Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (475)

Search Parameters:
Keywords = primary cell wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1240 KB  
Article
Inter- and Intraspecific Variability in Non-Starch Polysaccharide Composition of Satureja Species from Tunisia: Implications for Functional Food Development
by Anhar Raadani, Amel Hamdi, Islem Yangui, Ana Jiménez-Araujo, Rocío Rodríguez-Arcos, Imen Ben Elhadj Ali, Rafael Guillén-Bejarano and Chokri Messaoud
Foods 2026, 15(3), 525; https://doi.org/10.3390/foods15030525 - 3 Feb 2026
Viewed by 30
Abstract
Non-starch polysaccharides, the primary structural component of dietary fiber, play critical roles in metabolic and digestive health through multiple physiological mechanisms, yet their composition in Mediterranean aromatic plants remains poorly characterized, limiting the development of novel functional food ingredients. This study provides the [...] Read more.
Non-starch polysaccharides, the primary structural component of dietary fiber, play critical roles in metabolic and digestive health through multiple physiological mechanisms, yet their composition in Mediterranean aromatic plants remains poorly characterized, limiting the development of novel functional food ingredients. This study provides the first comprehensive NSP profiling of 22 populations across three Tunisian Satureja species (S. nervosa, S. graeca, and endemic S. barceloi), using enzymatic analysis, gas chromatography, and multivariate statistics. Total non-starch polysaccharides reached exceptional levels (21.5 ± 3.0 g/100 g dry weight (DW)), with several populations exhibiting unprecedented soluble fiber proportions exceeding 50%, including population SG4 achieving 79.7%. Monosaccharide analysis revealed uronic acid dominance (42.9–52.5% of total NSP), indicating pectin-rich cell walls with distinct functional properties. Principal component analysis (explaining 61.5–84.9% of variance) demonstrated that populations cluster by fiber chemotype rather than taxonomic classification. Hierarchical and K-means clustering identified three distinct clusters in the soluble and total fiber fractions, with uronic acid-dominated populations (SG4, SB, SG18, SN8) and arabinose–xylose enriched populations (SN13, SN12, SN22, SG21) as extreme chemotypes. Intraspecific variation (coefficient of variation, CV: 14.0–50.0%) substantially exceeded interspecific differences. These findings establish Tunisian Satureja as an exceptional functional fiber source and demonstrate that population-level chemical screening outperforms taxonomic classification for developing nutraceuticals targeting cholesterol reduction, glycemic control, and gut microbiome modulation. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

24 pages, 897 KB  
Review
Mechanical Compatibility Is the New Biocompatibility: A Process View of Implant Success
by Lebogang Lebea, Rudzani Sigwadi, Thanyani Pandelani and Fulufhelo Nemavhola
Processes 2026, 14(3), 505; https://doi.org/10.3390/pr14030505 - 1 Feb 2026
Viewed by 185
Abstract
Implant science has traditionally treated “biocompatibility” as the master criterion of success, focusing on cytotoxicity, corrosion, immune response, infection control, and the chemical stability of materials in vivo. However, many clinically “biocompatible” devices still fail at the point where the body actually meets [...] Read more.
Implant science has traditionally treated “biocompatibility” as the master criterion of success, focusing on cytotoxicity, corrosion, immune response, infection control, and the chemical stability of materials in vivo. However, many clinically “biocompatible” devices still fail at the point where the body actually meets the device: the mechanical interface. The interface is not a passive boundary. It is a living, adapting, mechanosensitive microenvironment in which cells integrate stiffness, micromotion, surface roughness, fluid shear, and wear debris with biochemical signals to decide whether to incorporate an implant, wall it off, resorb adjacent tissue, or trigger chronic inflammation. In load-bearing orthopaedics, stiffness mismatch produces stress shielding and maladaptive remodelling; excessive micromotion drives fibrous encapsulation rather than osseointegration; abrasive wear creates particulates that sustain macrophage activation and osteolysis; and design choices that are mechanically adequate in bench tests can still fail in vivo when the implant–tissue system evolves. In soft-tissue implantation, substrate stiffness can be a primary driver of the foreign body response and fibrotic capsule formation through mechanosensitive pathways, such as TRPV4-mediated macrophage–fibroblast signalling. Mechanical compatibility is not a replacement for classical biocompatibility; rather, it should be treated as a co-equal, first-class design requirement in mechanosensitive organisms. Chemically biocompatible materials can still fail through stiffness mismatch, micromotion, fretting and wear debris generation, and mechanobiology-driven fibrosis or osteolysis. We therefore propose a process view of implant success: tissue mechanics should be measured in clinically relevant states, transformed into constitutive models and interface performance envelopes, translated into explicit mechanical-compatibility specifications, and then realised through manufacturing process windows that can reliably reproduce targeted architectures and surface states. Additive manufacturing and microstructural engineering enable the tuning of modulus, the formation of porosity gradients, and the generation of patient-specific compliance fields, but these advances only improve outcomes when coupled to metrology, statistical process control, and validation loops that close the gap between intended and realised interface mechanics through clinical surveillance. Full article
(This article belongs to the Special Issue Multiscale Modeling and Control of Biomedical Systems)
Show Figures

Figure 1

12 pages, 3097 KB  
Case Report
SLIPPERS Reconsidered: Clinical, Radiological, and Pathological Overlap with PACNS—A Case Report
by Inhar Esnaola Barriola, Celia Fernández Gonzalez, Teresa Cabada Giadas, María Victoria Zelaya Huerta and María Elena Erro Aguirre
Reports 2026, 9(1), 47; https://doi.org/10.3390/reports9010047 - 31 Jan 2026
Viewed by 108
Abstract
Background and Clinical Significance: SLIPPERS syndrome (Supratentorial Lymphocytic Inflammation with Parenchymal Perivascular Enhancement Responsive to Steroids) was first described in 2015 as a variant of CLIPPERS restricted to supratentorial regions. Only a few cases have been reported so far, and its distinction from [...] Read more.
Background and Clinical Significance: SLIPPERS syndrome (Supratentorial Lymphocytic Inflammation with Parenchymal Perivascular Enhancement Responsive to Steroids) was first described in 2015 as a variant of CLIPPERS restricted to supratentorial regions. Only a few cases have been reported so far, and its distinction from primary angiitis of the central nervous system (PACNS) remains challenging, as both may present with overlapping clinical, radiological, and histopathological features. We report two patients initially diagnosed with SLIPPERS but finally fulfilling the diagnostic criteria for PACNS, highlighting the complexity of the differential diagnosis. Case Presentation: The first patient was a 49-year-old woman who presented with seizures, memory impairment, and facial neuralgia. MRI showed multiple cortico-subcortical and deep nodular lesions in the left hemisphere with gadolinium enhancement. Brain biopsy revealed a T-cell-predominant lymphocytic vascular infiltrate. She responded to corticosteroids but later relapsed, requiring methotrexate for long-term immunosuppression, with no further recurrences during seven years of follow-up. The second patient was a 64-year-old man with hypertension, dyslipidemia, and alcohol use who developed repeated focal-to-generalized seizures. MRI disclosed multifocal nodular gadolinium-enhancing right hemispheric lesions, with SWI microhemorrhages. Biopsy demonstrated transmural T-cell vasculitic infiltrates. He responded to corticosteroids and methotrexate, but radiological progression at 14 months prompted replacement with cyclophosphamide. Conclusions: There is a considerable clinical, radiological, and histological overlap between SLIPPERS and PACNS. Careful analysis of advanced MRI sequences, particularly angiographic and vessel-wall imaging studies, combined with meticulous histopathological analysis, is essential to avoid misdiagnosis. These similarities suggest that some cases attributed to SLIPPERS may, in fact, correspond to variants of PACNS. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

15 pages, 2259 KB  
Article
Role of Inositol Hexakisphosphate Kinases in Vascular Smooth Muscle Cell Calcification
by Sheyda Bahiraii, Isratul Jannat, Sarah Plösser, Mehdi Razazian, Jakob Voelkl and Ioana Alesutan
Int. J. Mol. Sci. 2026, 27(3), 1411; https://doi.org/10.3390/ijms27031411 - 30 Jan 2026
Viewed by 126
Abstract
Phosphate-induced vascular calcification in chronic kidney disease is linked to cardiovascular mortality. This calcification process involves vascular smooth muscle cells (VSMCs), which can promote a pro-calcific environment in the vascular wall. However, the mechanisms underlying a putative phosphate sensing of VSMCs to modulate [...] Read more.
Phosphate-induced vascular calcification in chronic kidney disease is linked to cardiovascular mortality. This calcification process involves vascular smooth muscle cells (VSMCs), which can promote a pro-calcific environment in the vascular wall. However, the mechanisms underlying a putative phosphate sensing of VSMCs to modulate pro-calcific signaling are insufficiently clarified. In mammals, three isoforms of the inositol hexakisphosphate kinase (IP6K) exist, which have been implicated in cellular phosphate homeostasis. Therefore, each IP6K isoform was silenced in calcifying primary human aortic VSMCs. IP6K1 and IP6K2 mRNA expression were increased in calcifying VSMCs. Silencing of either IP6K1 or IP6K2 ameliorated phosphate-induced pro-calcific markers expression and VSMC calcification. IP6K3 mRNA expression was not modified during calcifying conditions, but IP6K3 silencing still resulted in some anti-calcific effects. Mechanistically, the IP6K product 5-IP7 may act as a potent inhibitor of AKT kinase signaling. Accordingly, pro-calcific conditions induced only transient AKT phosphorylation, and IP6K2 silencing increased AKT phosphorylation in calcifying VSMCs. In turn, AKT inhibition blunted the protective effects of IP6K2 knockdown, while serum- and glucocorticoid-inducible kinase 1 (SGK1) inhibition restored these effects. These observations indicate a role for IP6Ks during phosphate-induced VSMC calcification, which could be mediated by an altered balance between AKT and SGK1 signaling. Full article
(This article belongs to the Special Issue Mechanisms of Vascular Calcification 2.0)
Show Figures

Figure 1

20 pages, 4893 KB  
Article
Ethyl 2-Cyanoacrylate as a Promising Matrix for Carbon Nanomaterial-Based Amperometric Sensors for Neurotransmitter Monitoring
by Riccarda Zappino, Ylenia Spissu, Antonio Barberis, Salvatore Marceddu, Pier Andrea Serra and Gaia Rocchitta
Appl. Sci. 2026, 16(3), 1255; https://doi.org/10.3390/app16031255 - 26 Jan 2026
Viewed by 263
Abstract
Dopamine (DA) is a critical catecholaminergic neurotransmitter that facilitates signal transduction across synaptic junctions and modulates essential neurophysiological processes, including motor coordination, motivational drive, and reward-motivated behaviors. The fabrication of cost-effective, miniaturized, and high-fidelity analytical platforms is imperative for real-time DA monitoring. Due [...] Read more.
Dopamine (DA) is a critical catecholaminergic neurotransmitter that facilitates signal transduction across synaptic junctions and modulates essential neurophysiological processes, including motor coordination, motivational drive, and reward-motivated behaviors. The fabrication of cost-effective, miniaturized, and high-fidelity analytical platforms is imperative for real-time DA monitoring. Due to its inherent electrochemical activity, carbon-based amperometric sensors constitute the primary modality for DA quantification. In this study, graphite, multi-walled carbon nanotubes (MWCNTs), and graphene were immobilized within an ethyl 2-cyanoacrylate (ECA) polymer matrix. ECA was selected for its rapid polymerization kinetics and established biocompatibility in electrochemical frameworks. All fabricated composites demonstrated robust electrocatalytic activity toward DA; however, MWCNT- and graphene-based sensors exhibited superior analytical performance, characterized by highly competitive limits of detection (LOD) and quantification (LOQ). Specifically, MWCNT-modified electrodes achieved an interesting LOD of 0.030 ± 0.001 µM and an LOQ of 0.101 ± 0.008 µM. Discrepancies in baseline current amplitudes suggest that the spatial orientation of carbonaceous nanomaterials within the cyanoacrylate matrix significantly influences the electrochemical surface area and resulting baseline characteristics. The impact of interfering species commonly found in biological environments on the sensors’ response was systematically evaluated. The best-performing sensor, the graphene-based one, was used to measure the DA intracellular content of PC12 cells. Full article
Show Figures

Figure 1

16 pages, 3522 KB  
Article
Multi-Omics Analysis Reveals the Adaptive Responses of Lycoris aurea to Arid Stress
by Mingxin Zhu, Zhaowentao Song, Yingzan Xie, Guanghua Liu and Youwei Zuo
Biology 2026, 15(2), 195; https://doi.org/10.3390/biology15020195 - 21 Jan 2026
Viewed by 144
Abstract
Understanding how plants respond to water limitation is increasingly important under accelerating climate change. Lycoris aurea, a widely distributed ornamental and medicinal bulbous plant, frequently inhabits environments with fluctuating soil moisture, yet its molecular drought-response mechanisms remain largely unexplored. In this study, [...] Read more.
Understanding how plants respond to water limitation is increasingly important under accelerating climate change. Lycoris aurea, a widely distributed ornamental and medicinal bulbous plant, frequently inhabits environments with fluctuating soil moisture, yet its molecular drought-response mechanisms remain largely unexplored. In this study, we investigated L. aurea growing under field-based, in situ soil moisture regimes, comparing low (~20% soil water content) and high (~40% soil water content) conditions. We combined soil property assessments with high-resolution transcriptomic and untargeted metabolomic profiling to characterize the adaptive responses of bulb tissues under contrasting soil water conditions. Although total nitrogen, phosphorus, and potassium levels were comparable across treatments, soil moisture, representing the primary contrasting field condition, and soil pH, a correlated environmental factor, were significantly associated with variation in gene expression and metabolite accumulation (p < 0.05, n = 3). Transcriptome analyses identified a total of 1034 differentially expressed genes enriched in pathways related to amino acid metabolism, cuticle formation, cell wall modification, and osmotic adjustment. Metabolomic analysis identified a total of 1867 differentially expressed metabolites belonging to carboxylic acids and prenol lipids, showing alterations involved in amino acids, lipids, phenolic acids, and alkaloids associated with osmoprotection, membrane stabilization, and structural reinforcement under low soil moisture. Pathway-based integration analysis highlighted four core pathways, including “alanine, aspartate and glutamate metabolism” (p = 0.00371) and “cutin, suberine and wax biosynthesis” (p = 0.00873), as central hubs linking transcriptional regulation with metabolic reconfiguration. Gene-metabolite-soil correlation networks further demonstrated that drought adaptation arises from tightly coordinated biochemical and structural adjustments rather than shifts in nutrient acquisition. Together, this species-specific study provides a comprehensive multi-omics framework for understanding drought tolerance in L. aurea, reveals key molecular targets associated with plant resilience, and offers potential targets and insights for the conservation of drought-resilient Lycoris cultivars. Full article
(This article belongs to the Special Issue Advances in Plant Multi-Omics)
Show Figures

Figure 1

19 pages, 3828 KB  
Article
Norisoboldine Induces Endothelium-Dependent Vasorelaxation and Attenuates Hypertension by Modulating Ca2+-eNOS Signaling, Oxidative Stress, and Inflammation
by Jiaze Li, Shurui Wang, Enyi Jin, Ziyi Zhao, Jinyue Liang, Yun Jung Lee and Lihua Cao
Antioxidants 2026, 15(1), 131; https://doi.org/10.3390/antiox15010131 - 20 Jan 2026
Viewed by 225
Abstract
Vascular function is a direct factor affecting blood pressure, and it is a primary strategy for clinically controlling hypertension by regulating the constriction/relaxation of blood vessels. This study evaluates the vasodilatory and anti-hypertensive effects of norisoboldine (NOR), an isoquinoline alkaloid in Ayurvedic medicine. [...] Read more.
Vascular function is a direct factor affecting blood pressure, and it is a primary strategy for clinically controlling hypertension by regulating the constriction/relaxation of blood vessels. This study evaluates the vasodilatory and anti-hypertensive effects of norisoboldine (NOR), an isoquinoline alkaloid in Ayurvedic medicine. The rat thoracic aorta was isolated to investigate the vasodilatory effect, and L-NAME-induced hypertensive rats were established, respectively. In the isolated vascular ring, removal of the endothelium resulted in a significant decrease in the vasodilatory effect. Pretreatment with L-NAME, ODQ, KT5823, WT, Tri, Dilt, calcium-free solution, TG, Gd3+, 2-APB, Indo, 4-AP, Gli, and BaCl2 inhibited the vasodilatory effect of NOR. In vascular endothelial cells, NOR promoted eNOS phosphorylation and inhibited TNF-α-induced expression of ICAM-1 and VCAM-1. SBP and DBP were significantly decreased after administration of different doses of NOR in the femoral vein of rats. In addition, NOR significantly reduced the blood pressure of L-NAME-induced hypertensive rats, up-regulated the serum levels of NO, cGMP, and CAT, and down-regulated MDA, IL-6, and TNF-α in hypertensive rats. NOR administration improved pathological changes in the thoracic aorta by regulating the arrangement of thoracic aortic smooth muscle cells, decreasing the thickness of the thoracic aortic wall, and reducing the degree of collagen deposition and fibrosis. In conclusion, the vasodilatory mechanisms of NOR were related to the Ca2+-eNOS signaling pathway, including the PGI2 and various K+/Ca2+ channels, the inositol triphosphate receptor (IP3R) calcium release, and the α-adrenergic receptor pathway. The anti-hypertensive mechanism of NOR may be related to increased NO and cGMP bioavailability, inhibition of oxidative stress and inflammatory responses, and improved vascular remodeling. Full article
Show Figures

Graphical abstract

19 pages, 3849 KB  
Article
Gibberellin-Treated Seedless Cultivation Alters Berry Fracture Behavior, Cell Size and Cell Wall Components in the Interspecific Hybrid Table Grape (Vitis labruscana × Vitis vinifera) ‘Shine Muscat’
by Hikaru Ishikawa, Kaho Masuda and Tomoki Shibuya
Plants 2026, 15(2), 287; https://doi.org/10.3390/plants15020287 - 17 Jan 2026
Viewed by 295
Abstract
Gibberellin (GA)-based seedless cultivation is widely used in the skin-edible interspecific table grape (Vitis labruscana × Vitis vinifera) ‘Shine Muscat’, yet when and how GA treatment reshapes fracture-type texture during berry development remains unclear. This study aimed to identify developmental stages [...] Read more.
Gibberellin (GA)-based seedless cultivation is widely used in the skin-edible interspecific table grape (Vitis labruscana × Vitis vinifera) ‘Shine Muscat’, yet when and how GA treatment reshapes fracture-type texture during berry development remains unclear. This study aimed to identify developmental stages and tissue/cell-wall features associated with GA-dependent differences in berry fracture behavior. We integrated intact-berry fracture testing at harvest (DAFB105), quantitative histology of pericarp/mesocarp tissues just before veraison (DAFB39) and at harvest, sequential cell-wall fractionation assays targeting pectin-rich (uronic acid) and hemicellulose/cellulose-related pools at cell division period, cell expansion period and harvest, and stage-resolved RNA-Seq across the same three developmental stages. GA-treated berries had a larger diameter and showed a higher fracture load and a lower fracture strain than non-treated berries at harvest, while toughness did not differ significantly. Histology revealed thicker pericarp tissues and lower mesocarp cell density in GA-treated berries, together with increased cell-size heterogeneity and enhanced radial cell expansion. Cell wall analyses showed stage-dependent decreases in uronic acid contents in water-, EDTA-, and Na2CO3-soluble fractions in GA-treated berries. Transcriptome profiling indicated GA-responsive expression of putative cell expansion/primary-wall remodeling genes, EXORDIUM and xyloglucan endotransglucosylase/hydrolases, at DAFB24 and suggested relatively enhanced ethylene-/senescence-associated transcriptional programs together with pectin-modifying related genes, Polygaracturonase/pectate lyase and pectin methylesterase, in non-treated mature berries. Collectively, GA treatment modifies mesocarp cellular architecture and pectin-centered wall status in a stage-dependent manner, providing a tissue- and cell wall–based framework for interpreting fracture-related texture differences under GA-based seedless cultivation in ‘Shine Muscat’. Full article
(This article belongs to the Special Issue Fruit Development and Ripening)
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Effects of Exogenous Phosphorus and Hydrogen Peroxide on Wheat Root Architecture
by Lei Chen, Lei Zhou, Yuwei Zhang and Hong Wang
Plants 2026, 15(2), 253; https://doi.org/10.3390/plants15020253 - 13 Jan 2026
Viewed by 356
Abstract
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution [...] Read more.
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution experiment was conducted to grow two varieties of wheat, including SM15 and HG35, with the treatments of 0.005 and 0.25 mmol/L P supply. Exogenous H2O2 and its scavenger ascorbic acid (AsA), and a NADPH oxidase inhibitor diphenylene iodonium (DPI) were added. The distribution of reactive oxygen species (ROS) in roots were detected by chemical staining and fluorescent probe technology. Low P supply did not change the root dry weight and total root length, while it decreased the lateral root density. The increase in the primary root and lateral root growth in P-starved wheat coincided with more ROS in the cell wall of the elongation zone. ROS production and oxidative enzyme activity of P-starved roots increased significantly. Low H2O2 induced the formation of lateral roots and significantly increased lateral root density under low P conditions. High H2O2 significantly reduced lateral root density but stimulated the nodal root formation. Exogenous AsA or DPI addition reversed the promotion of root growth imposed under the low P treatment or H2O2 addition. Furthermore, exogenous H2O2 treatment reduced the inhibitory effect of the DPI treatment on nodal root formation. It is suggested that the involvement of ROS in the regulation of wheat root system architecture under low P supply. Full article
Show Figures

Figure 1

19 pages, 4501 KB  
Article
Multidimensional Analysis Reveals the Flavor Quality Formation Mechanism During the Primary Pile Fermentation of Dark Tea
by Dunchao Wu, Yufei He, Juanshu Wen, Hongfa Zheng, Xi Zhao, Penghui Yu, Ni Zhong, Li Niu, Shi Li, Yong Lin, Hao Huang and Zhonghua Liu
Foods 2026, 15(2), 212; https://doi.org/10.3390/foods15020212 - 7 Jan 2026
Viewed by 247
Abstract
Pile fermentation is a crucial process for developing the characteristic mellow taste and aged aroma of dark tea, yet the internal quality transformation mechanism of this process is still unclear. This study employed a high-sensitivity analytical platform based on gas chromatography–mass spectrometry (GC-MS) [...] Read more.
Pile fermentation is a crucial process for developing the characteristic mellow taste and aged aroma of dark tea, yet the internal quality transformation mechanism of this process is still unclear. This study employed a high-sensitivity analytical platform based on gas chromatography–mass spectrometry (GC-MS) to systematically investigate the dynamic interplay between key chemical components, enzyme activities, and volatile compounds during the pile fermentation of primary dark tea. Our findings revealed a significant decrease in ester-type catechins, crude protein, and protopectin, alongside a notable accumulation of non-ester-type catechins, gallic acid, and soluble components. The multi-enzyme system—comprising PPO/POD, pectinase/cellulase, and protease—cooperatively drove the oxidation of phenols, cell wall degradation, and the release of aromatic precursors. This was complemented by GC-MS analysis, which identified and quantified 103 volatile compounds across nine chemical classes. The total content of volatile compounds increased significantly, with alcohols, esters, and aldehydes/ketones being the dominant groups. Floral and fruity compounds such as linalool and geraniol accumulated continuously, while esters exhibited an initial increase followed by a decrease. Notably, carotenoid degradation products, including β-ionone, were significantly enriched during the later stages. This study revealed a “oxidation–hydrolysis–reconstruction” metabolic mechanism co-driven by microbial activity and a multi-enzyme system, providing a theoretical foundation for the precise regulation of pile fermentation and targeted quality improvement of primary dark tea. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

22 pages, 15645 KB  
Article
Genome-Wide Analysis of Nelumbo nucifera UXS Family Genes: Mediating Dwarfing and Aquatic Salinity Tolerance
by Li Wang, Xingyan Zheng, Yajun Liu, Qian Mao, Yiwen Chen, Lin Zhao, Xiaomao Cheng, Longqing Chen and Huizhen Hu
Plants 2026, 15(1), 116; https://doi.org/10.3390/plants15010116 - 1 Jan 2026
Viewed by 459
Abstract
Nelumbo nucifera (Lotus) is an economically important aquatic crop frequently challenged by abiotic stresses. The plant cell wall, a primary interface with the environment, undergoes dynamic remodeling to balance structural integrity with adaptation. UDP-glucuronic acid decarboxylase (UXS), a key enzyme synthesizing the nucleotide [...] Read more.
Nelumbo nucifera (Lotus) is an economically important aquatic crop frequently challenged by abiotic stresses. The plant cell wall, a primary interface with the environment, undergoes dynamic remodeling to balance structural integrity with adaptation. UDP-glucuronic acid decarboxylase (UXS), a key enzyme synthesizing the nucleotide sugar precursor UDP-xylose, exists in distinct membrane-bound (e.g., Golgi) and cytosolic forms, channeling substrates into compartmentalized polysaccharide biosynthesis pathways and positioning the UXS family as a crucial regulator linking cell wall metabolism to plant adaptation. Here, we systematically characterized the NnUXS gene family in lotus through genome-wide identification, evolutionary synteny analysis, and functional validation. Integrated bioinformatic analysis revealed their physicochemical properties, motif patterns, and regulatory cis-elements, suggesting potential roles in growth and salt stress responses. Among the family, NnUXS3 was prioritized due to its preferentially upregulated in small plant architecture (SPA) varieties, its early induction under salt stress (0.5 days, 200 mM NaCl), and its highest predicted binding affinity for UDP-GlcA (−8.9 kcal/mol). Subsequent functional validation confirmed its dual role: heterologous overexpression in tobacco reduced plant height (47.22%) and leaf area (67.61%), while transient overexpression in lotus enhanced salt tolerance and shortened the petioles. This enhanced tolerance was achieved by upregulating key genes involved in polysaccharide biosynthesis (NnCSLC4, NnXTH22, NnCESA1) and antioxidant defense (NnSOD, NnPOD). Our findings establish NnUXS3 as a key mediator in balancing plant architecture and abiotic stress resilience. This work not only identifies a valuable genetic target for lotus breeding but also provides insights into the growth-stress trade-off, highlighting the importance of UXS subcellular localization in tailoring cell wall remodeling for environmental adaptation. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

11 pages, 6726 KB  
Article
Bench-Scale Study of Magnetically Influenced Dynamic Response in a Sloshing Tank
by Harun Tayfun Söylemez and İbrahim Özkol
Appl. Sci. 2026, 16(1), 360; https://doi.org/10.3390/app16010360 - 29 Dec 2025
Viewed by 212
Abstract
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents [...] Read more.
Liquid sloshing in partially filled tanks is commonly studied because of its influence on vehicle stability, structural loading, and control performance. In experimental investigations, sloshing measurements can be contaminated by mechanically induced fluid–structure interactions originating from the actuation system itself. This study presents a bench-scale experimental investigation of the interaction between static magnetic fields and the dynamic response of a mechanically excited water-tank system, with particular emphasis on distinguishing sloshing-related motion from higher-frequency mechanical effects. A rectangular acrylic tank was subjected to near-resonant horizontal excitation at a fixed fill height. A ferromagnetic steel plate was mounted externally beneath the tank and kept identical in all experiments, while either permanent magnets or mass-matched nonmagnetic dummies were attached externally to one sidewall. Two configurations were examined: a symmetric split-wall layout (15 + 15) magnets and a single-wall high-field arrangement with 30 magnets (Mag–30@L) together with its dummy control (Dummy–30@L). The center-of-gravity motion CGy(t) was reconstructed from four load cells and analyzed in the time and frequency domains. Band-limited analysis of the primary sloshing mode near 0.55 Hz revealed no statistically significant influence of the magnetic field, indicating that static magnets do not measurably affect the fundamental sloshing dynamics under the present conditions. In contrast, a higher-frequency response component in the 10–20 Hz range, attributed to mechanically induced fluid–structure interaction associated with actuator reversal dynamics, was consistently attenuated when magnets were present; this component is absent in corresponding CFD simulations and is, therefore, not associated with sloshing motion. Given the extremely small magnetic Reynolds and Stuart numbers for water, the observations do not support any volumetric magnetohydrodynamic mechanism; instead, they demonstrate a modest magnetic influence on a mechanically excited, high-frequency coupled mode specific to the present experimental system. The study is intentionally limited to bench scale and provides a reproducible dataset that may inform future investigations of magnetically influenced fluid–structure interactions in experimental sloshing rigs. Full article
Show Figures

Figure 1

16 pages, 683 KB  
Review
A Historical Review of Gastroschisis: Evolution of Understanding, Diagnosis, and Surgical Management
by Mohamad Abi Nassif, Emrah Aydın and Jose L. Peiro
Children 2026, 13(1), 13; https://doi.org/10.3390/children13010013 - 20 Dec 2025
Viewed by 457
Abstract
Background/Objectives: Gastroschisis is a congenital abdominal wall defect characterized by herniation of bowel loops without a covering membrane and typically located to the right of the umbilical cord. Although contemporary management is well established, its historical study development has not been comprehensively synthesized. [...] Read more.
Background/Objectives: Gastroschisis is a congenital abdominal wall defect characterized by herniation of bowel loops without a covering membrane and typically located to the right of the umbilical cord. Although contemporary management is well established, its historical study development has not been comprehensively synthesized. This review examines the chronological evolution of focus of interest in gastroschisis and highlights how research priorities shifted across eras, shaping current anatomical understanding, diagnostic strategies, and surgical management. Methods: A structured literature search was performed in PubMed, Web of Science, and Scopus. Studies in English, Spanish, Turkish, and Arabic were included. Titles, abstracts, and full texts were screened independently. Eligible publications addressed historical descriptions, differentiation from omphalocele, advancements in imaging, surgical techniques, or experimental modeling. Results: Sixty-eight studies met the inclusion criteria. Early reports from the sixteenth to eighteenth centuries provided descriptive accounts without distinguishing gastroschisis from omphalocele. The nineteenth century introduced the term “gastroschisis,” and definitive clinical differentiation was achieved in the mid twentieth century. Surgical innovation progressed from primary closure in the 1940s to the development of preformed and spring-loaded silos, which improved physiologic tolerance and survival. Animal models clarified mechanisms of bowel injury, including the effects of amniotic exposure and delayed maturation of interstitial cells of Cajal. Advances in ultrasound and magnetic resonance imaging facilitated prenatal risk stratification and shifted research attention toward predicting complex gastroschisis and optimizing perinatal planning. Conclusions: The historical trajectory of studies about gastroschisis demonstrates a coherent pattern in which developments in anatomical definition, surgical innovation, and mechanistic research sequentially enabled modern prenatal diagnostic and prognostic strategies. Recognizing these temporal shifts provides important context for current practice and highlights opportunities to improve prenatal markers of bowel compromise and refine individualized postnatal care. Full article
(This article belongs to the Section Pediatric Surgery)
Show Figures

Figure 1

32 pages, 3238 KB  
Review
Wheat Plasma Membrane Receptors: Orchestrating Immunity and Bridging to Crop Improvement
by Hala B. Khalil, Hoda A. Zakherah, Fatimah A. Alhassan, Mai M. Salah, Ahmed M. Kamel, Ammar Y. Mohamed, Haidar A. Alsahoud, Fatma Hamdi Metwaly and Salah A. Mostafa
Curr. Issues Mol. Biol. 2026, 48(1), 2; https://doi.org/10.3390/cimb48010002 - 19 Dec 2025
Viewed by 1016
Abstract
The plant plasma membrane serves as the primary interface for perceiving extracellular signals, a function largely mediated by plasma membrane receptors (PMRs). In wheat (Triticum aestivum), the functional characterization of these receptors is impeded by the species’ large, hexaploid genome, which [...] Read more.
The plant plasma membrane serves as the primary interface for perceiving extracellular signals, a function largely mediated by plasma membrane receptors (PMRs). In wheat (Triticum aestivum), the functional characterization of these receptors is impeded by the species’ large, hexaploid genome, which results in extensive gene duplication and functional redundancy. This review synthesizes current knowledge on wheat PMRs, covering their diversity, classification, and signaling mechanisms, with a particular emphasis on their central role in plant immunity. We highlight the remarkable structural and functional diversification of PMR families, which range in size from 10 members, as seen in the case of wheat leaf rust kinase (WLRK), to over 3424 members in the receptor-like kinase (RLK) family. Furthermore, we reviewed the role of PMRs in being critical for detecting a wide array of biotic stimuli, including pathogen-associated molecular patterns (PAMPs), herbivore-associated molecular patterns (HAMPs), and symbiotic signals. Upon perception, PMRs initiate downstream signaling cascades that orchestrate defense responses, including transcriptional reprogramming, cell wall reinforcement, and metabolic changes. The review also examines the complex cross-talk between immune receptors and other signaling pathways, such as those mediated by brassinosteroid and jasmonic acid receptors, which underpin the delicate balance between growth and defense. Finally, we bridge these fundamental insights to applications in crop improvement, delineating strategies like marker-assisted selection, gene stacking, and receptor engineering to enhance disease resistance. After identifying key obstacles such as genetic redundancy and pleiotropic effects, we propose future research directions that leverage multi-omics, systems biology, and synthetic biology to fully unlock the potential of wheat PMRs for sustainable agriculture. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Plant Science 2026)
Show Figures

Graphical abstract

24 pages, 2722 KB  
Article
Transcriptomic Analysis of Rice Varieties Under System of Rice Intensification (SRI) Management
by Nurtasbiyah Yusof, Fumitaka Shiotsu, Iain McTaggart, Wanchana Aesomnuk, Jonaliza L. Siangliw, Samart Wanchana, Kentaro Yano and Kosuke Noborio
Crops 2025, 5(6), 92; https://doi.org/10.3390/crops5060092 - 18 Dec 2025
Viewed by 452
Abstract
The System of Rice Intensification which promotes agro-ecological practices like alternate wetting and drying (AWD) to enhance root growth and resource efficiency, relies on the genotypic capacity of rice varieties to undergo physiological adaptation. This study elucidates the molecular basis of such adaptation [...] Read more.
The System of Rice Intensification which promotes agro-ecological practices like alternate wetting and drying (AWD) to enhance root growth and resource efficiency, relies on the genotypic capacity of rice varieties to undergo physiological adaptation. This study elucidates the molecular basis of such adaptation by investigating the transcriptomic profile of four rice varieties to continuous flooding (CF) and AWD at 50 days after transplanting. Our analysis revealed distinct, organ-specific acclimation strategies. Roots underwent extensive transcriptional reprogramming, underscoring their role as the primary site of plasticity. Under CF, a conserved response involving cell wall reinforcement was accompanied by variety-specific strategies, ranging from sustained growth to enhanced anaerobic metabolism. Under AWD, roots shifted toward water stress management, with varieties employing distinct defensive (e.g., diterpenoid biosynthesis) and metabolic programs. Associated transcription factors (TFs) enriched under CF included Dof and MYB, whereas bZIP, HSF, and WRKY factors predominated under AWD. In leaves, acclimation to AWD involved more targeted adjustments, including modulation of nitric oxide signaling and photoprotective pathways, regulated by TFs such as WRKY, NAC, and HSF. Varieties with robust TF responses, such as IR64 and Hitachi hatamochi, showed comprehensive regulatory shifts, while others exhibited more constrained profiles. Overall, this study provides a molecular framework for understanding variety-specific adaptation to SRI-relevant water management practices and identifies key TFs as promising candidates for breeding climate-resilient rice. Full article
Show Figures

Figure 1

Back to TopTop