fraction was determined to have the highest abundance of gambir’s typical bioactive compounds, with the lowest IC50 (128.76 ± 0.24 µg/mL) and the highest SI (6.32) value. Furthermore, the results of the ex vivo analysis indicated the significant inhibition of keloid fibroblast proliferation and migration by the gambir ethanolic fraction. Conclusions: This study underlines the potential of the gambir ethanolic fraction as an antifibrotic agent in keloid, warranting further investigation and development for clinical applications. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

10 pages, 2054 KiB  
Article
Influence of Insert Brand and Culture Method on Ciliary Activity and Epithelial Cell Types in Human Nasal Air–Liquid Interface Cell Cultures
by Patricia Celkova, Emilie Seydoux, Susan De Groof and Loretta Müller
Life 2025, 15(6), 958; https://doi.org/10.3390/life15060958 - 14 Jun 2025
Viewed by 585
Abstract
Cultures of primary human nasal epithelial cells (hNECs) differentiated at the air–liquid interface (ALI) represent a sophisticated and widely used model of the human upper respiratory epithelium. Despite the availability of various cell culture insert types and the well-established understanding that different culture [...] Read more.
Cultures of primary human nasal epithelial cells (hNECs) differentiated at the air–liquid interface (ALI) represent a sophisticated and widely used model of the human upper respiratory epithelium. Despite the availability of various cell culture insert types and the well-established understanding that different culture media influence the cell culture characteristics, the possible impact of the insert brand remains rather underexplored. We cultured hNECs from nineteen healthy adult donors on three distinct brands of commercially available inserts—Corning® Transwell®, CELLTREAT®, and ThinCert®—and compared the ciliary activity and cellular composition of the cultures using high-speed video microscopy and flow cytometry, respectively. Additionally, we employed an alternative method of hNEC culture setup—the inverted condition—wherein the hNECs were seeded on the basal side of the insert with the idea to avoid mucus accumulation. Our results show that ciliary activity and cell type composition did not differ between insert types for both culture conditions. However, we found a higher ciliary beat frequency and a lower active (ciliated) area in the inverted setup compared to the conventional setup across all three insert brands. These findings indicate that all three mentioned insert types yield comparable cell cultures. Full article
(This article belongs to the Special Issue Updates on Respiratory Pathologies)
Show Figures

Figure 1

23 pages, 2512 KiB  
Article
Bioprinted Four-Cell-Type Lung Model for Viral Infection Studies Under Air–Liquid Interface Conditions
by Johanna Berg, Julian Heinze, Daniela Niemeyer, Josefin Hellgren, Himjyot Jaiswal, Anna Löwa, Andreas Hocke, Itedale Namro, Christian Drosten, Jens Kurreck and Beatrice Tolksdorf
Int. J. Mol. Sci. 2025, 26(12), 5543; https://doi.org/10.3390/ijms26125543 - 10 Jun 2025
Viewed by 905
Abstract
Viral lung infections are a never-ending threat to public health due to the emergence of new variants and their seasonal nature. While vaccines offer some protection, the need for effective antiviral drugs remains high. The existing research methods using 2D cell culture and [...] Read more.
Viral lung infections are a never-ending threat to public health due to the emergence of new variants and their seasonal nature. While vaccines offer some protection, the need for effective antiviral drugs remains high. The existing research methods using 2D cell culture and animal models have their limitations. Human cell-based tissue engineering approaches hold great promise for bridging this gap. Here, we describe a microextrusion bioprinting approach to generate three-dimensional (3D) lung models composed of four cell types: endothelial cells, primary fibroblasts, macrophage cells, and epithelial cells. A549 and Calu-3 cells were selected as epithelial cells to simulate the cells of the lower and upper respiratory tract, respectively. Cells were bioprinted in a hydrogel consisting of alginate, gelatin, hyaluronic acid, collagen, and laminin-521. The models were cultured under air–liquid interface (ALI) conditions to further enhance their physiological relevance as lung cells. Their viability, metabolic activity, and expression of specific cell markers were analyzed during long-term culture for 21 days. The constructs were successfully infected with both a seasonal influenza A virus (IAV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, demonstrating their potential for studying diverse viral infections. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

11 pages, 2259 KiB  
Article
Hepatocellular Metabolic Profile: Understanding Post-Thawing Metabolic Shift in Primary Hepatocytes In Vitro
by Salvator Palmisano, Joshua D. Breidenbach, Brett R. Blackwell, Tara Harvey, Kes A. Luchini, M. Grace Thornhill, Erick S. LeBrun, Phillip Mach, Trevor Glaros and Emilio S. Rivera
Cells 2025, 14(11), 803; https://doi.org/10.3390/cells14110803 - 29 May 2025
Viewed by 507
Abstract
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry [...] Read more.
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze metabolic shifts in PHHs cultured in suspension. Unexposed and exposed (acetaminophen-treated) samples were evaluated, and TITAN analysis was applied to determine the time point of maximal metabolic change at both individual metabolite and global metabolic profile levels. Our results indicate that the majority of metabolic shifts occur within the first five hours post-thawing. In the early culture time points, substantial metabolic overlap was observed between unexposed and exposed cells, suggesting a conserved biological response likely related to cellular recovery. However, at later time points, metabolite profiles diverged, with acetaminophen treatment-specific metabolic changes emerging, potentially reflecting differences in homeostatic restoration versus hepatotoxic responses. Our study highlights the importance of considering early post-thawing metabolic dynamics in experimental design and offers insights for optimizing hepatocyte culture protocols to better replicate in vivo physiological conditions. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Graphical abstract

19 pages, 15690 KiB  
Article
The Development of 3D Primary Co-Culture Models of the Human Airway
by Cinta Iriondo, Sem Koornneef, Kari-Pekka Skarp, Marjon Buscop-van Kempen, Anne Boerema-de Munck and Robbert J. Rottier
Int. J. Mol. Sci. 2025, 26(11), 5027; https://doi.org/10.3390/ijms26115027 - 23 May 2025
Viewed by 880
Abstract
Current animal and in vitro cell culture models do not fully recapitulate the physiological and pathophysiological characteristics of the human lung. As a result, the translation of these models to clinical practice is very limited, and clinical trials initiated on the extrapolation of [...] Read more.
Current animal and in vitro cell culture models do not fully recapitulate the physiological and pathophysiological characteristics of the human lung. As a result, the translation of these models to clinical practice is very limited, and clinical trials initiated on the extrapolation of such data fail. Although current models are beneficial in fundamental research, there is a need to constantly improve models to more accurately predict outcomes in clinical trials and personalized medicine. Here, we report important strategies to develop a 3D lung model with human primary lung cells. Starting from the well-established air-liquid interface (ALI) culture system, we describe a gradual increase in the complexity of the system by co-culturing different primary cell types, by testing different coatings, and by adding a three-dimensional matrix. As a result, we have established a reproducible 3D in vitro model of the airway consisting of human primary cells representing a differentiated mucociliary airway epithelium, an underlying submucosa with fibroblasts, and an endothelial interface. Full article
(This article belongs to the Special Issue Tissue Regeneration and Repair in Airway Diseases)
Show Figures

Figure 1

31 pages, 3594 KiB  
Article
Development and Characterization of a Primary Ciliated Porcine Airway Model for the Evaluation of In Vitro Mucociliary Clearance and Mucosal Drug Delivery
by Janik Martin, Veronika Neubauer, Rebecca Rittersberger, Simon Treitler, Patrick Kopp, Cemre Günday, Iman Shrimo, Annabelle Dabbars, Frank Rosenau, Akif Emre Türeli, Nazende Günday-Türeli, Oliver Haedicke-Peters and Katharina Schindowski
Pharmaceutics 2025, 17(4), 462; https://doi.org/10.3390/pharmaceutics17040462 - 2 Apr 2025
Viewed by 879
Abstract
Background/Objectives: In vitro models play a crucial role in preclinical respiratory research, enabling the testing and screening of mucosal formulations, dosage forms, and inhaled drugs. Mucociliary clearance (MCC) is an essential defense mechanism in mucosal drug delivery but is often impaired in [...] Read more.
Background/Objectives: In vitro models play a crucial role in preclinical respiratory research, enabling the testing and screening of mucosal formulations, dosage forms, and inhaled drugs. Mucociliary clearance (MCC) is an essential defense mechanism in mucosal drug delivery but is often impaired in respiratory diseases. Despite its importance, standardized in vitro MCC assays are rarely reported. Furthermore, many published methods primarily measure cilia beat frequency (CBF), which requires high-speed cameras that are not accessible to all laboratories. Therefore, this study aimed to develop a physiologically relevant, differentiated in vitro model of the respiratory epithelium that incorporates both beating cilia and functional MCC. We chose porcine airway mucosa as an alternative to human tissue due to ethical considerations and limited availability. The established model is designed to provide a reproducible and accessible method for a broad range of research laboratories. Methods: The previously published tracheal mucosal primary cell (TMPC DS) model, derived from porcine tissue, lacked the presence of beating cilia, which are crucial for effective MCC analysis. For accurate MCC assessment, beating cilia are essential as they play a key role in mucus clearance. To address this limitation, the here-described ciliated tracheal mucosal primary cell (cTMPC) model was developed. cTMPCs were isolated from porcine tissue and cultured under air–liquid interface (ALI) conditions for 21 days to promote differentiation. This model was evaluated for cell morphology, tight junction formation, ciliated and mucus-producing cells, barrier function, gene expression, and tracer/IgG transport. MCC and the model’s suitability for standardized MCC assays were assessed using an inverted microscope. In contrast to the TMPC DS model, which lacked beating cilia and thus could not support MCC analysis, the cTMPC model allows for comprehensive MCC studies. Results: The developed differentiated in vitro model demonstrated key structural and functional features of the respiratory epithelium, including well-differentiated cell morphology, tight junction integrity, ciliated and mucus-producing cells, and effective barrier function. Functional MCC was observed, confirming the model’s potential for standardized clearance assays. Conclusions: This differentiated in vitro model closely replicates the structural and functional characteristics of in vivo airways. It provides a valuable platform for studying mucociliary clearance, toxicology, drug uptake, and evaluating mucosal formulations and dosage forms in respiratory research. Full article
Show Figures

Figure 1

21 pages, 2801 KiB  
Article
Characterization of Glyphosate Resistance and Degradation Profile of Caballeronia zhejiangensis CEIB S4-3 and Genes Involved in Its Degradation
by Manuel Isaac Morales-Olivares, María Luisa Castrejón-Godínez, Patricia Mussali-Galante, Efraín Tovar-Sánchez, Hugo Albeiro Saldarriaga-Noreña and Alexis Rodríguez
Microorganisms 2025, 13(3), 651; https://doi.org/10.3390/microorganisms13030651 - 13 Mar 2025
Cited by 1 | Viewed by 1077
Abstract
Herbicides are the most employed pesticides in agriculture worldwide; among them, glyphosate is the most successful herbicide molecule in history. The extensive use of glyphosate has been related to environmental pollution and toxic effects on non-target organisms. Effective remediation and treatment alternatives must [...] Read more.
Herbicides are the most employed pesticides in agriculture worldwide; among them, glyphosate is the most successful herbicide molecule in history. The extensive use of glyphosate has been related to environmental pollution and toxic effects on non-target organisms. Effective remediation and treatment alternatives must be developed to reduce the environmental presence of glyphosate and its adverse effects. Bioremediation using microorganisms has been proposed as a feasible alternative for treating glyphosate pollution; due to this, identifying and characterizing microorganisms capable of biodegrading glyphosate is a key environmental task for the bioremediation of polluted sites by this herbicide. This study characterized the glyphosate resistance profile and degradation capacity of the bacterial strain Caballeronia zhejiangensis CEIB S4-3. According to the results of the bacterial growth inhibition assays on agar plates, C. zhejiangensis CEIB S4-3 can resist exposure to high concentrations of glyphosate, up to 1600 mg/L in glyphosate-based herbicide (GBH) formulation, and 12,000 mg/L of the analytical-grade molecule. In the inhibition assay in liquid media, C. zhejiangensis CEIB S4-3 resisted glyphosate exposure to all concentrations evaluated (25–400 mg/L). After 48 h exposure, GBH caused important bacterial growth inhibition (>80%) at concentrations between 100 and 400 mg/L, while exposure to analytical-grade glyphosate caused bacterial growth inhibitions below 15% in all tested concentrations. Finally, this bacterial strain was capable of degrading 60% of the glyphosate supplemented to culture media (50 mg/L), when used as the sole carbon source, in twelve hours; moreover, C. zhejiangensis CEIB S4-3 can also degrade the primary glyphosate degradation metabolite aminomethylphosphonic acid (AMPA). Genomic analysis revealed the presence of genes associated with the two reported metabolic pathways for glyphosate degradation, the sarcosine and AMPA pathways. This is the first report on the glyphosate degradation capacity and the genes related to its metabolism in a Caballeronia genus strain. The results from this investigation demonstrate that C. zhejiangensis CEIB S4-3 exhibits significant potential for glyphosate biodegradation, suggesting its applicability in bioremediation strategies targeting this contaminant. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

15 pages, 3366 KiB  
Article
ATP Alters the Oxylipin Profiles in Astrocytes: Modulation by High Glucose and Metformin
by Alexey I. Drozhdev, Vladislav O. Gorbatenko, Sergey V. Goriainov, Dmitry V. Chistyakov and Marina G. Sergeeva
Brain Sci. 2025, 15(3), 293; https://doi.org/10.3390/brainsci15030293 - 11 Mar 2025
Viewed by 960
Abstract
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that [...] Read more.
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that has been actively investigated in the context of therapy for neuroinflammation, but its mechanisms of action are not fully elucidated. Therefore, we aimed to characterize the effects of ATP on inflammatory markers and oxylipin profiles; determine the dependence of these effects on the adaptation of astrocytes to high glucose levels; and evaluate the possibility of modulating ATP effects using metformin. Methods: We estimated the ATP-mediated response of primary rat astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation. Cell responses were assessed by monitoring changes in the expression of inflammatory markers (TNFα, IL-6, IL-10, IL-1β, iNOS, and COX-2) and the synthesis of oxylipins (41 compounds), assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Intracellular pathways were assessed by analyzing the phosphorylation of p38; ERK MAPK; transcription factors STAT3 and NF-κB; and the enzymes mediating oxylipin synthesis, COX-1 and cPLA2. Results: The stimulation of cells with ATP does not affect the expression of pro-inflammatory markers, increases the activities of p38 and ERK MAPKs, and activates oxylipin synthesis, shifting the profiles toward an increase in anti-inflammatory compounds (PGD2, PGA2, 12-HHT, and 18-HEPE). The ATP effects are reduced in HG astrocytes. Metformin potentiated ATP-induced oxylipin synthesis (11-HETE, PGD2, 12-HHT, 15-HETE, 13-HDoHE, and 15-HETrE), which was predominantly evident in NG cells. Conclusions: Our data provide new evidence showing that ATP induces the release of anti-inflammatory oxylipins, and metformin enhances these effects. These results should be considered in the development of anti-inflammatory therapeutic approaches aimed at modulating astrocyte function in various pathologies. Full article
(This article belongs to the Special Issue The Role of Glia in Inflammatory Processes)
Show Figures

Figure 1

24 pages, 6406 KiB  
Article
Lectin-Based Substrate Detection in Fabry Disease Using the Gb3-Binding Lectins StxB and LecA
by Serap Elçin-Guinot, Simon Lagies, Yoav Avi-Guy, Daniela Neugebauer, Tobias B. Huber, Christoph Schell, Bernd Kammerer and Winfried Römer
Int. J. Mol. Sci. 2025, 26(5), 2272; https://doi.org/10.3390/ijms26052272 - 4 Mar 2025
Viewed by 1582
Abstract
Fabry disease, the second most common lysosomal storage disorder, is caused by a deficiency of α-galactosidase A (α-Gal A), which leads to an accumulation of glycosphingolipids (GSL), mainly globotriaosylceramide (also known as Gb3). This aberrant GSL metabolism subsequently causes cellular dysfunction; however, the [...] Read more.
Fabry disease, the second most common lysosomal storage disorder, is caused by a deficiency of α-galactosidase A (α-Gal A), which leads to an accumulation of glycosphingolipids (GSL), mainly globotriaosylceramide (also known as Gb3). This aberrant GSL metabolism subsequently causes cellular dysfunction; however, the underlying cellular and molecular mechanisms are still unknown. There is growing evidence that damage to organelles, including lysosomes, mitochondria, and plasma membranes, is associated with substrate accumulation. Current methods for the detection of Gb3 are based on anti-Gb3 antibodies, the specificity and sensitivity of which are problematic for glycan detection. This study presents a robust method using lectins, specifically the B-subunit of Shiga toxin (StxB) from Shigella dysenteriae and LecA from Pseudomonas aeruginosa, as alternatives for Gb3 detection in Fabry fibroblasts by flow cytometry and confocal microscopy. StxB and LecA showed superior sensitivity, specificity, and consistency in different cell types compared to all anti-Gb3 antibodies used in this study. In addition, sphingolipid metabolism was analyzed in primary Fabry fibroblasts and α-Gal A knockout podocytes using targeted tandem liquid chromatography-mass spectrometry. Our findings establish lectins as a robust tool for improved diagnostics and research of Fabry disease and provide evidence of SL changes in cultured human cells, filling a knowledge gap. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 9382 KiB  
Article
A Novel In Vitro Primary Human Alveolar Model (AlveolAir™) for H1N1 and SARS-CoV-2 Infection and Antiviral Screening
by Cindia Ferreira Lopes, Emilie Laurent, Mireille Caul-Futy, Julia Dubois, Chloé Mialon, Caroline Chojnacki, Edouard Sage, Bernadett Boda, Song Huang, Manuel Rosa-Calatrava and Samuel Constant
Microorganisms 2025, 13(3), 572; https://doi.org/10.3390/microorganisms13030572 - 3 Mar 2025
Viewed by 1645
Abstract
Lower respiratory infections, mostly caused by viral or bacterial pathogens, remain a leading global cause of mortality. The differences between animal models and humans contribute to inefficiencies in drug development, highlighting the need for more relevant and predictive, non-animal models. In this context, [...] Read more.
Lower respiratory infections, mostly caused by viral or bacterial pathogens, remain a leading global cause of mortality. The differences between animal models and humans contribute to inefficiencies in drug development, highlighting the need for more relevant and predictive, non-animal models. In this context, AlveolAir™, a fully primary in vitro 3D human alveolar model, was characterized and demonstrated the sustained presence of alveolar type I (ATI) and type II (ATII) cells. This model exhibited a functional barrier over a 30-day period, evidenced by high transepithelial electrical resistance (TEER). These findings were further validated by tight junctions’ confocal microscopy and low permeability to Lucifer yellow, confirming AlveolAir™ as robust platform for drug transport assays. Additionally, successful infections with H1N1 and SARS-CoV-2 viruses were achieved, and antiviral treatments with Baloxavir and Remdesivir, respectively, effectively reduced viral replication. Interestingly, both viruses infected only the epithelial layer without replicating in endothelial cells. These findings indicate AlveolAir™ as a relevant model for assessing the toxicity and permeability of xenobiotics and evaluating the efficacy of novel antiviral therapies. Full article
Show Figures

Figure 1

Back to TopTop