Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument
Abstract
1. Introduction
2. Theoretical Background, Literature Review, and Hypothesis Development
2.1. Efficient Market Theory
2.2. Signaling Theory
2.3. Investor’s Behavior and Cryptocurrency Adoption
3. The Model
3.1. The RDD Model
3.2. Abnormal Returns and Cumulative Abnormal Returns
4. Data and Methodology
5. Results and Discussion
- Descriptive statistics indicating the distribution before and after the cutoff date;
- Regression discontinuity plot;
- RDD estimation;
- Placebo tests;
- Assessing abnormal returns.
5.1. Study 1: Assessing the Impact of the Introduction of the Meli Dólar on the Stock Price of Mercado Libre
5.1.1. Descriptive Statistics of MELI Stock Prices
5.1.2. RDD Estimation of the Impact of the Introduction of Meli Dólar
5.1.3. Robustness Check
5.2. Study 2: Assessing the Impact of the Withdrawal of Libra Currency on the Stock Price of eBay
5.2.1. Descriptive Statistics of eBay Stock Prices
5.2.2. RDD Estimation of the Impact of the Withdrawal of the Libra
5.2.3. Robustness Checks
5.3. Calculation of Abnormal Returns
5.3.1. Study 1: Market-Based AR and CAR—Introduction of Meli Dólar
5.3.2. Study 2: Assessment of AR and CAR Relating to the Event Period Surrounding the Withdrawal of the Libra Currency
5.4. Discussion
6. Conclusions
7. Limitations and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonker, N. What drives the adoption of crypto-payments by online retailers? Electron. Commer. Res. Appl. 2019, 35, 100848. [Google Scholar] [CrossRef]
- Titov, V.; Uandykova, M.; Litvishko, O.; Kalmykova, T.; Prosekov, S.; Senjyu, T. Cryptocurrency Open Innovation Payment System: Comparative Analysis of Existing Cryptocurrencies. J. Open Innov. Technol. Mark. Complex. 2021, 7, 102. [Google Scholar] [CrossRef]
- Mercik, A.; Słoński, T.; Karaś, M. Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies. Int. Rev. Financ. Anal. 2024, 92, 103070. [Google Scholar] [CrossRef]
- Chokor, A.; Alfieri, E. Long and short-term impacts of regulation in the cryptocurrency market. Q. Rev. Econ. Financ. 2021, 81, 157–173. [Google Scholar] [CrossRef]
- Cary, M. Down with the #Dogefather: Evidence of a Cryptocurrency Responding in Real Time to a Crypto-Tastemaker. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2230–2240. [Google Scholar] [CrossRef]
- Murugappan, M.; Nair, R.; Krishnan, S. Global Market Perceptions of Cryptocurrency and the Use of Cryptocurrency by Consumers: A Pilot Study. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1955–1970. [Google Scholar] [CrossRef]
- MercadoLivre. Meli Dolar tem o Mesmo Valor do Dolar. Available online: https://www.mercadolivre.com.br/melidolar (accessed on 1 February 2025).
- Gao, L.; Shi, Y.; Zheng, Y. Cryptocurrency exposure and the cost of debt. Financ. Res. Lett. 2025, 73, 106668. [Google Scholar] [CrossRef]
- Al Reshaid, F.; Tosun, P.; Yanar Gürce, M. Cryptocurrencies as a means of payment in online shopping. Digit. Policy Regul. Gov. 2024, 26, 375–393. [Google Scholar] [CrossRef]
- Eshghi, K.; and Farivar, S. The Addition of New Payment Method and Shareholder Value: Evidence From Cryptocurrency Adoption. J. Organ. Comput. Electron. Commer. 2025, 35, 89–114. [Google Scholar] [CrossRef]
- Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Finance 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Ritter, J.R. Behavioral finance. Pac.-Basin Financ. J. 2003, 11, 429–437. [Google Scholar] [CrossRef]
- Bazerman, M.H.; Moore, D.A. Judgment in Managerial Decision Making; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Shah, A.K.; Zhao, J.; Mullainathan, S.; Shafir, E. Money in the Mental Lives of the Poor. Soc. Cogn. 2018, 36, 4–19. [Google Scholar] [CrossRef]
- Spence, M. Job Market Signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2011, 37, 39–67. [Google Scholar] [CrossRef]
- Rao, S.; Lee, K.B.; Connelly, B.; Iyengar, D. Return Time Leniency in Online Retail: A Signaling Theory Perspective on Buying Outcomes. Decis. Sci. 2018, 49, 275–305. [Google Scholar] [CrossRef]
- Tang, Y.M.; Chau, K.Y.; Hong, L.; Ip, Y.-K.; Wan, Y. Financial Innovation in Digital Payment with WeChat towards Electronic Business Success. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1844–1861. [Google Scholar] [CrossRef]
- Thoumrungroje, A.; Suprawan, L. Investigating M-Payment Intention across Consumer Cohorts. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 431–447. [Google Scholar] [CrossRef]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Garcia-Teruel, R. Legal challenges and opportunities of blockchain technology in the real estate sector. J. Prop. Plan. Environ. Law 2020, ahead-of-print. [Google Scholar] [CrossRef]
- Rudkin, S.; Rudkin, W.; Dłotko, P. On the topology of cryptocurrency markets. Int. Rev. Financ. Anal. 2023, 89, 102759. [Google Scholar] [CrossRef]
- Catania, L.; Grassi, S. Forecasting cryptocurrency volatility. Int. J. Forecast. 2022, 38, 878–894. [Google Scholar] [CrossRef]
- Evrim Mandaci, P.; Cagli, E.C. Herding intensity and volatility in cryptocurrency markets during the COVID-19. Financ. Res. Lett. 2022, 46, 102382. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wang, J.; Ma, F.; Li, Z. Bitcoin volatility predictability: The role of jumps and regimes. Financ. Res. Lett. 2022, 47, 102687. [Google Scholar] [CrossRef]
- Takaishi, T. Rough volatility of Bitcoin. Financ. Res. Lett. 2020, 32, 101379. [Google Scholar] [CrossRef]
- Troster, V.; Tiwari, A.K.; Shahbaz, M.; Macedo, D.N. Bitcoin returns and risk: A general GARCH and GAS analysis. Financ. Res. Lett. 2019, 30, 187–193. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, H.; Arkorful, G.B.; Peng, Z. The impacts of futures trading on volatility and volatility asymmetry of Bitcoin returns. Int. Rev. Financ. Anal. 2023, 86, 102497. [Google Scholar] [CrossRef]
- Ante, L.; Fiedler, I.; Strehle, E. The influence of stablecoin issuances on cryptocurrency markets. Financ. Res. Lett. 2021, 41, 101867. [Google Scholar] [CrossRef]
- Cao, Y.; Dai, M.; Kou, S.; Li, L.; Yang, C. Designing stablecoins. Math. Financ. 2025, 35, 263–294. [Google Scholar] [CrossRef]
- Ecer, F.; Murat, T.; Dinçer, H.; Yüksel, S. A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: A case study of Türkiye. Financ. Innov. 2024, 10, 31. [Google Scholar] [CrossRef]
- Hayashi, F.; Routh, A. Financial Literacy, Risk Tolerance, and Cryptocurrency Ownership in the United States; The Federal Reserve Bank of Kansas City Research Working Papers; The Federal Reserve Bank of Kansas City: Kansas City, MO, USA, 2024. [Google Scholar] [CrossRef]
- Nadeem, M.; Liu, Z.; Pitafi, A.H.; Younis, A.; Xu, Y. Investigating the Adoption Factors of Cryptocurrencies—A Case of Bitcoin: Empirical Evidence From China. SAGE Open 2021, 11, 2158244021998704. [Google Scholar] [CrossRef]
- El Hajj, M.; Farran, I. The cryptocurrencies in emerging markets: Enhancing financial inclusion and economic empowerment. J. Risk Financ. Manag. 2024, 17, 467. [Google Scholar] [CrossRef]
- Khando, K.; Islam, M.S.; Gao, S. The Emerging Technologies of Digital Payments and Associated Challenges: A Systematic Literature Review. Future Internet 2023, 15, 21. [Google Scholar] [CrossRef]
- Alafeef, M.; Al-Smadi, R.; Al-Smadi, A. The role of stable coins in mitigating volatility in cryptocurrency markets. Int. J. Appl. Econ. Financ. Account. 2024, 19, 176–185. [Google Scholar] [CrossRef]
- ElBahrawy, A.; Alessandretti, L.; Kandler, A.; Pastor-Satorras, R.; Baronchelli, A. Evolutionary dynamics of the cryptocurrency market. R. Soc. Open Sci. 2017, 4, 170623. [Google Scholar] [CrossRef]
- Urquhart, A.; Yarovaya, L. Cryptocurrency research: Future directions. Eur. J. Finance 2024, 30, 1849–1854. [Google Scholar] [CrossRef]
- Corbet, S.; Lucey, B.; Urquhart, A.; Yarovaya, L. Cryptocurrencies as a financial asset: A systematic analysis. Int. Rev. Financ. Anal. 2019, 62, 182–199. [Google Scholar] [CrossRef]
- Wu, R.; Ishfaq, K.; Hussain, S.; Asmi, F.; Siddiquei, A.; Anwar, M. Investigating e-Retailers’ Intentions to Adopt Cryptocurrency Considering the Mediation of Technostress and Technology Involvement. Sustainability 2022, 14, 641. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor Sentiment and the Cross-Section of Stock Returns. J. Finance 2006, 61, 1645–1680. [Google Scholar] [CrossRef]
- Firth, M.; Wang, K.; Wong, S. Corporate Transparency and the Impact of Investor Sentiment on Stock Prices. Manag. Sci. 2015, 61, 1630–1647. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Hong, H.; Liskovich, I. Regression Discontinuity and the Price Effects of Stock Market Indexing. Rev. Financ. Stud. 2014, 28, 212–246. [Google Scholar] [CrossRef]
- Brown, S.J.; Warner, J.B. Using daily stock returns: The case of event studies. J. Financ. Econ. 1985, 14, 3–31. [Google Scholar] [CrossRef]
- Calonico, S.; Cattaneo, M.D.; Farrell, M.H.; Titiunik, R. Rdrobust: Software for Regression-discontinuity Designs. Stata J. 2017, 17, 372–404. [Google Scholar] [CrossRef]
- Maurya, P.K.; Bansal, R.; Mishra, A.K. Russia–Ukraine conflict and its impact on global inflation: An event study-based approach. J. Econ. Stud. 2023, 50, 1824–1846. [Google Scholar] [CrossRef]
- Franco, S.F.; Graña, J.; Rikap, C. Dependency in the Digital Age? The Experience of Mercado Libre in Latin America. Dev. Change 2024, 55, 429–464. [Google Scholar] [CrossRef]
- Hausman, C.; Rapson, D. Regression Discontinuity in Time: Considerations for Empirical Applications. Annu. Rev. Resour. Econ. 2017, 10, 533–552. [Google Scholar] [CrossRef]
- Aggarwal, R.; Chen, S. The speed of adjustment of stock prices to new information. Financ. Rev. 1985, 20, 2. [Google Scholar] [CrossRef]
- Ah Mand, A. Cryptocurrency returns and cryptocurrency uncertainty: A time–frequency analysis. Financ. Innov. 2025, 11, 52. [Google Scholar] [CrossRef]
- Gao, C.; Gu, B.; Leung, A.; Liu, X.; Ye, Q. EXPRESS: The Risk of Cryptocurrency Payment Adoption and the Role of Social Media: Evidence from Online Travel Agencies. Prod. Oper. Manag. 2024, 33, 10591478241231860. [Google Scholar] [CrossRef]
- Fang, L.; Peress, J. Media Coverage and the Cross-section of Stock Returns. J. Finance 2009, 64, 2023–2052. [Google Scholar] [CrossRef]
- Black, E.L.; Jie, G.; Nan, H.; and Vagenas-Nanos, E. Uncertainty triggers overreaction: Evidence from corporate takeovers. Eur. J. Finance 2017, 23, 1362–1389. [Google Scholar] [CrossRef]
- Mangee, N. Stock price swings and fundamentals: The role of Knightian uncertainty. Int. Rev. Financ. Anal. 2024, 91, 102987. [Google Scholar] [CrossRef]
- Baldenius, T.; Meng, X. Signaling firm value to active investors. Rev. Account. Stud. 2010, 15, 584–619. [Google Scholar] [CrossRef]
- Hennessy, C.A.; Livdan, D.; Miranda, B. Repeated Signaling and Firm Dynamics. Rev. Financ. Stud. 2010, 23, 1981–2023. [Google Scholar] [CrossRef]
Pre_Event | Post_Event | Difference | |
---|---|---|---|
Mean | 1735.64 | 2046.39 | 310.75 |
Std. Deviation | 128.32 | 50.50 | −77.82 |
Observations | 41 | 42 | . |
Order | Coefficient | Std. Error | p-Value | Bandwidth | Eff. N (L,R) |
---|---|---|---|---|---|
p(1) | −0.02271 | 0.00875 | 0.009 | 6.866 | (6,7) |
p(2) | −0.02293 | 0.01081 | 0.034 | 10.633 | (10,11) |
p(3) | −0.00575 | 0.01290 | 0.656 | 11.431 | (11,12) |
p(4) | −0.01176 | 0.01607 | 0.464 | 16.642 | (16,17) |
(1) Conventional Estimate | (2) Robust Estimate | |
---|---|---|
Treatment Effect | −0.0227 *** | −0.0227 * |
−0.0088 | (—) | |
z-Statistic | −2.596 | −1.945 |
p-Value | 0.009 | 0.052 |
95% Confidence Interval | [−0.0399, −0.0056] | [−0.0463, 0.0002] |
Observations | 83 | 83 |
Effective Observations (L/R) | 5/6 | 5/6 |
Bandwidth (h) | 6.869 | 6.869 |
Kernel | Triangular | Triangular |
VCE Method | Nearest Neighbor (NN) | Nearest Neighbor (NN) |
Cutoff | Coef_Robust | Pval_Robust |
---|---|---|
−15 | 0.019 | 0.562 |
−10 | −0.021 | 0.734 |
−5 | −0.000 | 0.988 |
5 | −0.005 | 0.813 |
10 | 0.003 | 0.877 |
15 | 0.038 | 0.076 |
Pre_Event | Post_Event | Difference | |
---|---|---|---|
Mean | 36.134 | 32.965 | −3.168 |
Std. Deviation | 0.894 | 1.420 | 0.525 |
Observations | 43 | 41 | . |
Order | Coefficient | Std. Error | p-Value | Bandwidth | Eff. N (L,R) |
---|---|---|---|---|---|
p(1) | 0.52453 | 0.15283 | 0.001 | 7.997 | (5,6) |
p(2) | 0.33660 | 0.20142 | 0.095 | 14.117 | (10,11) |
p(3) | 0.24773 | 0.25761 | 0.337 | 25.451 | (19,18) |
p(4) | 0.30602 | 0.29874 | 0.306 | 22.641 | (16,16) |
(1) Conventional Estimate | (2) Robust Estimate | |
---|---|---|
Treatment Effect | 0.629 *** | 0.629 ** |
−0.239 | (—) | |
z-Statistic | 2.634 | 2.041 |
p-Value | 0.008 | 0.041 |
95% Confidence Interval | [0.161, 1.096] | [0.021, 1.028] |
Observations | 84 | 84 |
Effective Observations (L/R) | 5/6 | 5/6 |
Bandwidth (h) | 7.997 | 7.997 |
Kernel | Triangular | Triangular |
VCE Method | Nearest Neighbor (NN) | Nearest Neighbor (NN) |
Cutoff | Coef_Robust | Pval_Robust |
---|---|---|
−15 | −0.015 | 0.433 |
−10 | −0.004 | 1.000 |
−5 | −0.010 | 0.239 |
5 | 0.031 | 0.003 |
10 | 0.001 | 0.593 |
15 | 0.019 | 0.390 |
Event | Event Date | RDD Estimate | AR (Event Day) | CAR Window | CAR | Market Reaction |
---|---|---|---|---|---|---|
Introduction of Meli Dólar (MELI) | 21-Aug-24 | –2.27% (p = 0.009) | –0.79% | 13 Aug–3 Sep 2024 | –0.55% | Negative |
Withdrawal from Libra (eBay) | 11-Oct-19 | 6.29% (p = 0.008) | 0.51% | 3 Oct–24 Oct 2019 | 1.22% | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venugopal, S.K.; Talbi, M. Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 160. https://doi.org/10.3390/jtaer20030160
Venugopal SK, Talbi M. Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):160. https://doi.org/10.3390/jtaer20030160
Chicago/Turabian StyleVenugopal, Santhosh Kumar, and Marwa Talbi. 2025. "Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 160. https://doi.org/10.3390/jtaer20030160
APA StyleVenugopal, S. K., & Talbi, M. (2025). Stock Market Reactions to Adoption of Cryptocurrency as a Payment Instrument. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 160. https://doi.org/10.3390/jtaer20030160