Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = price signalling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 681 KiB  
Article
Unlocking the Nexus: Personal Remittances and Economic Drivers Shaping Housing Prices Across EU Borders
by Maja Nikšić Radić, Siniša Bogdan and Marina Barkiđija Sotošek
World 2025, 6(3), 112; https://doi.org/10.3390/world6030112 (registering DOI) - 7 Aug 2025
Abstract
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a [...] Read more.
This study examines the impact of personal remittances on housing prices in European Union (EU) countries, while also accounting for a broader set of macroeconomic, demographic, and structural variables. Using annual data for 27 EU countries from 2007 to 2022, we employ a comprehensive panel econometric approach, including cross-sectional dependence tests, second-generation unit root tests, pooled mean group–autoregressive distributed lag (PMG-ARDL) estimation, and panel causality tests, to capture both short- and long-term dynamics. Our findings confirm that remittances significantly and positively influence long-term housing price levels, underscoring their relevance as a demand-side driver. Other key variables such as net migration, GDP, travel credit to GDP, economic freedom, and real effective exchange rates also contribute to housing price movements, while supply-side indicators, including production in construction and building permits, exert moderating effects. Moreover, real interest rates are shown to have a significant long-term negative effect on property prices. The analysis reveals key causal links from remittances, FDI, and net migration to housing prices, highlighting their structural and predictive roles. Bidirectional causality between economic freedom, housing output, and prices indicates reinforcing feedback effects. These findings position remittances as both a development tool and a key indicator of real estate dynamics. The study highlights complex interactions between international financial flows, demographic pressures, and domestic economic conditions and the need for policymakers to consider remittances and migrant investments in real estate strategies. These findings offer important implications for policymakers seeking to balance housing affordability, investment, and economic resilience in the EU context and key insights into the complexity of economic factors and real estate prices. Importantly, the analysis identifies several causal relationships, notably from remittances, FDI, and net migration toward housing prices, underscoring their predictive and structural importance. Bidirectional causality between economic freedom and house prices, as well as between housing output and pricing, reflects feedback mechanisms that further reinforce market dynamics. These results position remittances not only as a developmental instrument but also as a key signal for real estate market performance in recipient economies. Full article
Show Figures

Figure A1

20 pages, 1925 KiB  
Article
Beyond Polarity: Forecasting Consumer Sentiment with Aspect- and Topic-Conditioned Time Series Models
by Mian Usman Sattar, Raza Hasan, Sellappan Palaniappan, Salman Mahmood and Hamza Wazir Khan
Information 2025, 16(8), 670; https://doi.org/10.3390/info16080670 - 6 Aug 2025
Abstract
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating [...] Read more.
Existing approaches to social media sentiment analysis typically focus on static classification, offering limited foresight into how public opinion evolves. This study addresses that gap by introducing the Multi-Feature Sentiment-Driven Forecasting (MFSF) framework, a novel pipeline that enhances sentiment trend prediction by integrating rich contextual information from text. Using state-of-the-art transformer models on the Sentiment140 dataset, our framework extracts three concurrent signals from each tweet: sentiment polarity, aspect-based scores (e.g., ‘price’ and ‘service’), and topic embeddings. These features are aggregated into a daily multivariate time series. We then employ a SARIMAX model to forecast future sentiment, using the extracted aspect and topic data as predictive exogenous variables. Our results, validated on the historical Sentiment140 Twitter dataset, demonstrate the framework’s superior performance. The proposed multivariate model achieved a 26.6% improvement in forecasting accuracy (RMSE) over a traditional univariate ARIMA baseline. The analysis confirmed that conversational aspects like ‘service’ and ‘quality’ are statistically significant predictors of future sentiment. By leveraging the contextual drivers of conversation, the MFSF framework provides a more accurate and interpretable tool for businesses and policymakers to proactively monitor and anticipate shifts in public opinion. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 208
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 140
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

31 pages, 2756 KiB  
Article
Digital Twins and Network Resilience in the EU ETS: Analysing Structural Shifts in Carbon Trading
by Cláudia R. R. Eirado, Douglas Silveira and Daniel O. Cajueiro
Sustainability 2025, 17(15), 6924; https://doi.org/10.3390/su17156924 - 30 Jul 2025
Viewed by 279
Abstract
The European Union Emissions Trading System (EU ETS) and its underlying market structure play a central role in the EU’s climate policy. This study analyses how the network of trading relationships within the EU ETS has evolved from a hub-dominated architecture to one [...] Read more.
The European Union Emissions Trading System (EU ETS) and its underlying market structure play a central role in the EU’s climate policy. This study analyses how the network of trading relationships within the EU ETS has evolved from a hub-dominated architecture to one marked by structural change and the emergence of new trading dynamics. Using transaction data from Phases I–IV, we apply complex network analysis to assess changes in connectivity, centrality, and community structure. We then construct a Digital Twin of the EU ETS, integrating graph neural networks and logistic regression models to simulate the entry of new participants and predict future trading links. The results indicate shifts in network composition and connectivity, especially in Phase IV, where regulatory innovations and institutional mechanisms appear to play a key role. While our analysis focuses on structural dynamics, these patterns may have broader implications for market performance and policy effectiveness. These findings underscore the importance of monitoring the evolving trading network alongside price signals to support a resilient, efficient, and environmentally credible carbon market. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
Beyond the Detour: Modeling Traffic System Shocks After the Francis Scott Key Bridge Failure
by Daeyeol Chang, Niyeyesh Meimandi Nejad, Mansoureh Jeihani and Mansha Swami
Sustainability 2025, 17(15), 6916; https://doi.org/10.3390/su17156916 - 30 Jul 2025
Viewed by 280
Abstract
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines [...] Read more.
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines the impacts of congestion across Immediate, Fall, and Winter periods, distinctly separating AM and PM peak patterns. Significant findings include severe PM peak congestion, up to four times greater than AM peak congestion, particularly on critical corridors such as the Harbor Tunnel Thruway northbound and MD-295 northbound. Initial route-level impacts were heterogeneous, gradually becoming uniform as the network adapted. The causal DiD analysis provides strong evidence that increased congestion is causally linked to proximity to the collapse. It is anticipated that incorporating the suggested framework will yield insightful information for stakeholders and decision-makers, such as targeted freight restriction, peak-hour dynamic pricing, corridor-specific signal adjustments, and investments in real-time traffic monitoring systems to strengthen transportation network resilience. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

25 pages, 837 KiB  
Article
DASF-Net: A Multimodal Framework for Stock Price Forecasting with Diffusion-Based Graph Learning and Optimized Sentiment Fusion
by Nhat-Hai Nguyen, Thi-Thu Nguyen and Quan T. Ngo
J. Risk Financial Manag. 2025, 18(8), 417; https://doi.org/10.3390/jrfm18080417 - 28 Jul 2025
Viewed by 522
Abstract
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive [...] Read more.
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive to noise. Moreover, sentiment signals are typically aggregated using fixed time windows, which may introduce temporal bias. To address these issues, we propose DASF-Net (Diffusion-Aware Sentiment Fusion Network), a multimodal framework that integrates structural and textual information for robust prediction. DASF-Net leverages diffusion processes over two complementary financial graphs—one based on industry relationships, the other on fundamental indicators—to learn richer stock representations. Simultaneously, sentiment embeddings extracted from financial news using FinBERT are aggregated over an empirically optimized window to preserve temporal relevance. These modalities are fused via a multi-head attention mechanism and passed to a temporal forecasting module. DASF-Net integrates daily stock prices and news sentiment, using a 3-day sentiment aggregation window, to forecast stock prices over daily horizons (1–3 days). Experiments on 12 large-cap S&P 500 stocks over four years demonstrate that DASF-Net outperforms competitive baselines, achieving up to 91.6% relative reduction in Mean Squared Error (MSE). Results highlight the effectiveness of combining graph diffusion and sentiment-aware features for improved financial forecasting. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

20 pages, 2969 KiB  
Article
A New Device for Measuring Trunk Diameter Variations Using Magnetic Amorphous Wires
by Cristian Fosalau
Sensors 2025, 25(14), 4449; https://doi.org/10.3390/s25144449 - 17 Jul 2025
Viewed by 283
Abstract
Measuring the small tree trunk variations during the day–night cycle, seasonal cycles, as well as those caused by the plant’s growth and health regime is a very important action in horticulture or forestry because by analyzing the collected data, assessments can be made [...] Read more.
Measuring the small tree trunk variations during the day–night cycle, seasonal cycles, as well as those caused by the plant’s growth and health regime is a very important action in horticulture or forestry because by analyzing the collected data, assessments can be made on the health of the trees, but also on the climatic conditions and changes in a certain region. This can be performed with devices called dendrometers. This paper presents a new type of approach to these measurement types in which the trunk volume changes are highly sensitively converted into the axial stress on sensitive elements made of magnetic materials in wire form in which the giant stress impedance effect occurs. Finally, by electronic processing of the signals provided by the sensitive elements, digital words with a decimal value proportional to the diameter variations are obtained. This paper presents the operating principle, the constructive details and the experimental results obtained by testing the device in the laboratory and in-field. The proposed dendrometer, compared to those available commercially, has the advantage of good resolution and sensitivity, good immunity to temperature variations, the possibility of transmitting the result remotely, robustness and low price. Some metrological parameters obtained from the experimental testing are the following: resolution 1.6 µm, linearity 1.4%, measurement range 0 to 5 mm, temperature coefficient 0.012%/°C. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

23 pages, 8224 KiB  
Article
Green Port Collection and Distribution System in Low-Carbon Development: Scenario-Based System Dynamics
by Qingzhou Wang, Mengfan Li, Yuning Zhang and Yanan Kang
Sustainability 2025, 17(14), 6516; https://doi.org/10.3390/su17146516 - 16 Jul 2025
Viewed by 302
Abstract
This study aims to explore the factors and mechanisms influencing the low-carbon development of Green Port Collection and Distribution Systems (GPCDSs) and to identify effective pathways and policy approaches to promote such development. Given the limited prior research integrating low-carbon policies, energy structure, [...] Read more.
This study aims to explore the factors and mechanisms influencing the low-carbon development of Green Port Collection and Distribution Systems (GPCDSs) and to identify effective pathways and policy approaches to promote such development. Given the limited prior research integrating low-carbon policies, energy structure, and transportation systems, this study combines these three dimensions into a unified analytical framework. A scenario-based system dynamics model of GPCDS low-carbon development is established, incorporating factors such as low-carbon policies, energy structure, and transportation structure. The control variable method is employed to examine system behavior under 13 scenarios. The results indicate that freight subsidy policies and the internalization of carbon emission costs make the most substantial contributions to low-carbon development in GPCDS, yielding CO2 emission reductions of 14.3% and 15.7%, respectively. Additionally, improvements in port railway infrastructure contribute to a 6.4% reduction in CO2 emissions. In contrast, carbon taxes and energy structure adjustments have relatively limited effects, likely due to the delayed responsiveness of fossil fuel-dependent transportation sectors to pricing signals and the inherent inertia in transitioning energy systems. Full article
Show Figures

Figure 1

30 pages, 1477 KiB  
Article
Algebraic Combinatorics in Financial Data Analysis: Modeling Sovereign Credit Ratings for Greece and the Athens Stock Exchange General Index
by Georgios Angelidis and Vasilios Margaris
AppliedMath 2025, 5(3), 90; https://doi.org/10.3390/appliedmath5030090 - 15 Jul 2025
Viewed by 212
Abstract
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a [...] Read more.
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a multi-method analytical framework combining algebraic combinatorics and time-series econometrics. The methodology incorporates the construction of a directed credit rating transition graph, the partially ordered set representation of rating hierarchies, rolling-window correlation analysis, Granger causality testing, event study evaluation, and the formulation of a reward matrix with optimal rating path optimization. Empirical results indicate that credit rating announcements in Greece exert only modest short-term effects on the Athens Stock Exchange General Index, implying that markets often anticipate these changes. In contrast, sequential downgrade trajectories elicit more pronounced and persistent market responses. The reward matrix and path optimization approach reveal structured investor behavior that is sensitive to the cumulative pattern of rating changes. These findings offer a more nuanced interpretation of how sovereign credit risk is processed and priced in transparent and fiscally disciplined environments. By bridging network-based algebraic structures and economic data science, the study contributes a novel methodology for understanding systemic financial signals within sovereign credit systems. Full article
(This article belongs to the Special Issue Algebraic Combinatorics in Data Science and Optimisation)
Show Figures

Figure 1

18 pages, 1075 KiB  
Article
Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument
by Santhosh Kumar Venugopal and Marwa Talbi
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 160; https://doi.org/10.3390/jtaer20030160 - 1 Jul 2025
Viewed by 662
Abstract
The adoption of cryptocurrency as a payment instrument by firms has sparked ongoing debates about how such strategic moves are perceived by key stakeholders. This study investigates how investors react when an e-commerce firm adds or withdraws from providing cryptocurrency as a payment [...] Read more.
The adoption of cryptocurrency as a payment instrument by firms has sparked ongoing debates about how such strategic moves are perceived by key stakeholders. This study investigates how investors react when an e-commerce firm adds or withdraws from providing cryptocurrency as a payment option. To explore these aspects, we examine two cases: MercadoLibre’s decision to introduce Meli Dólar as a payment option, representing the inclusion of cryptocurrency, and eBay’s withdrawal from the Libra project, representing strategic exclusion. We assess the causal impact of these strategies by employing a Regression Discontinuity Design (RDD) and deriving the observation period by using an optimal bandwidth method. The results indicate that there was an immediate decline in share prices following the adoption of the Meli Dólar as a payment instrument and an immediate increase following the decision to withdraw from using Libra as a payment instrument. The findings suggest that including cryptocurrency as a payment method may run counter to investor expectations. This study contributes to the discourse on the viability of cryptocurrency adoption by e-commerce firms and emphasizes the importance of understanding how decisions around cryptocurrency convey market signals, which may have strategic implications for a firm’s overall strategy. Full article
Show Figures

Figure 1

14 pages, 3020 KiB  
Article
A Scoring Model for Catalyst Informatics Based on Real-Time High-Throughput Fluorogenic Assay for Catalyst Discovery and Kinetic Profiling
by Rama El-khawaldeh, Connor R. Bourgonje, Bowen Wang and Juan C. Scaiano
Catalysts 2025, 15(7), 636; https://doi.org/10.3390/catal15070636 - 30 Jun 2025
Viewed by 336
Abstract
In this work, we propose an automated, real-time optical scanning approach to assessing catalyst performance in the process of nitro-to-amine reduction using well-plate readers to monitor reaction progress. This approach takes advantage of a simple on–off fluorescence probe that gives a shift in [...] Read more.
In this work, we propose an automated, real-time optical scanning approach to assessing catalyst performance in the process of nitro-to-amine reduction using well-plate readers to monitor reaction progress. This approach takes advantage of a simple on–off fluorescence probe that gives a shift in absorbance and strong fluorescent signal when the non-fluorescent nitro-moiety is reduced to the amine form. The combination of an affordable probe and a low barrier-to-entry technique provides an accessible approach to high-throughput catalyst screening. Under this paradigm, we screened 114 different catalysts and compared them in terms of reaction completion times, material abundance, price, recoverability, and safety. Using a simple scoring system, we plotted the catalysts in terms of cumulative scores, along with some intentional biases, including an emphasis on preference for catalysts with potential as green catalysts, considering environmental issues and possible geopolitical preferences. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

15 pages, 640 KiB  
Article
Unverifiable Green Signals and Consumer Response in E-Commerce: Evidence from Platform-Level Data
by Shibo Zhang, Chengcheng Wu, Xinzhu Yan, Yingxue Chen and Hongguo Shi
Sustainability 2025, 17(13), 5678; https://doi.org/10.3390/su17135678 - 20 Jun 2025
Viewed by 445
Abstract
This study investigates the effects of unverifiable green signals—vague environmental claims, trust-substitute cues, and function-stacking—on consumer purchasing behaviors in e-commerce settings. Using detailed product-level data collected from two major Chinese online platforms, Taobao and Pinduoduo, during the peak shopping period in November 2023, [...] Read more.
This study investigates the effects of unverifiable green signals—vague environmental claims, trust-substitute cues, and function-stacking—on consumer purchasing behaviors in e-commerce settings. Using detailed product-level data collected from two major Chinese online platforms, Taobao and Pinduoduo, during the peak shopping period in November 2023, we analyze the impact of these signals on product sales using ordinary least squares (OLS), instrumental variable (IV), and propensity score matching (PSM) methods. Results indicate that vague environmental language and function-stacking significantly boost sales across platforms, highlighting consumers’ preference for easily interpretable and seemingly comprehensive products. However, trust-substitute signals exhibit mixed effects, with them being beneficial on platforms with stronger credibility frameworks (Taobao) and less effective or even detrimental on platforms characterized by price competition and weaker governance (Pinduoduo). This study contributes to the literature on consumer trust and digital greenwashing by identifying platform-specific responses to unverifiable eco-claims and underscoring the importance of heuristic processing theories and trust formation mechanisms in digital marketing contexts. These findings underscore the complex dynamics of greenwashing strategies and stress the necessity for enhanced regulation and clearer communication standards to protect consumers and genuinely support sustainable consumption. Full article
Show Figures

Figure 1

24 pages, 664 KiB  
Article
Temporal Fusion Transformer-Based Trading Strategy for Multi-Crypto Assets Using On-Chain and Technical Indicators
by Ming Che Lee
Systems 2025, 13(6), 474; https://doi.org/10.3390/systems13060474 - 16 Jun 2025
Viewed by 2979
Abstract
Cryptocurrency markets are characterized by high volatility, nonlinear dependencies, and limited transparency, making short-term forecasting particularly challenging for both researchers and practitioners. To address these complexities, this study introduces a Temporal Fusion Transformer (TFT)-based forecasting framework that integrates on-chain and technical indicators to [...] Read more.
Cryptocurrency markets are characterized by high volatility, nonlinear dependencies, and limited transparency, making short-term forecasting particularly challenging for both researchers and practitioners. To address these complexities, this study introduces a Temporal Fusion Transformer (TFT)-based forecasting framework that integrates on-chain and technical indicators to improve predictive performance and inform tactical trading decisions. By combining multi-source features—such as Spent Output Profit Ratio (SOPR), Total Value Locked (TVL), active addresses (AA), exchange net flow (ENF), Realized Cap HODL Waves, and the Crypto Fear and Greed Index—with classical signals like Relative Strength Index (RSI) and moving average convergence divergence (MACD), the model captures behavioral patterns, investor sentiment, and price dynamics in a unified structure. Five major cryptocurrencies—BTC, ETH, USDT, XRP, and BNB—serve as the empirical basis for evaluation. The proposed TFT model is benchmarked against LSTM, GRU, SVR, and XGBoost using standard regression metrics to assess forecasting accuracy. Beyond prediction, a signal-based trading strategy is developed by translating model outputs into daily buy, hold, or sell signals, with performance assessed through a comprehensive set of financial metrics. The results suggest that integrating attention-based deep learning with domain-informed indicators provides an effective and interpretable approach for multi-asset cryptocurrency forecasting and real-time portfolio strategy optimization. Full article
Show Figures

Figure 1

37 pages, 6517 KiB  
Article
Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition
by Zhuolin Wu, Jiaqi Zhou and Xiaobing Yu
Sustainability 2025, 17(12), 5249; https://doi.org/10.3390/su17125249 - 6 Jun 2025
Viewed by 688
Abstract
Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to [...] Read more.
Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely. Full article
(This article belongs to the Special Issue Energy Price Forecasting and Sustainability on Energy Transition)
Show Figures

Figure 1

Back to TopTop