Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = pressure gain combustion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2930 KiB  
Article
Droplet Vaporization/Combustion Stability-Based Design of Pre-Combustion Chambers for Hybrid Propellant Rocket Motors
by Maurício Sá Gontijo, Olexiy Shynkarenko and Artur E. M. Bertoldi
Energies 2025, 18(12), 3123; https://doi.org/10.3390/en18123123 - 13 Jun 2025
Viewed by 374
Abstract
Hybrid Propellant Rocket Motors (HPRMs) have been advancing rapidly in recent years. These improvements are finally increasing their competitiveness in the global launch-vehicle market. However, some topics, such as the pre-combustion chamber design, still require more in-depth studies. Few studies have examined this [...] Read more.
Hybrid Propellant Rocket Motors (HPRMs) have been advancing rapidly in recent years. These improvements are finally increasing their competitiveness in the global launch-vehicle market. However, some topics, such as the pre-combustion chamber design, still require more in-depth studies. Few studies have examined this subject. This work proposes a low-computational-cost algorithm that calculates the minimum pre-combustion chamber length, with a vaporization and feed-system coupled instability model. This type of analysis is a key tool for minimizing a vehicle’s size, weight, losses, and costs. Additionally, coupling with internal ballistics codes can be implemented. Furthermore, the results were compared with real HPRMs to verify the algorithm’s reliability. The shortened pre-chamber architecture trimmed the inert mass and reduced the feed-system pressure requirement, boosting overall propulsive energy efficiency by 8% relative to conventional L*-based designs. These gains can lower stored-gas enthalpy and reduce life-cycle CO and CO2-equivalent emissions, strengthening the case for lighter and more sustainable access-to-space technologies. Full article
Show Figures

Figure 1

14 pages, 3497 KiB  
Article
Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control
by Onawale O. Tairu, Olusegun O. Ajide, Olawale S. Ismail and Olanrewaju M. Oyewola
Thermo 2025, 5(2), 19; https://doi.org/10.3390/thermo5020019 - 6 Jun 2025
Viewed by 792
Abstract
This study investigates the effects of varying hydrogen percentages in fuel blends on combustion dynamics, engine performance, and emissions. Experimental data and analytical equations were used to evaluate combustion parameters such as equivalent lambda, in-cylinder pressure, heat release rate, and ignition timing. The [...] Read more.
This study investigates the effects of varying hydrogen percentages in fuel blends on combustion dynamics, engine performance, and emissions. Experimental data and analytical equations were used to evaluate combustion parameters such as equivalent lambda, in-cylinder pressure, heat release rate, and ignition timing. The findings demonstrate that hydrogen blending enhances combustion stability, shortens ignition delay, and shifts peak heat release to be closer to the top dead center (TDC). These changes improve thermal efficiency and reduce cycle-to-cycle variation. Hydrogen blending also significantly lowers carbon dioxide (CO2) and hydrocarbon (HC) emissions, particularly at higher blend levels (H0–H5), while lower blends increase nitrogen oxides (NOx) emissions and risk pre-ignition due to advanced start of combustion (SOC). Engine performance improved with an average hydrogen energy contribution of 12% under a constant load. However, the optimal hydrogen blending range is crucial to balancing efficiency gains and emission reductions. These results underline the potential of hydrogen as a cleaner additive fuel and the importance of optimizing blend ratios to harness its benefits effectively. Full article
Show Figures

Figure 1

23 pages, 4424 KiB  
Article
Operational Conditions for an Internal Combustion Engine in a SOFC-ICE Hybrid Power Generation System
by Victor A. Reyes-Flores, Zachary Swartwout, Shane Garland, Daniel B. Olsen, Bret Windom, Robert Braun and Todd Bandhauer
Energies 2025, 18(7), 1838; https://doi.org/10.3390/en18071838 - 5 Apr 2025
Cited by 2 | Viewed by 582
Abstract
Hybrid power generation systems utilizing pressurized Solid Oxide Fuel Cells (SOFCs) have gained considerable attention recently as an effective solution to the increasing demand for cleaner electricity sources. Among the various hybridization options, gas turbines (GT) and internal combustion engines (ICE) running on [...] Read more.
Hybrid power generation systems utilizing pressurized Solid Oxide Fuel Cells (SOFCs) have gained considerable attention recently as an effective solution to the increasing demand for cleaner electricity sources. Among the various hybridization options, gas turbines (GT) and internal combustion engines (ICE) running on SOFC tail gas have been prominent. Although spark ignition (SI) tail gas engines have received less focus, they show significant potential for stationary power generation, particularly due to their ability to control combustion. This research experimentally characterized an SI engine fueled by simulated SOFC anode gas for five blends, which correspond to overall system power level and loads. The study aimed to optimize the engine operating conditions for each fuel blend and establish operational conditions that would sustain maximum performance. The results showed efficiencies as high as 31.4% at 1600 RPM, with a 17:1 compression ratio, equivalence ratio (φ) of 0.75, and a boost pressure of 165 kPa with low NOx emissions. The study also emphasizes the benefits of optimizing boost supply to minimize parasitic loads and improve brake thermal efficiency. Additionally, installing a catalytic oxidizer would enable the system to comply with new engine emission regulations. A proposed control scheme for automation includes regulating engine power by controlling the boost of the supercharger at a fixed throttle position. The results of this study help to promote the development of this SOFC-based clean energy technology. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

21 pages, 6114 KiB  
Article
Analysis of Flame Evolution Generated from Methyl Laurate Droplet Using Deep Learning
by Fikrul Akbar Alamsyah and Chi-Cheng Cheng
Appl. Sci. 2025, 15(5), 2678; https://doi.org/10.3390/app15052678 - 2 Mar 2025
Viewed by 1310
Abstract
This research investigates the dynamic behavior of flames generated from methyl laurate droplets using advanced deep learning techniques. By analyzing high-resolution image sequences, we aim to extract valuable insights into the flame’s evolution, including its ignition, growth, and extinction phases. YOLOv9, a state-of-the-art [...] Read more.
This research investigates the dynamic behavior of flames generated from methyl laurate droplets using advanced deep learning techniques. By analyzing high-resolution image sequences, we aim to extract valuable insights into the flame’s evolution, including its ignition, growth, and extinction phases. YOLOv9, a state-of-the-art object detection model, is employed to automatically segment and track key flame features such as flame shape, size, and intensity. Our results demonstrate a high accuracy of 0.97 and 0.92 mAP for automatic object segmentation of the flame and droplet. Through quantitative analysis of these features, we seek to gain a deeper understanding of the underlying physical processes governing droplet combustion. The results of this study can contribute to the development of more accurate and efficient combustion models, as well as improved fire safety strategies. This study investigates the combustion dynamics of methyl laurate droplets at atmospheric pressure, providing foundational insights into its behavior as a biodiesel fuel. Future research under high-pressure conditions is recommended to better understand its performance in practical engine applications. Full article
Show Figures

Figure 1

20 pages, 6890 KiB  
Article
Influence of Chemical Kinetics on Tulip Flame Formation in Highly Reactive (H2/Air) and Low Reactive (CH4/Air) Mixtures
by Chengeng Qian and Mikhail A. Liberman
Energies 2025, 18(4), 885; https://doi.org/10.3390/en18040885 - 13 Feb 2025
Viewed by 614
Abstract
The early stages of hydrogen–air and methane–air flame dynamics and the development and evolution of tulip flames in closed tubes of various aspect ratios and in a semi-open tube are studied by solving the fully compressible reactive Navier–Stokes equations using a high-order numerical [...] Read more.
The early stages of hydrogen–air and methane–air flame dynamics and the development and evolution of tulip flames in closed tubes of various aspect ratios and in a semi-open tube are studied by solving the fully compressible reactive Navier–Stokes equations using a high-order numerical method coupled to detailed chemical models for stoichiometric hydrogen/air and methane/air mixtures. The use of adaptive mesh refinement (AMR) provides adequate resolution of the flame reaction zone, pressure waves, and flame–pressure wave interactions. The purpose of this study is to gain a deeper insight into the influence of chemical kinetics on the combustion regimes leading to the formation of a tulip flame and its subsequent evolution. The simulations highlight the effect of the flame thickness, flame velocity, and reaction order on the intensity of the rarefaction wave generated by the flame during the deceleration phase, which is the principal physical mechanism of tulip flame formation. The obtained results explain most of the experimentally observed features of tulip flame formation, e.g., faster tulip flame formation with a deeper tulip shape for faster flames compared to slower flames. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

18 pages, 2889 KiB  
Article
Experimental Study of Flame Dynamics in a Triple-Injector Swirling Nonpremixed Combustor Under Different Thermoacoustic Self-Excited Instability Modes
by Xiang Zhang, Suofang Wang and Yong Liu
Sensors 2025, 25(3), 850; https://doi.org/10.3390/s25030850 - 30 Jan 2025
Viewed by 907
Abstract
Combustion instability is one of the prominent and unavoidable problems in the design of high-performance propulsion systems. This study investigates the heat release rate (HRR) responses in a triple-nozzle swirling nonpremixed combustor under various thermoacoustic self-excited instability modes. Dynamic pressure sensors and high-speed [...] Read more.
Combustion instability is one of the prominent and unavoidable problems in the design of high-performance propulsion systems. This study investigates the heat release rate (HRR) responses in a triple-nozzle swirling nonpremixed combustor under various thermoacoustic self-excited instability modes. Dynamic pressure sensors and high-speed imaging were employed to capture the pressure oscillations within the combustion chamber and the characteristics of flame dynamics, respectively. The results reveal nonlinear bifurcations in the self-excited thermoacoustic instabilities at different equivalence ratios. Significant differences in flame dynamics were observed across the instability modes. In lower frequency modes, the fluctuations in flame length contribute to the driving force of thermoacoustic instability. In relatively high-frequency modes, HRR fluctuations are dominated by the rolling up and convective processes of wrinkles on the flame surface. Alternating regions of gain and damping are observed on the flame surface. At even higher frequencies, both aforementioned HRR fluctuation patterns are simultaneously observed. These findings provide a deeper understanding of the complex interactions between flame dynamics and thermoacoustic instabilities, offering new insights into the design and optimization of nonpremixed combustion systems. The study underscores the importance of considering the spatial and temporal variations in flame behavior to effectively predict and control thermoacoustic instabilities. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

14 pages, 3950 KiB  
Article
Ground Testing of a Miniature Turbine Jet Engine for Specific Flight Conditions
by Ryszard Chachurski, Łukasz Omen, Andrzej J. Panas and Piotr Zalewski
Energies 2025, 18(1), 73; https://doi.org/10.3390/en18010073 - 28 Dec 2024
Viewed by 1178
Abstract
This paper presents the design and development project of an engine test stand specifically constructed for ground testing of miniature turbine jet engines (MTJEs) along with conclusive results of the conducted investigations. The tested engines serve as the propulsion system for an unmanned [...] Read more.
This paper presents the design and development project of an engine test stand specifically constructed for ground testing of miniature turbine jet engines (MTJEs) along with conclusive results of the conducted investigations. The tested engines serve as the propulsion system for an unmanned aerial vehicle (UAV) platform. The engine test stand was used to determine various operating parameters of the engine, with a particular focus on recording variations and changes in temperature and pressure at the engine control cross-sections: behind the compressor, the combustion chamber, and at the final cross-section of the nozzle. The analysis of the direct test results allowed the evaluation of the engine’s behavior under hydration conditions and documents the quantitative and qualitative response of the control system of the engine. Of particular interest are the results showing an increase in exhaust system temperature with a decrease in the temperature in combustion chamber under hydrated conditions. The test program assumed and considered the acting loads and forces in both standard and specific flight conditions, including scenarios for a heavy rain. The preliminary evaluation of the investigation results provided data and insights required for further analysis. Quantitatively, the measured temperature value in the exhaust system does not exceed 700 °C and the temperature increase resulting from the introduction of water and the engine’s response to the out-of-operation event is approximately 50 °C for the JetCat 140. Qualitatively different effects were observed in the combustion moment, consisting in a drop in temperature values during the introduction of water into the engine flow channel. The introduction of water into the GTM 140 inlet revealed no significant changes in the variations of pressure and temperature measured in selected engine design sections. Based on the knowledge and experience gained, a fully operational test stand to monitor the parameters and performance of the MTJEs, which are used for aerial target propulsion, was developed. Full article
Show Figures

Figure 1

17 pages, 5343 KiB  
Article
Numerical Study on Pressure Oscillations in a Solid Rocket Motor with Backward Step Configuration Under Two-Phase Flow Interactions
by Chao Huo, Hongbo Xu, Jie Hu and Tengfei Luo
Aerospace 2024, 11(12), 1054; https://doi.org/10.3390/aerospace11121054 - 23 Dec 2024
Cited by 1 | Viewed by 1036
Abstract
The pressure oscillation caused by vortex–acoustic coupling is one of the main gain factors that results in the combustion instability of motors. Focusing on a solid rocket motor with a backward step configuration that can generate a corner vortex, this study aims to [...] Read more.
The pressure oscillation caused by vortex–acoustic coupling is one of the main gain factors that results in the combustion instability of motors. Focusing on a solid rocket motor with a backward step configuration that can generate a corner vortex, this study aims to investigate the pressure oscillation characteristics in a combustion chamber under two-phase flow interactions through numerical simulations. The two-phase flow discrete phase model (DPM) was chosen to study particle motion and two-phase interactions. The numerical methodology was hence established by coupling the DPM with the large eddy simulation (LES) method. Taking the Clx motor as a reference and introducing aluminum oxide particles, two important particle parameters (diameter and concentration) and the key geometric parameters of the backward step were numerically studied. The numerical results show that both increased particle diameter and concentration can decrease the frequency and amplitude of pressure oscillations; additionally, the effects of geometric parameters on the pressure oscillations of the backward step, such as the downstream aspect ratio, the expansion ratio, and the step position, are basically consistent under both pure gas and two-phase flows. The influences of those geometric parameters are mainly reflected in defining the space for the development of upstream flow instability and the motion of downstream vortices. Compared with the pure-gas flow, the presence of aluminum oxide particles in two-phase flow globally decreases the vortex shedding frequency, the primary frequency, and the amplitude of pressure oscillations. It can also weaken the effects of vortex–acoustic coupling due to increased turbulent viscosity, which hinders the orderly development of vortices. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 6729 KiB  
Article
Experimental Study on Ignition and Pressure-Gain Achievement in Low-Vacuum Conditions for a Pulsed Detonation Combustor
by Andrei Vlad Cojocea, Mihnea Gall, George Ionuț Vrabie, Tudor Cuciuc, Ionuț Porumbel, Gabriel Ursescu and Daniel Eugeniu Crunţeanu
Technologies 2024, 12(12), 252; https://doi.org/10.3390/technologies12120252 - 2 Dec 2024
Viewed by 2566
Abstract
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) [...] Read more.
Pressure-gain combustion (PGC) represents a promising alternative to conventional propulsion systems for interplanetary travel due to its key advantages, including higher thermodynamic efficiency, increased specific impulse, and more compact engine designs. However, to elevate this technology to a sufficient technology readiness level (TRL) for practical application, extensive experimental validation, particularly under vacuum conditions, is essential. This study focuses on the performance of a pulsed-detonation combustor (PDC) under near-vacuum conditions, with two primary objectives: to assess the combustor’s ignition capabilities and to characterize the shock wave behavior at the exit plane. To achieve these objectives, high-frequency pressure sensors are strategically positioned within both the vacuum chamber and the combustor prototype to capture the pressure cycles during operation, providing insights into pressure augmentation over a period of approximately 0.5 s. Additionally, the Schlieren visualization technique is employed to analyze and interpret the flow structures of the exhaust jet. The combination of these experimental methods enables a comprehensive understanding of the ignition dynamics and the development of shock waves, contributing valuable data to advance PGC technology for space-exploration applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

29 pages, 16100 KiB  
Review
Analysis of Development Trends for Rotating Detonation Engines Based on Experimental Studies
by Min-Sik Yun, Tae-Seong Roh and Hyoung Jin Lee
Aerospace 2024, 11(7), 570; https://doi.org/10.3390/aerospace11070570 - 11 Jul 2024
Cited by 2 | Viewed by 6063
Abstract
Rotating detonation engines (RDEs), which are Humphrey cycle-based constant-volume combustion engines, utilize detonation waves to attain higher efficiencies compared with conventional constant-pressure combustion engines through pressure gain. Such engines have garnered significant interest as future propulsion technologies, and thus, numerous research and development [...] Read more.
Rotating detonation engines (RDEs), which are Humphrey cycle-based constant-volume combustion engines, utilize detonation waves to attain higher efficiencies compared with conventional constant-pressure combustion engines through pressure gain. Such engines have garnered significant interest as future propulsion technologies, and thus, numerous research and development initiatives have been launched specific to RDEs in various forms. This paper presents a survey of research and development trends in RDE operating systems, based on experimental studies conducted worldwide since the 2010s. Additionally, a performance comparison of RDEs developed to date is presented. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion)
Show Figures

Figure 1

27 pages, 11313 KiB  
Article
Efficient and Flexible Method for Reducing Moderate-Size Deep Neural Networks with Condensation
by Tianyi Chen and Zhi-Qin John Xu
Entropy 2024, 26(7), 567; https://doi.org/10.3390/e26070567 - 30 Jun 2024
Cited by 1 | Viewed by 1129
Abstract
Neural networks have been extensively applied to a variety of tasks, achieving astounding results. Applying neural networks in the scientific field is an important research direction that is gaining increasing attention. In scientific applications, the scale of neural networks is generally moderate size, [...] Read more.
Neural networks have been extensively applied to a variety of tasks, achieving astounding results. Applying neural networks in the scientific field is an important research direction that is gaining increasing attention. In scientific applications, the scale of neural networks is generally moderate size, mainly to ensure the speed of inference during application. Additionally, comparing neural networks to traditional algorithms in scientific applications is inevitable. These applications often require rapid computations, making the reduction in neural network sizes increasingly important. Existing work has found that the powerful capabilities of neural networks are primarily due to their nonlinearity. Theoretical work has discovered that under strong nonlinearity, neurons in the same layer tend to behave similarly, a phenomenon known as condensation. Condensation offers an opportunity to reduce the scale of neural networks to a smaller subnetwork with a similar performance. In this article, we propose a condensation reduction method to verify the feasibility of this idea in practical problems, thereby validating existing theories. Our reduction method can currently be applied to both fully connected networks and convolutional networks, achieving positive results. In complex combustion acceleration tasks, we reduced the size of the neural network to 41.7% of its original scale while maintaining prediction accuracy. In the CIFAR10 image classification task, we reduced the network size to 11.5% of the original scale, still maintaining a satisfactory validation accuracy. Our method can be applied to most trained neural networks, reducing computational pressure and improving inference speed. Full article
(This article belongs to the Special Issue An Information-Theoretical Perspective on Complex Dynamical Systems)
Show Figures

Figure 1

15 pages, 31003 KiB  
Article
Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends
by Artur Krzemiński and Adam Ustrzycki
Energies 2024, 17(12), 3012; https://doi.org/10.3390/en17123012 - 18 Jun 2024
Cited by 3 | Viewed by 1424
Abstract
The internal combustion engine continues to be the main source of power in various modes of transport and industrial machines. This is due to its numerous advantages, such as easy adaptability, high efficiency, reliability and low fuel consumption. Despite these beneficial qualities of [...] Read more.
The internal combustion engine continues to be the main source of power in various modes of transport and industrial machines. This is due to its numerous advantages, such as easy adaptability, high efficiency, reliability and low fuel consumption. Despite these beneficial qualities of internal combustion engines, growing concerns are related to their negative environmental impacts. As a result, environmental protection has become a major factor determining advancements in the automotive industry in recent years, with the search for alternative fuels being one of the priorities in research and development activities. Among these, fuels of plant origin, mainly alcohols, are attracting a lot of attention due to their high oxygen content (around 35%). These fuels differ from diesel oil, for instance, in kinematic viscosity and density, which can affect the formation of the fuel spray and, consequently, the proper functioning of the compression–ignition engine, as well as the performance and purity of the exhaust gases emitted into the environment. The process of spray formation in direct injection compression–ignition engines is extremely complicated and requires detailed analysis of the fast-changing variables. This explains the need for using complicated research equipment enabling visualisation tests and making it possible to gain a more accurate understanding of the processes that take place. The present article aims to present the methodology for alternative fuel visualisation tests. To achieve this purpose, sprays formed by diesel–ethanol blends were recorded. A visualisation chamber and a high-speed camera were used for this purpose. The acquired video provided the material for the analysis of the changes in the vertex angle of the spray formed by the fuel blends. The test was carried out under reproducible conditions in line with the test methodology. The shape of the fuel spray is impacted by an increase in the proportional content of ethanol in the diesel and dodecanol blend. Based on the present findings, it is possible to note that the values of the vertex angle in the spray produced by the diesel–ethanol blend with the addition of dodecanol are most similar to those produced by diesel oil at an injection pressure of 100 MPa. The proposed methodology enables an analysis of the injection process based on the spray macrostructure parameters, and it can be applied in the testing of alternative fuels. Full article
(This article belongs to the Special Issue CO2 Emissions from Vehicles (Volume II))
Show Figures

Figure 1

31 pages, 25814 KiB  
Article
Experimental Pressure Gain Analysis of Pulsed Detonation Engine
by Alina Bogoi, Tudor Cuciuc, Andrei Vlad Cojocea, Mihnea Gall, Ionuț Porumbel and Constantin Eusebiu Hrițcu
Aerospace 2024, 11(6), 465; https://doi.org/10.3390/aerospace11060465 - 11 Jun 2024
Cited by 7 | Viewed by 3218
Abstract
A pulsed detonation chamber (PDC) equipped with Hartmann–Sprenger resonators has been designed and tested for both Hydrogen/air and Hydrogen/Oxygen mixtures. A full-factorial experimental campaign employing four factors with four levels each has been carried out for both mixtures. Instantaneous static pressure has been [...] Read more.
A pulsed detonation chamber (PDC) equipped with Hartmann–Sprenger resonators has been designed and tested for both Hydrogen/air and Hydrogen/Oxygen mixtures. A full-factorial experimental campaign employing four factors with four levels each has been carried out for both mixtures. Instantaneous static pressure has been measured at two locations on the exhaust pipe of the PDC, and the signal has been processed to extract the average and maximum cycle pressures and the operating frequency of the spark plug. The PDC has been shown to be able to reach sustained detonation cycles over a length below 200 mm, measured from the spark plug to the first pressure sensor. The optimal regimes for both air and Oxygen operation have been determined, and the influence of the four factors on the responses is discussed. Full article
Show Figures

Figure 1

18 pages, 11401 KiB  
Article
Design and Characterization of Highly Diffusive Turbine Vanes Suitable for Transonic Rotating Detonation Combustors
by Sergio Grasa and Guillermo Paniagua
Int. J. Turbomach. Propuls. Power 2024, 9(2), 18; https://doi.org/10.3390/ijtpp9020018 - 9 May 2024
Cited by 2 | Viewed by 2426
Abstract
In rotating detonation engines the turbine inlet conditions may be transonic with unprecedented unsteady fluctuations. To ensure an acceptable engine performance, the turbine passages must be suited to these conditions. This article focuses on designing and characterizing highly diffusive turbine vanes to operate [...] Read more.
In rotating detonation engines the turbine inlet conditions may be transonic with unprecedented unsteady fluctuations. To ensure an acceptable engine performance, the turbine passages must be suited to these conditions. This article focuses on designing and characterizing highly diffusive turbine vanes to operate at any inlet Mach number up to Mach 1. First, the effect of pressure loss on the starting limit is presented. Afterward, a multi-objective optimization with steady RANS simulations, including the endwall and 3D vane design is performed. Compared to previous research, significant reductions in pressure loss and stator-induced rotor forcing are obtained, with an extended operating range and preserving high flow turning. Finally, the influence of the inlet boundary layer thickness on the vane performance is evaluated, inducing remarkable increases in pressure loss and downstream pressure distortion. Employing an optimization with a thicker inlet boundary layer, specific endwall design recommendations are found, providing a notable improvement in both objective functions. Full article
Show Figures

Figure 1

17 pages, 4507 KiB  
Article
Numerical Study of Premixed PODE3-4/CH4 Flames at Engine-Relevant Conditions
by Yupeng Leng, Xiang Ji, Chengcheng Zhang, Nigel Simms, Liming Dai and Chunkan Yu
Fuels 2024, 5(1), 90-106; https://doi.org/10.3390/fuels5010006 - 12 Mar 2024
Viewed by 2044
Abstract
Polyoxymethylene dimethyl ether (PODEn, n ≥ 1) is a promising alternative fuel to diesel with higher reactivity and low soot formation tendency. In this study, PODE3-4 is used as a pilot ignition fuel for methane (CH4) and the [...] Read more.
Polyoxymethylene dimethyl ether (PODEn, n ≥ 1) is a promising alternative fuel to diesel with higher reactivity and low soot formation tendency. In this study, PODE3-4 is used as a pilot ignition fuel for methane (CH4) and the combustion characteristics of PODE3-4/CH4 mixtures are investigated numerically using an updated PODE3-4 mechanism. The ignition delay time (IDT) and laminar burning velocity (LBV) of PODE3-4/CH4 blends were calculated at high temperature and high pressure relevant to engine conditions. It is discovered that addition of a small amount of PODE3-4 has a dramatic promotive effect on IDT and LBV of CH4, whereas such a promoting effect decays at higher PODE3-4 addition. Kinetic analysis was performed to gain more insight into the reaction process of PODE3-4/CH4 mixtures at different conditions. In general, the promoting effect originates from the high reactivity of PODE3-4 at low temperatures and it is further confirmed in simulations using a perfectly stirred reactor (PSR) model. The addition of PODE3-4 significantly extends the extinction limit of CH4 from a residence time of ~0.5 ms to that of ~0.08 ms, indicating that the flame stability is enhanced as well by PODE3-4 addition. It is also found that NO formation is reduced in lean or rich flames; moreover, NO formation is inhibited by too short a residence time. Full article
(This article belongs to the Special Issue Chemical Kinetics of Biofuel Combustion)
Show Figures

Figure 1

Back to TopTop