Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = pressure-vacuum treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 874 KiB  
Article
Open-Label Uncontrolled, Monocentric Study to Evaluate the Efficacy and Safety of the Electromagnetic Field and Negative Pressure in the Treatment of Cellulite
by Antonio Scarano, Antonio Calopresti, Salvatore Marafioti, Gianluca Nicolai and Erda Qorri
Life 2025, 15(7), 1148; https://doi.org/10.3390/life15071148 - 21 Jul 2025
Viewed by 453
Abstract
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in [...] Read more.
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in the skin that affects the epidermis, dermis, hypodermis and subcutaneous fat in different ways. The aim of the present prospective study research was to evaluate the efficacy of electromagnetic field and negative pressure in the treatment of cellulite. Methods: A total of 35 women with an average age of 40, ranging from 18 to 50 (mean 32.2 ± 7.48), with a body mass index between 18.5 and 26.9 (mean 22 ± 3.01), were enrolled in this study. The degree of cellulite of the patients was assessed clinically using the Cellulite Severity Scale (CSS) and Nürnberger–Müller classification. All patients received one session per week for a total 12 treatment sessions with Bi-one® LifeTouchTherapy medical device (Expo Italia Srl—Florence—Italy), which generates a combination of vacuum and electromagnetic fields (V-EMF). Total treatment time was approximately 20–30 min per patient. The GAIS score, Cellulite Severity Scale (CSS) and Nürnberger–Müller classification for cellulite was evaluated 1 month after the 12 treatments with LifeTouchTherapy. Results: A statistical difference was recorded in cellulite improvement by visual analog scale (VAS) and global aesthetic improvement scale (GAIS). Conclusions: The results of the present prospective clinical study show the efficacy and safety of Bi-one® LifeTouchTherapy in the treatment of cellulite. Electromagnetic fields combined with negative pressure therapy promote tissue regeneration and reduce fibrosis, which results in visible cosmetic improvements of cellulite. Full article
(This article belongs to the Collection Clinical Trials)
Show Figures

Figure 1

15 pages, 1745 KiB  
Article
A Study on the Performance of Vacuum Membrane Distillation in Treating Acidic, Simulated, Low-Level Radioactive Liquid Waste
by Sifan Chen, Yan Xu, Yuyong Wu, Yizhou Lu, Zhan Weng, Yaoguang Tao, Jianghai Liu and Baihua Jiang
Membranes 2025, 15(7), 213; https://doi.org/10.3390/membranes15070213 - 18 Jul 2025
Viewed by 404
Abstract
This study systematically explored the performance of a vacuum membrane distillation (VMD) system equipped with polytetrafluoroethylene (PTFE) hollow fiber membranes for treating simulated, acidic, low-level radioactive liquid waste. By focusing on key operational parameters, including feed temperature, vacuum pressure, and flow velocity, an [...] Read more.
This study systematically explored the performance of a vacuum membrane distillation (VMD) system equipped with polytetrafluoroethylene (PTFE) hollow fiber membranes for treating simulated, acidic, low-level radioactive liquid waste. By focusing on key operational parameters, including feed temperature, vacuum pressure, and flow velocity, an orthogonal experiment was designed to obtain the optimal parameters. Considering the potential application scenarios, the following two factors were also studied: the initial nuclide concentrations (0.5, 5, and 50 mg·L−1) and tributyl phosphate (TBP) concentrations (0, 20, and 100 mg·L−1) in the feed solution. The results indicated that the optimal operational parameters for VMD were as follows: a feed temperature of 70 °C, a vacuum pressure of 90 kPa, and a flow rate of 500 L·h−1. Under these parameters, the VMD system demonstrated a maximum permeate flux of 0.9 L·m−2·h−1, achieving a nuclide rejection rate exceeding 99.9%, as well as a nitric acid rejection rate of 99.4%. A significant negative correlation was observed between permeate flux and nuclide concentrations at levels above 50 mg·L−1. The presence of TBP in the feed solution produced membrane fouling, leading to flux decline and a reduced separation efficiency, with severity increasing with TBP concentration. The VMD process simultaneously achieved nuclide rejection and nitric acid concentration in acidic radioactive wastewater, demonstrating strong potential for nuclear wastewater treatment. Full article
Show Figures

Figure 1

10 pages, 2486 KiB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 360
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 240
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

21 pages, 1030 KiB  
Review
Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow
by Marco Dalla Rosa, Santina Romani, Pietro Rocculi, Urszula Tylewicz and Silvia Tappi
Foods 2025, 14(13), 2332; https://doi.org/10.3390/foods14132332 - 30 Jun 2025
Viewed by 284
Abstract
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by [...] Read more.
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by using neglected foodstuff, crops or by-products, and applying mild processing technologies. The proper management of mild/non-thermal processing technologies, such as dynamic and hydrostatic high-pressure, vacuum impregnation, ultrasound, pulsed electric field and cold plasma applications, can result in a less negative effect with respect to the traditional thermal treatments, and, in some cases, the overall functionality can be improved. In many cases, these treatments can induce structural changes that improve the bioaccessibility and/or the bioavailability of bioactive compounds such as probiotic microorganisms. Moreover, non-thermal pretreatments, also combined with mild thermal drying technology, could lead to a significant reduction in the total request of energy, even when considering the energy input for their application. A selected review of results published in the last few years on those strategies is presented, considering studies carried out within the frame of different national and EU projects. Full article
(This article belongs to the Special Issue Optimization of Non-thermal Technology in Food Processing)
Show Figures

Figure 1

13 pages, 7635 KiB  
Article
Vacuum-Assembled ZIF-67/SiO2–PEI Thin-Film Nanocomposite Membrane with Ultrahigh Permeance for Textile Wastewater Treatment
by Li Xiao, Jinyu Liu, Fan Zhang, Feng Qin, Yikai Wang, Zikang Qin, Yahui Yang, Zhongde Dai, Junfeng Zheng and Bo Tang
Polymers 2025, 17(13), 1741; https://doi.org/10.3390/polym17131741 - 22 Jun 2025
Viewed by 550
Abstract
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In [...] Read more.
High permeance combined with high salt/dye separation efficiency is a prerequisite for achieving zero-liquid-discharge treatment of saline textile wastewater by membrane technology. Thin-film nanocomposite (TFN) membranes incorporating porous nanoparticles offer a promising route to overcome the permeability–selectivity trade-off of conventional polymer membranes. In this study, a vacuum-assisted method was used to co-blend ZIF-67 and SiO2 nanoparticles, while branched polyethyleneimine (PEI) served as a cross-linking bridge, resulting in a high-performance TFN membrane for salt/dye separation. Acting as a molecular connector, PEI coordinated with ZIF-67 through metal–amine complexation and simultaneously formed hydrogen bonds with surface hydroxyl groups on SiO2, thereby linking ZIF-67 and SiO2. The resulting membrane exhibited good hydrophilicity and excellent dye separation performance (water flux = 359.8 L m−2 h−1 bar−1; Congo Red rejection = 99.2%) as well as outstanding selectivity in dye/salt mixtures (Congo Red/MgCl2 selectivity of 1094). The optimal ZIF@SiO2-PEI membrane maintained stable dye rejection over a wide range of trans-membrane pressures, initial concentrations, and pH values. These results reveal the huge potential of applying the ZIF@SiO2-PEI TFN membranes for resource recovery in sustainable textile wastewater systems. Full article
Show Figures

Graphical abstract

11 pages, 28340 KiB  
Article
Self-Adapting Foot Orthosis Inlay Facilitates Handling and Reduces Plantar Pressure Compared to Vacuum-Based Technology
by Alexander Milstrey, Carolin Horst, Stella Gartung, Ann-Sophie Weigel, Richard Stange and Sabine Ochman
J. Clin. Med. 2025, 14(10), 3384; https://doi.org/10.3390/jcm14103384 - 13 May 2025
Viewed by 412
Abstract
Background/Objectives: Orthoses are commonly used in the treatment of various foot and ankle injuries and deformities. An effective technology in foot orthoses is a vacuum system to improve the fit and function of the orthosis. Recently, a new technology was designed to [...] Read more.
Background/Objectives: Orthoses are commonly used in the treatment of various foot and ankle injuries and deformities. An effective technology in foot orthoses is a vacuum system to improve the fit and function of the orthosis. Recently, a new technology was designed to facilitate the wearing of the foot orthoses while maintaining function without the need for vacuum suction. Methods: A plantar dynamic pressure distribution measurement was carried out in 25 healthy subjects (13 w/12 m, age 23–58 y) using capacitive measuring insoles in two differently designed inlays within the VACOpedes® orthosis (Group A: vacuum inlay vs. Group B: XELGO® inlay) and a regular off-the-shelf shoe (Group C, OTS). The peak plantar pressure, mean plantar pressure and maximum force were analyzed in the entire foot and in individual regions of the medial and lateral forefoot, the midfoot and the hindfoot. Finally, the wearing comfort was compared using a visual analog scale from 1 to 10 (highest comfort). Results: The peak pressure of both inlays was significantly lower than in the OTS shoe (A: 230.6 ± 44.6 kPa, B: 218.0 ± 49.7 kPa, C: 278.6 ± 50.5 kPa; p < 0.001). In a sub-analysis of the different regions, the XELGO® inlay significantly reduced plantar pressure in the medial forefoot compared to the vacuum orthosis (A: 181.7 ± 45.7 kPa, B: 158.6 ± 51.7 kPa, p < 0.002). The wearing comfort was significantly higher with the XELGO® inlay compared to the vacuum inlay (A: 5.68/10, B: 7.24/10; p < 0.001). Conclusions: The VACOpedes® orthosis with a new XELGO® inlay showed at least equivalent relief in all pressure distribution measurements analyzed and greater relief in the forefoot area than the VACOpedes® orthosis with a vacuum inlay, as well as increased wearing comfort. Full article
Show Figures

Figure 1

16 pages, 12510 KiB  
Article
Experimental Investigation on the Improvement of Dredged Sludge Using Air–Booster Vacuum Preloading with Polyacrylamide Addition
by Heng Zhang, Lingfeng Guo and Chongzhi Tu
Materials 2025, 18(9), 2065; https://doi.org/10.3390/ma18092065 - 30 Apr 2025
Cited by 1 | Viewed by 355
Abstract
Reducing the water content in soft soil is crucial for improving its load-bearing capacity. However, traditional vacuum preloading demonstrates limited effectiveness for dredged sludge due to its high water content and low permeability, resulting in inadequate consolidation and long treatment durations. To address [...] Read more.
Reducing the water content in soft soil is crucial for improving its load-bearing capacity. However, traditional vacuum preloading demonstrates limited effectiveness for dredged sludge due to its high water content and low permeability, resulting in inadequate consolidation and long treatment durations. To address these limitations, this study proposes a new improvement approach that combines pressurized air injection with a polyacrylamide (PAM) addition to enhance vacuum consolidation. Experimental results demonstrated that cationic polyacrylamide (CPAM) exhibited superior performance in improving water discharge efficiency, which promoted the aggregation of fine soil particles and reduced the clogging of drainage channels through adsorption bridging. The incorporation of pressurized air injection further enhanced consolidation efficiency by increasing hydraulic gradients and inducing micro-fractures in soil, thereby improving soil permeability and vacuum pressure transmission. However, excessive CPAM addition or high-pressure air injection was found to compromise the effectiveness of the vacuum preloading treatment due to drainage channel clogging and extensive soil fracturing. The appropriate consolidation performance was achieved with a 0.075% CPAM addition and 20 kPa air pressure injection, demonstrating a 24.5% increase in water discharge mass and a 30.9% improvement in soil shear strength compared to traditional methods. Microstructural analysis revealed a more compacted soil matrix with reduced porosity and enhanced interparticle interactions. These findings provide valuable insights for improving the treatment efficiency of dredged sludge in coastal regions, particularly in the Nansha District of Guangzhou. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

14 pages, 1776 KiB  
Article
Chestnut Tannin/Furfuryl Alcohol Copolymers for Beech Wood Chemical Modification
by João Vitor Dorini Falavinha, Philippe Gérardin, Pedro Henrique Gonzales De Cademartori and Christine Gérardin-Charbonnier
Polymers 2025, 17(9), 1159; https://doi.org/10.3390/polym17091159 - 24 Apr 2025
Viewed by 606
Abstract
Tannins, present in all plants, are the most abundant polyphenols in the world. Their potential as a raw material for modifying wood alongside furfuryl alcohol (FA) has already been demonstrated in previous studies. This study focused on using large quantities of hydrolysable tannins [...] Read more.
Tannins, present in all plants, are the most abundant polyphenols in the world. Their potential as a raw material for modifying wood alongside furfuryl alcohol (FA) has already been demonstrated in previous studies. This study focused on using large quantities of hydrolysable tannins from chestnut (Castanea sativa) to replace as much FA as possible to chemically modify beech wood (Fagus sylvatica L.). Impregnation was carried out using different concentrations and ratios of both FA and tannins and tartaric acid as catalysts through a vacuum/atmospheric pressure cycle. Copolymerization was carried out for 24 h at 120 °C. Properties such as weight percent gain (WPG), leachability, anti-swelling efficiency (ASE), thermal stability, wettability and durability against brown rot (Coniophora puteana) and white rot (Coriolus versicolor) were analyzed and compared to a furfurylation treatment without the addition of tannins. These treatments were also chemically characterized using FTIR spectroscopy. The results showed that replacing 50% of FA mass by tannins largely increased WPG and demonstrated similar leachability and dimensional stability to standard furfurylation. Above all, the new treatment showed to have better resistance to wood-degrading fungi, in addition to improved wettability and thermal stability. Full article
Show Figures

Figure 1

17 pages, 5855 KiB  
Article
Research on Passivation Simulation of Plasticizer N-Butylnitroxyethylnitramine (BuNENA) in Hydroxy-Terminated Polyether (HTPE) Propellants
by Zhiming Guo, Riccardo Rossi, Rui Deng, Yuheng Wu, Hanwen Liu, Lin Hao and Xiaolong Fu
Polymers 2025, 17(9), 1147; https://doi.org/10.3390/polym17091147 - 23 Apr 2025
Viewed by 402
Abstract
N-butylnitroxyethylnitramine (BuNENA) is a high-energy plasticizer with high plasticizing ability, low sensitivity, and high energy. It has broad application prospects in HTPE propellants. Nevertheless, as an energetic plasticizer, it requires treatment to reduce its sensitivity. To this end, the passivation process for BuNENA [...] Read more.
N-butylnitroxyethylnitramine (BuNENA) is a high-energy plasticizer with high plasticizing ability, low sensitivity, and high energy. It has broad application prospects in HTPE propellants. Nevertheless, as an energetic plasticizer, it requires treatment to reduce its sensitivity. To this end, the passivation process for BuNENA was simulated using a mixing model analogous to nucleate boiling. This method involves tracking the formation and movement of bubbles using a Lagrange frame, and the bubbles themselves are modeled as rigid spheres subject to buoyancy and viscous forces. A variational multiscale (VMS)-based Euler framework was employed to simulate the fluid surrounding the bubble. The movement process of the bubbles was analyzed, and it was found that the amount of bubbles and the movement speed were higher at high temperatures and in a high vacuum, and the passivation effect on BuNENA was better. At a pressure of 40 mbar and a temperature of 50 °C, BuNENA demonstrated an 89% water removal rate. A comparison of the experimental results with the simulation results revealed slight discrepancies between them. A meticulous analysis of the passivation process for BuNENA is rendered possible by integrating experimental and simulation methodologies, a feat that has immense implications for the realm of composite solid propellant passivation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

25 pages, 17345 KiB  
Article
The Influence of Osmotic Treatment, Edible Coatings Application, and Reduced Pressure on Microwave–Vacuum-Dried Carrot Properties
by Anna Ignaczak, Łukasz Woźniak, Agata Marzec, Jolanta Kowalska, Małgorzata Chobot and Hanna Kowalska
Molecules 2025, 30(9), 1877; https://doi.org/10.3390/molecules30091877 - 23 Apr 2025
Viewed by 548
Abstract
The study investigated the effect of osmotic treatment, edible coatings, and reduced pressure on the quality of carrots dried by the microwave–vacuum method (MVD) at 3.5 or 6.5 kPa and microwave power of 250 W. Initial osmotic enrichment (OE) of carrots was carried [...] Read more.
The study investigated the effect of osmotic treatment, edible coatings, and reduced pressure on the quality of carrots dried by the microwave–vacuum method (MVD) at 3.5 or 6.5 kPa and microwave power of 250 W. Initial osmotic enrichment (OE) of carrots was carried out in chokeberry NFC juice, and osmotic dehydration (OD) in chokeberry juice concentrate. Coatings were prepared using sodium alginate or citrus pectin solutions of 1.0 or 1.5%. Osmotic treatment, and then drying pressure, had the greatest effect on increasing the dry matter (DM), total phenolic content (TPC), and color changes, but also on decreasing the water activity (AW) of dried carrot. The highest DM (average 98.7%) and the lowest AW (average 0.25) were obtained in OE carrots and dried at 3.5 kPa. Drying carrots, combined with osmotic treatment and coating, increased TPC by 13-fold, from 225 in fresh to 3229 mg GAE/100 g d.m. in dried carrots. Osmotic treatment did not affect the antioxidant activity of DPPH•, but OD significantly increased ABTS•+ compared to the raw material. Coatings had a smaller effect on color changes and antioxidant activity (DPPH• and ABTS•+) and no significant impact on DM and AW. The color changes of the control and coated samples were an increase in color lightness, redness, yellowness, and saturation (vividness), and those subjected to osmotic treatment showed a decrease in these parameters. The lower AW of dried carrots positively affected higher hardness. All samples were sensory accepted, including color, texture, and smell, especially after OD in chokeberry juice concentrate, while crunchiness was the lowest (five out of nine points). Full article
Show Figures

Figure 1

37 pages, 2845 KiB  
Review
Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions
by Seyedeh Laleh Dashtban Kenari, Saviz Mortazavi, Sanaz Mosadeghsedghi, Charbel Atallah and Konstantin Volchek
Membranes 2025, 15(4), 112; https://doi.org/10.3390/membranes15040112 - 3 Apr 2025
Cited by 3 | Viewed by 1520
Abstract
Mining discharge, namely acid mine drainage (AMD), is a significant environmental issue due to mining activities and site-specific factors. These pose challenges in choosing and executing suitable treatment procedures that are both sustainable and effective. Ceramic membranes, with their durability, long lifespan, and [...] Read more.
Mining discharge, namely acid mine drainage (AMD), is a significant environmental issue due to mining activities and site-specific factors. These pose challenges in choosing and executing suitable treatment procedures that are both sustainable and effective. Ceramic membranes, with their durability, long lifespan, and ease of maintenance, are increasingly used in industrial wastewater treatment due to their superior features. This review provides an overview of current remediation techniques for mining effluents, focusing on the use of ceramic membrane technology. It examines pressure-driven ceramic membrane systems like microfiltration, ultrafiltration, and nanofiltration, as well as the potential of vacuum membrane distillation for mine drainage treatment. Research on ceramic membranes in the mining sector is limited due to challenges such as complex effluent composition, low membrane packing density, and poor ion separation efficiency. To assess their effectiveness, this review also considers studies conducted on simulated water. Future research should focus on enhancing capital costs, developing more effective membrane configurations, modifying membrane outer layers, evaluating the long-term stability of the membrane performance, and exploring water recycling during mineral processing. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

20 pages, 12678 KiB  
Article
Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel
by Chunheng Liu, Fang Zhang, Lei Zhang, Jun Peng, Hongtao Chang and Yongbin Wang
Materials 2025, 18(7), 1564; https://doi.org/10.3390/ma18071564 - 30 Mar 2025
Viewed by 512
Abstract
Porous 316L stainless steel has a low density and high specific surface area, and is easy to process due to the large number of pores within it, making it ideal for applications such as piping in the chemical and food industries, as a [...] Read more.
Porous 316L stainless steel has a low density and high specific surface area, and is easy to process due to the large number of pores within it, making it ideal for applications such as piping in the chemical and food industries, as a medical tool, or as a fuel cell pole plate material. Nitriding treatment can further improve the hardness and strength of porous stainless steel. In this paper, a method combining vacuum sintering and nitriding treatment was proposed, i.e., 316L stainless steel powder was used as the raw material, and porous 316L was sintered in a vacuum tube furnace, in which the porous stainless steel was nitrided with nitrogen gas during the cooling process. In the research process, thermodynamic calculation and differential thermal analysis were used to determine the optimum nitriding temperature range of 700 °C~850 °C and nitriding pressure of 0.4 MPa~0.8 MPa. With the increase in nitriding temperature and pressure, the nitrogen content in the sample increased, and the nitrogen content of porous 316L stainless steel after nitriding was 0.03%~0.86%. The results show that nitrogen exists exclusively in solid solution at nitriding temperatures of 700 °C and 750 °C. At nitriding temperatures of 800 °C and 850 °C, the nitrogen existed in both solid solution and chromium nitride (CrN), and the Vickers hardness at 0.08 MPa and 850 °C was 135 HV, which was 2.82 times higher than that before nitriding. The compressive strength of the specimens was maximum at a nitriding pressure of 0.04 MPa and 850 °C. The corrosion resistance of the specimens is optimized when the nitriding pressure is 0.04 MPa and the temperature is 800 °C. Full article
Show Figures

Figure 1

16 pages, 1863 KiB  
Review
Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023)
by Cristina M. Quintella
Sustainability 2025, 17(7), 2896; https://doi.org/10.3390/su17072896 - 25 Mar 2025
Viewed by 530
Abstract
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), [...] Read more.
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), must be integrated. The BRICS association, representing half of global oil production, promotes technology transfer in this context. Worldwide patent data (2004–2023) of EOR and Env technologies at TRL 4–5 in BRICS and non-BRICS countries were compared for nine GEOR (1489 patents) and nine WT (2292 patents) methods. China is the global leader (73%, being 98% of BRICS patents), maintaining dominance even when normalized by GDP. Non-BRICS patents are from the USA (41%), Japan (31%), and the Republic of Korea (14%). BRICS countries surpassed non-BRICS in 2014, with a 5.9% growth rate, −13.2% for non-BRICS, with all methods growing, whereas in non-BRICS, only water flocculation treatment is growing. BRICS technological specialization is expanding more rapidly than that of non-BRICS countries. BRICS countries exhibit higher relative technological advantages and distance in surfactants, polymers, macromolecules, sludge treatment, and multistage water treatment devices. Non-BRICS countries are more competitive in in situ combustion, water alternating gas (WAG), re-pressurization, vacuum techniques, flotation, water–oil separation, sorption, or precipitation, flocculation, and oil-contaminated water. China is the primary BRICS leader and is positioned to define BRICS policies regarding technology transfer and innovation. Technological partnerships between BRICS and non-BRICS countries are strongly recommended to enhance synergy and achieve sustainable and efficient production more rapidly. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 5371 KiB  
Article
Flocculation Treatment for Mitigating Clogging of Dredge Slurry Under Vacuum Preloading with Particle Image Velocimetry Analysis
by Jingling Lu, Xuexing Zhang, Zhengxian Yang and Shanlin Xu
Appl. Sci. 2025, 15(6), 3097; https://doi.org/10.3390/app15063097 - 12 Mar 2025
Cited by 1 | Viewed by 803
Abstract
To examine the effect of flocculation treatment on slurry clogging during vacuum preloading, this study conducted vacuum preloading model tests using lime, anionic polyacrylamide (APAM), and the dual use of polyaluminum chloride (PAC) and APAM in conjunction with particle image velocimetry (PIV) analysis. [...] Read more.
To examine the effect of flocculation treatment on slurry clogging during vacuum preloading, this study conducted vacuum preloading model tests using lime, anionic polyacrylamide (APAM), and the dual use of polyaluminum chloride (PAC) and APAM in conjunction with particle image velocimetry (PIV) analysis. The results demonstrated that flocculation treatment enhanced the efficiency of vacuum preloading and mitigated the clogging of slurry. Compared to untreated slurry, the lime-flocculated slurry exhibited an approximately 248% increase in pore water pressure dissipation, a 462% increase in clogging zone width, and an 80% improvement in slurry strength near the PVD. The dual use of PAC and APAM significantly improved the slurry’s filtration performance by approximately 77 s, resulting in the highest water discharge rate (47% higher than untreated slurry) under vacuum pressure. In contrast, APAM alone enhanced the water discharge rate primarily in the early stages of vacuum preloading but had a limited effect on the final water discharge volume and horizontal strain. Furthermore, this study investigated the evolution of the clogging zone in flocculated slurry and elucidated the underlying mechanism of flocculation in mitigating the clogging of slurry. The findings can provide a theoretical basis for the selection of flocculants and the arrangement of PVDs in large-scale land reclamation and dredged slurry treatment projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop