Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow
Abstract
1. Introduction
1.1. Challenges
1.2. Nutrition Needs
1.3. Food Production and Environment
1.4. Food Classification
2. Role of Innovation to Introduce Low-Impact Technologies
2.1. Cold Atmospheric Plasma
2.2. Pulsed Electric Field (PEF)
2.3. Ultrasound Treatment (US)
2.4. Dynamic/Hydrostatic High-Pressure Processing
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Livestock 2011–Livestock in Food Security; FAO: Rome, Italy, 2011. [Google Scholar]
- United Nation. World Population Prospects: The 2017 Revision; United Nation: New York, NY, USA, 2017. [Google Scholar]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values (DRVs) 2019. Available online: https://efsa.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1831-4732.021217 (accessed on 26 June 2025).
- Harvard School of Nutrition. 5 Tips for Sustainable Eating. 2021. Available online: https://www.hsph.harvard.edu/nutritionsource/2015/06/17/5-tips-for-sustainable-eating/ (accessed on 26 June 2025).
- Springmann, M.; Clark, M.; Mason-D’croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 8. [Google Scholar] [CrossRef]
- Monteiro, C.A. Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Louzada, M.L.C.; Machado, P.P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019; Available online: http://www.fao.org/3/ca5644en/ca5644en.pdf (accessed on 26 June 2025).
- Petrus, R.R.; Sobral, P.J.A.; Tadini, C.C.; Gonçalves, C.B. The NOVA classification system: A critical perspective in food science. Trends Food Sci. Technol. 2021, 116, 603–608. [Google Scholar] [CrossRef]
- Capozzi, F.; Magkos, F.; Fava, F.; Milani, G.P.; Agostoni, C.; Astrup, A.; Saguy, I.S. A Multidisciplinary Perspective of Ultra-Processed Foods and Associated Food Processing Technologies: A View of the Sustainable Road Ahead. Nutrients 2021, 13, 3948. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Santos, J.; Souza, M.B.N.; Araujo, L.S.; Pion, J.M.V.; Carvalho, R.A.; Vanin, F.M. Consumers’ understanding of ultra-processed foods. Foods 2022, 11, 1359. [Google Scholar] [CrossRef]
- Ahrné, L.; Chen, H.; Henry, C.J.; Kim, H.-S.; Schneeman, B.; Windhab, E.J. Defining the role of processing in food classification systems—The IUFoST formulation & processing approach. Npj Sci. Food 2025, 9, 56. [Google Scholar] [CrossRef]
- Sadler, C.R.; Grassby, T.; Hart, K.; Raats, M.; Sokolović, M.; Timotijevic, L. Processed food classification: Conceptualisation and challenges. Trends Food Sci. Technol. 2021, 112, 149–162. [Google Scholar] [CrossRef]
- Tappi, S.; Tylewicz, U.; Dalla Rosa, M. Effect of nonthermal technologies on functional food compounds. In Sustainability of the Food System: Sovereignty, Waste, and Nutrients Bioavailability; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Tylewicz, U.; Castagnini, J.M.; Tappi, S.; Romani, S.; Rocculi, P.; Rosa, M.D. Current Validation of NTP Technologies and Overview of Their Current and Potential Implementation in the Production Chain Including Agri-food Wastes. In Nonthermal Processing in Agri-Food-Bio Sciences; Režek Jambrak, A., Ed.; Food Engineering Series; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Hati, S.; Patel, M.; Yadav, D. Food bioprocessing by non-thermal plasma technology. Curr. Opin. Food Sci. 2018, 19, 85–91. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Keener, K.M. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Jin, Y.; Adhikari, A. Emerging and Innovative Technologies for the Sanitization of Fresh Produce: Advances, Mechanisms, and Applications for Enhancing Food Safety and Quality. Foods 2025, 14, 1924. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, C.; Sainz-García, A.; Capelli, F.; Gherardi, M.; Alba-Elías, F.; Laurita, R. Evaluation of the Antimicrobial Efficacy of a Large-Area Surface Dielectric Barrier Discharge on Food Contact Surfaces. Plasma Chem. Plasma Process. 2023, 43, 1773–1790. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Yang, Y.; Mulati, A.; Hong, J.; Wang, J. The Effects of Cold-Plasma Technology on the Quality Properties of Fresh-Cut Produce: A Review. Foods 2025, 14, 149. [Google Scholar] [CrossRef]
- Cozzi, L.; Vicenza, T.; Di Pasquale, S.; Maccaroni, S.; Tappi, S.; Capelli, F.; Suffredini, E. Effect of Atmospheric Cold Plasma treatment on Murine Norovirus and Hepatitis A Virus infectivity. In Abstract Book, Proceedings of the 7th National Congress of the Italian Society for Virology, Brescia, Italy, 25–27 June 2023; Italian Society for Virology, Ed.; Italian Society for Virology: Brescia, Italy, 2023; p. 56. [Google Scholar]
- Velebit, B.; Milojević, L.; Baltić, T.; Grkovic, N.; Gummalla, S.; Velebit, M.; Skoka, I.; Mojsova, S.; Putnik, P. Efficacy of cold atmospheric plasma for inactivation of viruses on raspberries. Innov. Food Sci. Emerg. Technol. 2022, 81, 103121. [Google Scholar] [CrossRef]
- Laika, J.; Sabatucii, A.; Sacchetti, G.; Michele, D.A.; Hernandez, B.M.J.; Ricci, A.; Rosa, D.M.; Lopez, C.C.; Neri, L. Cold Atmospheric Plasma Inactivation of Polyphenol Oxidase: Focus on the Protective and Boosting Effect of Mono- and Disaccharides. J. Food Sci. 2024, 89, 9283–9298. [Google Scholar] [CrossRef]
- Chutia, H.; Kalita, D.; Mahanta, C.L.; Ojah, N.; Choudhury, A.J. Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT 2019, 101, 625–629. [Google Scholar] [CrossRef]
- Dong, S.; Fan, L.; Ma, Y.; Du, J.; Xiang, Q. Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: Kinetics and mechanisms. LWT 2021, 145, 111322. [Google Scholar] [CrossRef]
- Giannoglou, M.; Dimitrakellis, P.; Efthimiadou, Α.; Gogolides, E.; Katsaros, G. Comparative Study on the Effect of Cold Atmospheric Plasma, Ozonation, Pulsed Electromagnetic Fields and High-Pressure Technologies on Sea Bream Fillet Quality Indices and Shelf Life. Food Eng. Rev. 2021, 13, 175–184. [Google Scholar] [CrossRef]
- Albertos, I.; Martín-Diana, A.; Cullen, P.; Tiwari, B.; Ojha, S.; Bourke, P.; Álvarez, C.; Rico, D. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov. Food Sci. Emerg. Technol. 2017, 44, 117–122. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.B.; Cullen, P.J.; Tiwari, B.K.; Ojha, K.S.; Bourke, P.; Rico, D. Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innov. Food Sci. Emerg. Technol. 2019, 53, 85–91. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S.; Vongkamjan, K. High voltage cold atmospheric plasma: Antibacterial properties and its effect on quality of Asian sea bass slices. Innov. Food Sci. Emerg. Technol. 2019, 52, 305–312. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S. The combined effect of squid pen chitooligosaccharides and high voltage cold atmospheric plasma on the shelf-life extension of Asian sea bass slices stored at 4 °C. Innov. Food Sci. Emerg. Technol. 2020, 64, 102339. [Google Scholar] [CrossRef]
- Tappi, S.; Nissen, L.; Casciano, F.; Antonelli, G.; Chiarello, E.; Picone, G.; Laurita, R.; Capelli, F.; Gherardi, M.; Maccaferri, C.; et al. Effect of cold plasma generated with different gas mixtures on safety, quality and nutritional aspects of fresh sea bream fillets. Innov. Food Sci. Emerg. Technol. 2023, 89, 10347. [Google Scholar] [CrossRef]
- Molina-Hernandez, J.B.; Grande-Tovar, C.D.; Neri, L.; Delgado-Ospina, J.; Rinaldi, M.; Cordero-Bueso, G.A.; Chaves-López, C. Enhancing postharvest food safety: The essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front. Microbiol. 2025, 16, 1543716. [Google Scholar] [CrossRef]
- Zou, F.; Yang, M.; Wu, J.; Wang, L.; Wang, H. The potential of plasma-activated water in safe and sustainable food production: A comprehensive review of recent advances and future trends. Crit. Rev. Food Sci. Nutr. 2025, 1–25. [Google Scholar] [CrossRef]
- Gebremical, G.G.; Tappi, S.; Laurita, R.; Capelli, F.; Drudi, F.; Romani, S.; Rocculi, P. Effects of incubation time of plasma activated water (PAW) combined with annealing for the modification of functional properties of potato starch. Food Biosci. 2024, 59, 104247. [Google Scholar] [CrossRef]
- Zimmermann, U.; Pilwat, G.; Beckers, F.; Riemann, F. Effects of external electrical fields on cell membranes. Bioelectrochem. Bioenerg. 1976, 3, 58–83. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Balasa, A. Stress response of plants, metabolite production due to pulsed electric fields. In Handbook of Electroporation; Springer: Cham, Switzerland, 2017; Volume 4, pp. 2559–2571. [Google Scholar]
- Kranjc, M.; Miklavcic, D. Electric field distribution and electroporation threshold. In Handbook of Electroporation; Springer: Cham, Switzerland, 2017; Volume 2, pp. 1043–1058. [Google Scholar]
- Teissie, J.; Golzio, M.; Rols, M.P. Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of?) knowledge. Biochim. Biophys. Acta 2005, 1724, 270–280. [Google Scholar] [CrossRef]
- Lytras, F.; Psakis, G.; Gatt, R.; Cebrián, G.; Raso, J.; Valdramidis, V. Exploring the efficacy of pulsed electric fields (PEF) in microbial inactivation during food processing: A deep dive into the microbial cellular and molecular mechanisms. Innov. Food Sci. Emerg. Technol. 2024, 95, 103732. [Google Scholar] [CrossRef]
- D’Elia, F. Effect of Pulsed Electric Fields on Drying of Plant Products. Master’s Thesis, University of Bologna, Cesena, Italy, 2019. [Google Scholar]
- Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry. Technol. 2016, 34, 1286–1296. [Google Scholar] [CrossRef]
- de Paula, M.; Latorres, J.M.; Martins, V.G. Potential valorization opportunities for Brewer’s spent grain. Eur. Food Res. Technol. 2023, 249, 2471–2483. [Google Scholar] [CrossRef]
- Guido, L.F.; Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: A Review. Food Bioprocess Technol. 2017, 10, 1192–1209. [Google Scholar] [CrossRef]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef]
- Hamdi, M.; Sun, H.; Pan, L.; Wang, D.; Sun, M.; Zeng, Z.; Li, S.; Dong, Q.; Su, F. Chitosan and its derivatives as potential biomaterials for biomedical and pharmaceutical applications: A comprehensive review on green extraction approaches, recent progresses, and perspectives. Eur. Polym. J. 2025, 229, 113882. [Google Scholar] [CrossRef]
- De Aguiar Saldanha Pinheiro, A.C.; Martí-Quijal, F.J.; Barba, F.J.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Castagnini, J.M.; Tappi, S.; Rocculi, P. Pulsed Electric Fields (PEF) and Accelerated Solvent Extraction (ASE) for Valorization of Red (Aristeus antennatus) and Camarote (Melicertus kerathurus) Shrimp Side Streams: Antioxidant and HPLC Evaluation of the Carotenoid Astaxanthin Recovery. Antioxidants 2023, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.H.D.; Ngo, D.N. Effects of low–frequency ultrasound on heterogenous deacetylation of chitin. Int. J. Biol. Macromol. 2017, 104, 1604–1610. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Wang, Y. Application of Pulsed Electric Field for Treatment of Fish and Seafood. In Handbook of Electroporation, 1st ed.; Miklavčič, D., Ed.; Springer: Chem, Switzerland, 2017; Volume 4, pp. 2637–2655. [Google Scholar]
- García-Parra, J.; González-Cebrino, F.; Delgado-Adámez, J.; Cava, R.; Martín-Belloso, O.; Élez-Martínez, P.; Ramírez, R. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum. Food Sci. Technol. Int. 2018, 24, 145–160. [Google Scholar] [CrossRef]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biol. Technol. 2018, 137, 113–118. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Enhancing hydroxycinnamic acids and flavan-3-ol contents by pulsed electric fields without affecting quality attributes of apple. Food Res. Int. 2019, 121, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Guderjan, M.; Töpfl, S.; Angersbach, A.; Knorr, D. Impact of pulsed electric field treatment on the recovery and quality of plant oils. J. Food Eng. 2005, 67, 281–287. [Google Scholar] [CrossRef]
- Rifna, E.J.; Ratish Ramanan, K.; Mahendran, R. Emerging technology applications for improving seed germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R.; Vorobiev, E.; Grimi, N. Mitigation of Acrylamide in Potato Chips by Pre-drying and Pulsed Electric Field Treatment. Front. Nutr. 2022, 9, 919634. [Google Scholar] [CrossRef]
- Schouten, M.A.; Genovese, J.; Tappi, S.; Di Francesco, A.; Baraldi, E.; Cortese, M.; Capriolid, G.; Angelonid, S.; Vittori, S.; Rocculi, P.; et al. Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innov. Food Sci. Emerg. Technol. 2020, 64, 102397. [Google Scholar] [CrossRef]
- Di Francesco, A.; Mari, M.; Ugolini, L.; Parisi, B.; Genovese, J.; Lazzeri, L.; Baraldi, E. Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. Int. J. Food Microbiol. 2019, 289, 168–173. [Google Scholar] [CrossRef]
- Witrowa-Rajchert, D.; Wiktor, A.; Sledz, M.; Nowacka, M. Selected Emerging Technologies to Enhance the Drying Process: A Review. Dry. Technol. 2014, 32, 1386–1396. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Virot, M.; Tomao, V.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonochem. 2010, 17, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ma, X.; Cai, T.; Li, Y. Flavonoid intake, inflammation, and atherosclerotic cardiovascular disease risk in U.S. adults: A cross-sectional study. Nutr. Metab. 2025, 22, 24. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Valko, R.; Liska, J.; Nepovimova, E.; Kuca, K.; Valko, M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem.-Biol. Interact. 2025, 413, 111489. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Yu, Z.; Niu, T. Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey. Antioxidants 2025, 14, 395. [Google Scholar] [CrossRef]
- Santos, V.O.; Rodrigues, S.; Fernandes, F.A.N. Improvements on the Stability and Vitamin Content of Acerola Juice Obtained by Ultrasonic Processing. Foods 2018, 7, 68. [Google Scholar] [CrossRef]
- Frias, J.; Peñas, E.; Ullate, M.; Vidal-Valverde, C. Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. J. Agric. Food Chem. 2010, 58, 10539–10544. [Google Scholar] [CrossRef]
- Nowacka, M.; Wedzik, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 2016, 103 Pt B, 163–171. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Leite, A.K.F.; da Silva, A.R.A.; Fernandes, F.A.N.; Rodrigues, S. Sonication Effect on Bioactive Compounds of Cashew Apple Bagasse. Food Bioprocess Technol. 2017, 10, 1854–1864. [Google Scholar] [CrossRef]
- Nowacka, M.; Fijalkowska, A.; Dadan, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D. Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries. Ultrasonics 2018, 83, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bindes, M.M.M.; Reis, H.M.M.; Cardoso, V.L.; Boffito, D.C. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrason. Sonochem. 2019, 51, 111–119. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Tylewicz, U.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Romani, S. Design of Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium guajava L. Leaves. Food Anal. Methods 2017, 10, 2781–2791. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: Comparison with hot water and organic solvent extractions. Eur. Food Res. Technol. 2018, 244, 1353–1365. [Google Scholar] [CrossRef]
- Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R.; Lightfoot, D.A. Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE 2016, 11, e0148758. [Google Scholar] [CrossRef]
- Siucińska, K.; Mieszczakowska-Frąc, M.; Połubok, A.; Konopacka, D. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries. J. Food Sci. 2016, 81, C1654–C1661. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. [Google Scholar] [CrossRef]
- Gamboa-Santos, J.; Montilla, A.; Soria, A.C.; Cárcel, J.A.; García-Pérez, J.V.; Villamiel, M. Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chem. 2014, 161, 40–46. [Google Scholar] [CrossRef]
- Oladejo, A.O.; Ma, H.; Qu, W.; Zhou, C.; Wu, B. Effects of Ultrasound on Mass Transfer Kinetics, Structure, Carotenoid and Vitamin C Content of Osmodehydrated Sweet Potato (Ipomea batatas). Food Bioprocess Technol. 2017, 10, 1162–1172. [Google Scholar] [CrossRef]
- Nowacka, M.; Dadan, M.; Tylewicz, U. Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Appl. Sci. 2021, 11, 1269. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Rostamabadi, H.; Karaca, A.C.; Nowacka, M.; Mulla, M.Z.; Al-Attar, H.; Rathnakumar, K.; Subasi, B.G.; Sehrawat, R.; Kheto, A.; Falsafi, S.R. How high hydrostatic pressure treatment modifies the physicochemical and nutritional attributes of polysaccharides? Food Hydrocoll. 2023, 137, 108375. [Google Scholar] [CrossRef]
- Buzrul, S.; Alpas, H. Treatment of foods using high hydrostatic pressure. In Progress in Food Preservation, 1st ed.; Bhat, R., Alias, A.K., Paliyath, G., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, N.; Fliss, I.; Makhlouf, J. Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure. Food Res. Int. 2005, 38, 569–576. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Franchi, M.A.; Cristianini, M. Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innov. Food Sci. Emerg. Technol. 2008, 9, 265–271. [Google Scholar] [CrossRef]
- Bonfim, R.C.; de Oliveira, F.A.; Godoy, R.L.d.O.; Rosenthal, A. A review on high hydrostatic pressure for bivalve mollusk processing: Relevant aspects concerning safety and quality. Food Sci. Technol. Braz. 2019, 39, 515–523. [Google Scholar] [CrossRef]
- Wang, Y.; Ma C-m Yang, Y.; Wang, B.; Liu X-f Wang, Y.; Bian, X.; Zhang, G.; Zhang, N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res. Int. 2024, 195, 114991. [Google Scholar] [CrossRef]
- Roobab, U.; Fidalgo, L.G.; Arshad, R.N.; Khan, A.W.; Zeng, X.A.; Bhat, Z.F.; Bekhit, A.E.A.; Batool, Z.; Aadil, R.M. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3297–3325. [Google Scholar] [CrossRef]
- Lan, Q.; Tappi, S.; Braschi, G.; Picone, G.; Rocculi, P.; Laghi, L. Comparative metabolomic analysis of minced grey mullet (Mugil cephalus) pasteurized by high hydrostatic pressure (HHP) during chilled storage. Food Biosci. 2024, 61, 104539. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Zhao, T.; Yang, X.; Zhang, J.; Yang, H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr. Res. Food Sci. 2024, 8, 100715. [Google Scholar] [CrossRef] [PubMed]
- Betoret, E.; Betoret, N.; Calabuig-JImenez, L.; Patrignani, F.; Barrera, C.; Lanciotti, R.; Dalla Rosa, M. Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT 2019, 111, 883–888. [Google Scholar] [CrossRef]
- Lima, M.A.; Rosenthal, A. High pressure homogenization applied to fruit juices: Effects on microbial inactivation and on maintenance of bioactive components. Food Sci. Technol. Int. 2022, 29, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Yudhistira, B.; Punthi, F.; Gavahian, M.; Chang, C.-K.; Hazeena, S.H.; Hou, C.-Y.; Hsieh, C.-W. Nonthermal technologies to maintain food quality and carbon footprint minimization in food processing: A review. Trends Food Sci. Technol. 2023, 141, 104205. [Google Scholar] [CrossRef]
Technology | Advantages | Disadvantages |
---|---|---|
Non-thermal behavior | Poorly studied for the compound’s extraction from crustacean by-products | |
High selectivity | Possible limited utilization due to the conductivity of matrix | |
PEF | Less time and energy consumption | High initial investment of PEF equipment |
High yields for carotenoid extraction | Limited extraction of lipophilic compounds | |
Does not require any additional chemicals | ||
Can be used in continuous mode |
Product | US Parameters | Results Obtained by US Application | References |
---|---|---|---|
Acerola juice | 18 kHz, 2000 to 3000 W/L | Increase in the availability of pro-vitamin A and vitamins B3, B5, C and E | [68] |
Carrots | 20 °C, 120 min | Increase in the extraction rate of TPC (2186 mg of gallic acid/100 gdw), vitamin C (148 mg/100 gdw) and β-carotene (12 mg/100 g) | [69] |
Carrots | 21 and 35 kHz frequency for 10, 20 and 30 min | Increase in the carotenoid content at 35 kHz | [70] |
Cashew apple bagasse | 226 W/cm2, bagasse/water ratio of 1:4 (w/w), 6 min | Increase in the extraction of vitamin C | [71] |
Cranberry | 21 kHz, 180 W, 30–60 min | Retention of Vit. C with 30 min, while loss with longer treatment Good retention of polyphenols, anthocyanins and flavonoids for both durations | [72] |
Cranberry | 21 kHz, 180 W+ blanching | Increase in bioactive compounds such as Vit. C, polyphenols, anthocyanins and flavonoids | [72] |
Green tea | 22–83 °C, tea-to-water ratio (12–73 g L−1), amplitude (23–77%) | Max. polyphenol content (12,318 mg L−1) and max. flavonoids (3774 mg L−1) at 77 °C, tea-to-water ratio of 73 g L−1 and amplitude of 77% | [73] |
Guava leaves | 24 kHz, 200 W, 40 min, ethanol/water (v/v) ratio of 60% | Increase in the extraction of flavonols and flavan-3ols | [74] |
Lemon by-products | 150–250 W, 45–55 °C, 35–45 min | Optimal TPC extraction of 18.10 ± 0.24 mg GAE/gdw at US power of 250 W, 50 °C and 45 min Optimal rutin extraction of 3.20 ± 0.12 mg/gdw at US power of 150 W, 48 °C and 35 min | [75] |
Peaches | 37 kHz, 10–30 min, 30–50 °C, ultrasonic power of 30–70% | The optimal conditions for extractions of TPC were 41.53 °C, 43.99% and 27.86 min | [76] |
Pumpkins | 37 kHz, 10–30 min, 30–50 °C, ultrasonic power of 30–70% | The optimal conditions for extractions of TPC were 41.45 °C, 44.60% and 25.67 min | [76] |
Sour cherry | 25 kHz (0.4 W/cm2), 30–120 min | At short times, no effect on bioactive compounds; prolonged application provoked loss of about 10% of total polyphenols | [77] |
Spinach | 37 and 80 kHz, 5–30 min, 30–50 °C, ultrasonic power of 30–70% | Max. total phenol (33.96 ± 11.30 mg gallic acid/gdw) and flavonoids (27.37 ± 11.85 mg/gdw) at 37 kHz, 30 min, 40 °C and 50% | [78] |
Strawberry | 40–70 °C and 30 and 60 W | >65% of Vit. C retention in dried product | [79] |
Sweet potato | 28 kHz, 300 W, 20–60 min | >70% of Vit. C retention in osmodehydrated product; however, higher loss of carotenoids | [80] |
RSM Optimal Conditions | DPPH (μmol Trolox/g Leaf d.w.) | TEAC (μmol Trolox/g Leaf d.w.) | SPC (mg/g Leaf d.w.) | Flavonols (mg/g Leaf d.w.) | Flavan-3-ols (mg/g Leaf d.w.) |
---|---|---|---|---|---|
Time (min) | 22 | 45 | 41 | 38 | 37 |
EtOH/water ratio (% (v/v)) | 54 | 58 | 62 | 62 | 63 |
US power (W) | 80 | 180 | 230 | 235 | 228 |
Effects on Food Quality | Carbon Footprint Reduction |
---|---|
Minimal quality loss | Less wastewater |
Increasing bioavailability | Increasing energy and water savings |
Reduction in processing contaminants | Lower environmental impact |
Maintenance of nutritional values | Decreased operational costs |
Maintenance of sensorial properties | Decreased electricity |
Inactivation of microorganisms | Less time-consuming |
Improvement of heat and mass transfer | Inexpensive |
Improvement of firmness and texture | Non-hazardous |
Decreased color change | Minimal source demands |
Increased shelf-life | Simple processing design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalla Rosa, M.; Romani, S.; Rocculi, P.; Tylewicz, U.; Tappi, S. Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow. Foods 2025, 14, 2332. https://doi.org/10.3390/foods14132332
Dalla Rosa M, Romani S, Rocculi P, Tylewicz U, Tappi S. Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow. Foods. 2025; 14(13):2332. https://doi.org/10.3390/foods14132332
Chicago/Turabian StyleDalla Rosa, Marco, Santina Romani, Pietro Rocculi, Urszula Tylewicz, and Silvia Tappi. 2025. "Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow" Foods 14, no. 13: 2332. https://doi.org/10.3390/foods14132332
APA StyleDalla Rosa, M., Romani, S., Rocculi, P., Tylewicz, U., & Tappi, S. (2025). Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow. Foods, 14(13), 2332. https://doi.org/10.3390/foods14132332