Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = prevulcanization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4264 KB  
Article
Reduction in Sulfur Diffusion in Recycled Ground Rubber-Containing Compounds to Improve Tensile Strength
by Stefan Frosch, Volker Herrmann, Fabian Grunert and Anke Blume
Polymers 2025, 17(21), 2942; https://doi.org/10.3390/polym17212942 - 3 Nov 2025
Viewed by 285
Abstract
Recycling end-of-life rubber to compound components for new formulations is one of the most promising ways to reach the sustainability goals of the rubber industry. Today, devulcanization and pyrolysis are both methods to reuse crosslinked elastomers. A third recycling approach is to process [...] Read more.
Recycling end-of-life rubber to compound components for new formulations is one of the most promising ways to reach the sustainability goals of the rubber industry. Today, devulcanization and pyrolysis are both methods to reuse crosslinked elastomers. A third recycling approach is to process end-of-life rubber into ground rubber (GR), which is then added to green compounds. However, free sulfur diffuses during mixing, storage and vulcanization from the matrix material into the GR particles. As a result, the crosslink density in the matrix is reduced, which deteriorates the in-rubber properties of GR-containing vulcanizates compared to those that do not contain GR. Therefore, GR particles are mainly used today for rubber parts with less demanding dynamic-mechanical requirements, which limits the use of the particles. This study presents an approach for reducing the sulfur diffusion from the matrix into the GR particles by prevulcanizing the green matrix material. This leads to GR-containing vulcanizates with significantly improved mechanical properties. This new approach shows that the quality of the recycled rubber product can be significantly increased by blocking the sulfur diffusion. Even though such prevulcanization is currently only feasible under laboratory conditions, it might also pave the way for finding solutions in a production scale for an effective incorporation of GR into new rubber compounds. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

25 pages, 7735 KB  
Article
Extraction and Purification of the FrHb1 Fraction from Commercial Natural Latex of Hevea brasiliensis for Biomedical Applications
by Ana Karoline Almeida da Silva, Gustavo Adolfo Marcelino de Almeida Nunes, Rafael Mendes Faria, Ana Luiza Coutinho Favilla, Jéssica Dornelas, Marcos Augusto Mountinho Fonseca, Angie Daniela Ibarra Benavides, Lindemberg Barreto Mota da Costa, Mário Fabrício Fleury Rosa, Adson Ferreira da Rocha and Suelia de Siqueira Rodrigues Fleury Rosa
Biomimetics 2025, 10(2), 85; https://doi.org/10.3390/biomimetics10020085 - 30 Jan 2025
Viewed by 2065
Abstract
Biomaterials interact with biological systems, influencing their responses. Different types of polymers—both natural and synthetic—are widely used in biomedical engineering, among a plethora of healthcare applications, to promote tissue regeneration. The natural rubber latex extracted from Hevea brasiliensis is a biopolymer that whose [...] Read more.
Biomaterials interact with biological systems, influencing their responses. Different types of polymers—both natural and synthetic—are widely used in biomedical engineering, among a plethora of healthcare applications, to promote tissue regeneration. The natural rubber latex extracted from Hevea brasiliensis is a biopolymer that whose biocompatibility makes it a valuable study object. Its great regenerative properties are largely associated with the fraction FrHB1, which has demonstrated angiogenic and wound-healing potential by inducing blood vessel formation, collagen synthesis, and fibroblast migration—crucial factors for tissue repair. This study aimed to develop scalable methods for extracting and purifying the F1 protein fraction from industrialized natural latex for biomedical applications. We tested two types of industrial latex, bi-centrifuged and pre-vulcanized latex as well as 60% centrifuged natural latex to determine the most effective composition used in subsequent extractions and fractionation steps. Then, we isolated FrHB1 from the pre-vulcanized latex using selective precipitation, ultrafiltration, and affinity chromatography. The yield of the first batch of this serum was 40.62% with protein concentration of 1.52 ± 0.06 mg/mL. The second batch had a yield of 49.74%; however, due to results lying outside the analytical curve, its protein concentration could not be calculated. The yield of the third batch was 57.19%, and its protein concentration was 1.8477 ± 0.033 mg/mL. This approach facilitates large-scale therapeutic applications utilizing a commercially viable and accessible resource. Moreover, these findings highlight industrialized natural latex as a sustainable source of bioactive molecules, contributing to advancements in regenerative medicine and tissue engineering. Full article
Show Figures

Graphical abstract

12 pages, 3243 KB  
Article
Concentrated Pre-Vulcanized Natural Rubber Latex Without Additives for Fabricating High Mechanical Performance Rubber Specimens via Direct Ink Write 3D Printing
by Lin Liu, Jizhen Zhang, Zirong Luo, Na Kong, Xu Zhao, Xu Ji, Jihua Li, Shenbo Huang, Pengfei Zhao, Shuang Li, Yanqiu Shao and Jinlong Tao
Polymers 2025, 17(3), 351; https://doi.org/10.3390/polym17030351 - 28 Jan 2025
Cited by 4 | Viewed by 2430
Abstract
Direct ink writing (DIW) is an economical, straightforward, and relatively energy-efficient 3D printing technique that has been used in various domains. However, the utilization of rubber latex for DIW remains limited due to its high fluidity and inadequate support, which makes it challenging [...] Read more.
Direct ink writing (DIW) is an economical, straightforward, and relatively energy-efficient 3D printing technique that has been used in various domains. However, the utilization of rubber latex for DIW remains limited due to its high fluidity and inadequate support, which makes it challenging to meet the required ink rheological characteristics for DIW. In this study, a concentrated pre-vulcanized natural rubber latex (CPNRL) ink with a high solid content of 73% without additives is developed for DIW 3D printing. The CPNRL ink is concentrated using superabsorbent polymer (SAP) beads, which demonstrates good colloidal stability, favorable rheological properties, and superior printability. The impact of printing angles on the mechanical properties of the rubber specimens based on the CPNRL-73 ink is explored in detail, wherein the tensile strength of the specimen printed at a 90° angle reaches an impressive 26 MPa and a strain of approximately 800%, which surpasses the majority of 3D-printed rubber latex specimens. Additionally, the CPNRL ink can be used to print a wide range of intricate shapes, demonstrating its advantages in excellent formability. The preparation of 3D printable ink using the absorption method will expand the application of elastomers in fields such as customized flexible sensing and personalized rubber products. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

20 pages, 6425 KB  
Article
Optimization Study of a High-Efficiency Preservative for Ammonia-Free Concentrated Natural Rubber Latex
by Liguang Zhao, Peng Xing, Liyang Zhao, Qigui Yang, Yazhong Song, Li Ding, Tao Zhao, Yuekun Wang, Zhenxiang Xin and Hongxing Gui
Polymers 2025, 17(2), 188; https://doi.org/10.3390/polym17020188 - 14 Jan 2025
Cited by 2 | Viewed by 2768
Abstract
Ammonia is commonly used as a preservative in the production of concentrated natural rubber latex (CNRL) and latex products; however, it poses a serious risk to human health and the environment. In this study, we investigated a thioacetamide derivative (TD) as a preservative [...] Read more.
Ammonia is commonly used as a preservative in the production of concentrated natural rubber latex (CNRL) and latex products; however, it poses a serious risk to human health and the environment. In this study, we investigated a thioacetamide derivative (TD) as a preservative of ammonia-free CNRL and the optimization of a stabilization system comprising potassium hydroxide (KOH), lauric acid (LA), and sodium dodecyl sulfate (SDS) to enhance its preservation effect. The results revealed that an optimal amount of TD (0.03%) can effectively maintain the stability of CNRL, inhibit the increase in volatile fatty acid number (VFA number), maintain stable viscosity values, and improve the mechanical stability time (MST). However, increasing the TD dosage results in an increase in both the viscosity and VFA number and a decrease in MST. KOH was used to regulate the pH value of CNRL. It was also found that it can enhance considerably the mechanical properties of CNRL dry films and accelerates the vulcanization of vulcanized film; however, an excessive amount causes latex thickening. LA proved essential for improving the MST and reducing latex viscosity, thereby substantially enhancing the stability and processability of pre-vulcanized latex, but an excessive amount is detrimental to the curing speed and final mechanical strength. SDS can rapidly improve the MST and reduce the viscosity, but it negatively affects the surface molding of dry rubber films. In conclusion, KOH, LA, and SDS at appropriate dosages play a balancing and complementary role in the preparation of ammonia-free CNRL. Upon analyzing diverse performance metrics of CNRL, it has been determined that the optimal TD dosage ranges from 0.02 to 0.03% for maximum efficacy. The KOH dosage should be maintained within 0.1–0.15% to achieve the most favorable outcome, while the LA dosage is advisable to be kept between 0.06 and 0.1%. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites)
Show Figures

Figure 1

15 pages, 23340 KB  
Article
Influence of the Mass Percentage of Bottom Ash and Its State of Maturation on the Mechanical Performance of a Bio-Composite
by Asmahan Taleb-Ahmed, Nicolas Montrelay, Koffi Justin Houessou, Michèle Quéneudec-t’Kint, Nassim Sebaibi and Rose-Marie Dheilly
Buildings 2024, 14(8), 2586; https://doi.org/10.3390/buildings14082586 - 22 Aug 2024
Viewed by 1114
Abstract
This study examines the influence of the mass percentage and maturation stage of bottom ash on bio-composite mechanical strength. Two kinds of bottom ash were used: matured and non-matured. To elaborate the composites, several different percentages of bottom ash were mixed with an [...] Read more.
This study examines the influence of the mass percentage and maturation stage of bottom ash on bio-composite mechanical strength. Two kinds of bottom ash were used: matured and non-matured. To elaborate the composites, several different percentages of bottom ash were mixed with an organic matrix. Casein, starch, alginate, polyethylene glycol, pre-vulcanized natural latex, and water are the components of matrix. The idea was to use as much bottom ash as possible, since it can be used as 80% or more as the main charge, which was in prismatic form for mechanical testing after drying. The results show that whatever the state of maturation of the bottom ash, the resistances present a maximum for a percentage of bottom ash equal to 85%. It could also be noticed that non-matured bottom ash composites have better mechanical strengths than composites with matured bottom ash. This is due to the decrease in porosity of the composites and to the improvement in their structural integrity. These new composites could solve some of the solid waste problems created by bottom ash production. As the matrix is made from organic resources, it saves energy and reduces the carbon footprint. This bio-composite contributes to the circular economy by giving waste a second life. Full article
Show Figures

Figure 1

15 pages, 5069 KB  
Article
A Study on the Preparation of a Vulcanizing Mixture and Its Application in Natural Rubber Latex
by Haobin Fang, Yingping He, Yulan Li and Jie Du
Polymers 2024, 16(9), 1256; https://doi.org/10.3390/polym16091256 - 30 Apr 2024
Cited by 7 | Viewed by 5282
Abstract
The traditional preparation process of natural rubber latex requires tedious treatment of a variety of rubber additives. In this paper, a new process of wet mixed grinding was used to prepare a reinforced vulcanization mixture and a rapid vulcanization effect. The effect of [...] Read more.
The traditional preparation process of natural rubber latex requires tedious treatment of a variety of rubber additives. In this paper, a new process of wet mixed grinding was used to prepare a reinforced vulcanization mixture and a rapid vulcanization effect. The effect of different amounts of vulcanization mixtures on the mechanical properties of natural latex film was studied, and the pre-vulcanization process of latex and the vulcanization process of film were optimized. The results showed that with the increase in the amount of vulcanization mixture, the tensile strength increased from 5.96 MPa to 29.28 MPa, and the tear strength increased from 7.59 kN/m to 52.81 kN/m. When the vulcanization temperature of the latex film is heated from 80 °C to 100 °C, the vulcanization time is shortened by 5~6 times. The new vulcanization mixture prepared in this work has the characteristics of simple production and fast vulcanization speed, which provides a new solution for the development of the latex product industry. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 7243 KB  
Article
Synthesis and Characterization of a Novel Nanosized Polyaniline
by Mohd Faizar Banjar, Fatin Najwa Joynal Abedin, Ahmad Noor Syimir Fizal, Norazilawati Muhamad Sarih, Md. Sohrab Hossain, Hakimah Osman, Nor Afifah Khalil, Ahmad Naim Ahmad Yahaya and Muzafar Zulkifli
Polymers 2023, 15(23), 4565; https://doi.org/10.3390/polym15234565 - 29 Nov 2023
Cited by 20 | Viewed by 5554
Abstract
Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI–prevulcanized latex composite film was synthesized and fabricated in two phases [...] Read more.
Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI–prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet–visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles. Full article
Show Figures

Figure 1

18 pages, 4028 KB  
Article
Quantification and Chemical Characterization of Plastic Additives and Small Microplastics (<100 μm) in Highway Road Dust
by Beatrice Rosso, Barbara Bravo, Elena Gregoris, Carlo Barbante, Andrea Gambaro and Fabiana Corami
Toxics 2023, 11(11), 936; https://doi.org/10.3390/toxics11110936 - 17 Nov 2023
Cited by 7 | Viewed by 3683
Abstract
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a [...] Read more.
Road dust is one of the environment’s most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs’ average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health. Full article
Show Figures

Figure 1

17 pages, 4191 KB  
Article
Effect of Latex Purification and Accelerator Types on Rubber Allergens Prevalent in Sulphur Prevulcanized Natural Rubber Latex: Potential Application for Allergy-Free Natural Rubber Gloves
by Porntip Rojruthai, Jitladda Sakdapipanich, Jinjutha Wiriyanantawong, Chee-Cheong Ho and Naesinee Chaiear
Polymers 2022, 14(21), 4679; https://doi.org/10.3390/polym14214679 - 2 Nov 2022
Cited by 14 | Viewed by 7178
Abstract
Natural rubber (NR) gloves manufactured from NR latex are widely utilized in various applications as a personal protective device due to their exceptional barrier characteristics in infection control. However, the use of NR gloves was associated with concerns on NR protein allergy. With [...] Read more.
Natural rubber (NR) gloves manufactured from NR latex are widely utilized in various applications as a personal protective device due to their exceptional barrier characteristics in infection control. However, the use of NR gloves was associated with concerns on NR protein allergy. With comprehensive leaching procedures now a common practice in NR latex glove factories to eliminate latent rubber proteins and chemical allergens, occurrences and complaints of protein allergy from medical glove users have decreased drastically over the past two decades. The present work aims to eliminate further the residual rubber allergens in NR latex through effective purification of the NR latex and compounding the thus purified latex with an established formulation for allergy-free NR for glove applications. NR latex was purified by deproteinization and saponification, respectively. Several analytical techniques were used to verify rubber allergens eliminated in the purified latexes. Saponified NR (SPNR) latex was the purified NR latex of choice since it is devoid of allergenic proteins and poses the lowest risk of Type I allergy. The purified NR latex was compounded with zinc diethyldithiocarbamate (ZDEC), zinc dibutyldithiocarbamate (ZDBC), and zinc 2-mercaptobenzothiazole (ZMBT), respectively, for glove dipping. Among the investigated accelerators, only ZDBC was not detected in the artificial sweat that came into contact with the dipped articles. Thus, it is deduced that ZDBC poses the lowest risk of Type IV allergy to consumers. Additionally, the morphological and physical properties of dipped articles were assessed. It was revealed that the dipped film from the SPNR latex compounded with ZDBC provided thinner and less yellow products with a more uniform internal structure and a tensile strength comparable to those of commercial NR gloves. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

12 pages, 3713 KB  
Article
Physical Characterization of Material for the Development of Orthopedic Orthosis for Diabetic Foot
by Karla Camila Lima de Souza, Anderson Marcio de Lima Batista, Eden Batista Duarte, Jonathan Elias Rodrigues Martins, Antônio Nadson Modesto Filho, José William Girão Dias, Diego Felix Dias, Morsyleide de Freitas Rosa, Raquel Martins de Freitas, Stela Mirla da Silva Felipe, Francisco Fleury Uchoa Santos Júnior and Vânia Marilande Ceccatto
Processes 2022, 10(5), 884; https://doi.org/10.3390/pr10050884 - 29 Apr 2022
Cited by 1 | Viewed by 2122
Abstract
The diabetic foot is characterized by the loss of foot ulcerations and sensitivity. The use of orthopedic orthosis can prevent pathological changes in the diabetic foot. The objective of this study was to characterize materials used for producing orthopedic orthosis: silicone; pre-vulcanized latex [...] Read more.
The diabetic foot is characterized by the loss of foot ulcerations and sensitivity. The use of orthopedic orthosis can prevent pathological changes in the diabetic foot. The objective of this study was to characterize materials used for producing orthopedic orthosis: silicone; pre-vulcanized latex of Hevea brasiliensis; Evapod, and Podadur. The Hevea brasiliensis latex material is widely indicated in the literature for biomedical purposes. Physical–mechanical properties were determined (properties of elastic deformation, resistance, durability, lightness, energy absorption, resistance to high temperatures, and chemical composition—ASTM International). In the tensile test, the latex reached 6.02 ± 0.33 MPa, having the best performance among the other materials. In the elastic module, the Podadur stood out, with 28.2 ± 0.89 MPa, compared to silicone with 0.42 ± 0.05 MPa. The most excellent Shore A hardness material was Podadur with 58%. As for the resilience, the Podadur presented a minimum value of 22%, while latex had 63%. Silicone was the densest material, with a density of 1.48 g/cm3, and Evapod and Podadur were the lightest, respectively, at 0.22 g/cm3 and 0.42 g/cm3. Morphologically, Evapod, Podadur, and latex presented open and interconnected cells, characteristics that gave them a more significant water absorption capacity. Silicone was the only material with no empty cells in its structure. In X-ray diffraction, Evapod, Podadur, and silicone materials presented well-defined crystallographic planes, whereas amorphous behavior characterized latex. Thermogravimetry showed weight loss between 240 and 650 °C in the four materials. In the fluorescence test, the presence of metals was observed in the composition of the four materials. Among the materials studied, the Podadur was the material that stood out, with some good properties for the development of orthopedic orthosis. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

19 pages, 7201 KB  
Article
Effect of Vulcanization and CO2 Plasticization on Cell Morphology of Silicone Rubber in Temperature Rise Foaming Process
by Tianping Zhang, Shun Yao, Lu Wang, Weijun Zhen and Ling Zhao
Polymers 2021, 13(19), 3384; https://doi.org/10.3390/polym13193384 - 1 Oct 2021
Cited by 5 | Viewed by 3848
Abstract
Both vulcanization reaction and CO2 plasticization play key roles in the temperature rise foaming process of silicone rubber. The chosen methyl-vinyl silicone rubber system with a pre-vulcanization degree of 36% had proper crosslinked networks, which not only could ensure enough polymer matrix [...] Read more.
Both vulcanization reaction and CO2 plasticization play key roles in the temperature rise foaming process of silicone rubber. The chosen methyl-vinyl silicone rubber system with a pre-vulcanization degree of 36% had proper crosslinked networks, which not only could ensure enough polymer matrix strength to avoid bubble rupture but also had enough dissolved CO2 content in silicone rubber for induced bubble nucleation. The CO2 diffusion and further vulcanization reaction occur simultaneously in the CO2 plasticized polymer during bubble nucleation and growth. The dissolved CO2 in the pre-vulcanized silicone rubber caused a temperature delay to start while accelerating further vulcanization reactions, but the lower viscoelasticity caused by either CO2 plasticization or fewer crosslinking networks was still the dominating factor for larger cell formation. There was a sudden increase in elastic modulus and complex viscosity for pre-vulcanized silicone rubbers at higher temperature because of the occurrence of further vulcanization, but CO2 plasticization reduced the scope of change of rheological properties, and the loss factor was close to 1 around 170 °C, which is corresponding to the optimum foaming temperature. The foamed silicone rubber had a higher cell density and smaller cell size at a higher temperature rising rate, which is due to higher CO2 supersaturation and faster vulcanization reaction. These results provide some insight into the coupling mode and effect of CO2 plasticization and vulcanization for regulating cell structure in foaming silicone rubber process. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 2571 KB  
Article
Effect of the Elastomer Matrix on Thermoplastic Elastomer-Based Strain Sensor Fiber Composites
by Antonia Georgopoulou, Claudia Kummerlöwe and Frank Clemens
Sensors 2020, 20(8), 2399; https://doi.org/10.3390/s20082399 - 23 Apr 2020
Cited by 26 | Viewed by 4681
Abstract
In this study, a thermoplastic elastomer sensor fiber was embedded in an elastomer matrix. The effect of the matrix material on the sensor properties and the piezoresistive behavior of the single fiber-matrix composite system was investigated. For all composites, cycling test (dynamic test) [...] Read more.
In this study, a thermoplastic elastomer sensor fiber was embedded in an elastomer matrix. The effect of the matrix material on the sensor properties and the piezoresistive behavior of the single fiber-matrix composite system was investigated. For all composites, cycling test (dynamic test) and the relaxation behavior at different strains (quasi-static test) were investigated. In all cases, dynamic properties and quasi-static significantly changed after embedding, compared to the pure fiber. The composite with the silicone elastomer PDMS (Polydimethylsiloxane) as matrix material exhibited deviation from linear response of the resistivity at low strains and proved an unsuitable choice compared to natural rubber. The addition of a spring construct in the embedded sensor fiber natural rubber composite improved the linearity at low strains but increased the mechanical and electrical hysteresis of the soft matter sensor composite. Using pre-vulcanized natural rubber improved linearity at low strains and reduced significantly the stress and relative resistance relaxation as well as the resistance hysteresis, especially if the resistance remained low. In both cases of the pre-vulcanized rubber and the spring structure, the piezoresistive behavior was improved, and at the same time, the stiffness of the system was increased indicating that using a stiffer matrix can be a strategy for improving the sensor properties. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

9 pages, 1813 KB  
Article
Removal of Surfactant from Nanocomposites Films Based on Thermally Reduced Graphene Oxide and Natural Rubber
by Hector Aguilar-Bolados, Ahirton Contreras-Cid, Andronico Neira-Carrillo, Miguel Lopez-Manchado and Mehrdad Yazdani-Pedram
J. Compos. Sci. 2019, 3(2), 31; https://doi.org/10.3390/jcs3020031 - 28 Mar 2019
Cited by 13 | Viewed by 3662
Abstract
Electrically conducting elastomer composites based on natural rubber and reduced graphene oxide (rGO) is reported. These composites were prepared by a latex method and an easy washing process. The latex method consists of the mixing of an aqueous suspension of rGO, stabilized by [...] Read more.
Electrically conducting elastomer composites based on natural rubber and reduced graphene oxide (rGO) is reported. These composites were prepared by a latex method and an easy washing process. The latex method consists of the mixing of an aqueous suspension of rGO, stabilized by sodium dodecyl sulfate and pre-vulcanized natural rubber, followed by solvent casting. The percolation threshold of composites was estimated at 1.54 wt.% of rGO. The washing process allowed elimination of the surfactant completely from nanocomposites. The absence of surfactant in nanocomposites was demonstrated by Raman spectroscopy and dynamo-mechanical analysis. The surfactant-free nanocomposites showed improved mechanical and electrical properties. Full article
(This article belongs to the Special Issue Sustainable Rubber Composites)
Show Figures

Figure 1

Back to TopTop