Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Setup
2.2. The Test Procedures
2.3. The Heat Release Rate (HRR)
2.4. The Hydrogen Energy Share (HES)
2.5. Calculation of Mean Effective Pressure (COVimep)
2.6. Brake Thermal Efficiency and Brake-Specific Fuel Consumption
3. Results and Discussion
3.1. Effect of Hydrogen Percentage on the Equivalent Lambda
3.2. Effect on In-Cylinder Pressure
3.3. Effect on the Heat Release Rate
Effect on Coefficient of Variation in Indicated Mean Effective Pressure and Thermal Efficiency
3.4. Ignition Timing
3.5. Emission Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
αH2 | Percentage of the hydrogen (-) |
Overall equivalent ratio (-) | |
Volume of hydrogen gas (m3) | |
Volume of air (m3) | |
Density of hydrogen gas (m3/Kg) | |
Density of air (m3/Kg) | |
Stoichiometric air-to-fuel ratios of hydrogen gas (-) | |
Stoichiometric air-to-fuel ratios gasoline (-) | |
Mass flow rate of fuel (gasoline). (Kg/s) | |
Mass flow rate of hydrogen (Kg/s) | |
Equivalent lambda (-) | |
Q | Heat transfer (KJ) |
P | Pressure (bar) |
V | Volume (m3) |
Θ | Crank angle (deg) |
ϒ | Specific heat ratio (-) |
LHVhyd | Lower heating values of hydrogen (KJ/Kg) |
LHVgas | Lower heating values of gasoline (KJ/Kg) |
HES | Hydrogen energy share (-) |
COVimep | Coefficient of variation in the indicated mean effective pressure (-) |
STDEVimep | Standard deviation of indicated mean effective pressure (-) |
Imep | Indicated mean effective pressure (bar) |
Brake-specific fuel consumption (g/kWh) | |
Engine brake power (kW). | |
HRR | Heat release rate (J/deg) |
References
- Demirbas, A. Correlations between carbon dioxide emissions and carbon contents of fuels. Energy Sources Part B Econ. Plan. Policy 2006, 1, 421–427. [Google Scholar] [CrossRef]
- Onorati, A.; Payri, R.; Vaglieco, B.M.; Agarwal, A.K.; Bae, C.; Bruneaux, G.; Canakci, M.; Gavaises, M.; Günthner, M.; Hasse, C.; et al. The role of hydrogen for future internal combustion engines. Int. J. Engine Res. 2022, 23, 529–540. [Google Scholar] [CrossRef]
- Salvi, B.L.; Subramanian, K.A. Sustainable development of the road transportation sector using a hydrogen energy system. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. [Google Scholar] [CrossRef]
- Mancaruso, E.; Sequino, L. Measurements and modeling of piston temperature in a research compression ignition engine during transient conditions. Res. Eng. 2019, 2, 100007. [Google Scholar] [CrossRef]
- Dennis, P.A.; Dingli, R.J.; Atibeh, P.A.; Watson, H.C.; Brear, M.J.; Voice, G. Performance of a Port Fuel Injected, Spark Ignition Engine Optimised for Hydrogen Fuel, 2012, p. 2012-01–0654. Available online: https://www.sae.org/publications/technical-papers/content/2012-01-0654/ (accessed on 26 March 2025). [CrossRef]
- Jeon, J.; Bock, N.; Northrop, W. In-cylinder flame luminosity measured from a stratified lean gasoline direct injection engine. Res. Eng. 2019, 1, 100005. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Huang, Z.; Wang, L.; Chen, W. Impact of hydrogen direct injection on engine combustion and emissions in a GDI engine. Adv. Mech. Eng. 2023, 15, 16878132231189117. [Google Scholar] [CrossRef]
- Mohamed, M.; Longo, K.; Zhao, H.; Hall, J.; Harrington, A. Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection; Technical Paper 2024-01-2611; SAE International: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lee, J.T.; Choi, G.H. An investigation on the causes of cycle variation in direct injection hydrogen-fueled engines. Int. J. Hydrogen Energy 2005, 30, 69–76. [Google Scholar] [CrossRef]
- Subramanian, V.; Mallikarjuna, J.M.; Ramesh, A. Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen-fueled spark ignition engine. Int. J. Hydrogen Energy 2007, 32, 1159–1173. [Google Scholar] [CrossRef]
- Wang, S.F.; Ji, C.W.; Zhang, B.; Zhang, J.; Niu, Z.; Fan, B. Combustion and cycle-by-cycle variation of pure hydrogen-fueled spark ignition engine at idle and lean conditions. Trans. Chin. Soc. Agric. Mach. 2011, 42, 12–15. [Google Scholar]
- Sun, B.-G.; Zhang, D.-S.; Liu, F.-S. Cycle variations in a hydrogen internal combustion engine. Int. J. Hydrogen Energy 2013, 38, 3778–3783. [Google Scholar] [CrossRef]
- Chen, Y. Stability Research of Hydrogen Internal Combustion Engine in Idle Condition. Master’s Thesis, Beijing Institute of Technology, Beijing, China, 2008. [Google Scholar]
- Ji, C.; Zhang, Y.; Wang, S. Effects of hydrogen addition on combustion and emissions performance of a gasoline engine at idle conditions. Int. J. Hydrogen Energy 2010, 35, 2467–2475. [Google Scholar]
- Ji, C.; Wang, S.; Zhang, Y. Hydrogen enrichment effects on performance of a gasoline rotary engine at partial load. Int. J. Hydrogen Energy 2011, 36, 4209–4216. [Google Scholar]
- Wang, J.; Huang, Z.; Zheng, J. Partial load control of gasoline engines with hydrogen addition using lean burn strategies. Int. J. Hydrogen Energy 2012, 37, 573–580. [Google Scholar]
- Verhelst, S.; Wallner, T.; Sierens, R.; Scarcelli, R. Combustion characteristics of hydrogen in spark-ignition engines. Int. J. Hydrogen Energy 2009, 34, 5286–5293. [Google Scholar]
- Yavuz, M.; Brinklow, G.; Bonillo, A.C.; Herreros, M.; Wu, D.; Doustdar, O.; Rezaei, S.Z.; Tsolakis, A.; Millington, P.; Clave, S.A. The suitability of the three-way catalyst for hydrogen-fueled engines: A study in carbon emissions reduction and NOx management. Johns. Matthey Technol. Rev. 2024, 68, 412–426. [Google Scholar] [CrossRef]
- Cheng, S.; Changwei, C.; Shuofeng, W.; Jinxin, Y.; Xueyi, L.; Yunshan, G. Effects of hydrogen direct-injection angle and charge concentration on gasoline-hydrogen blending lean combustion in a Wankel engine. Energy Convers. Manag. 2019, 187, 316–327. [Google Scholar]
- Du, Y.; Yu, X.; Wang, J.; Wu, H.; Dong, W.; Gu, J. Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct injection. Int. J. Hydrogen Energy 2016, 41, 3240–3248. [Google Scholar] [CrossRef]
- Kim, J.; Chun, K.M.; Song, S.; Baek, H.K.; Lee, S.W. Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios. Appl. Energy 2018, 228, 1353. [Google Scholar] [CrossRef]
- Lee, S.; Kim, G.; Bae, C. Effect of injection and ignition timing on a hydrogen-lean stratified charge combustion engine. Int. J. Engine Res. 2022, 23, 816–829. [Google Scholar] [CrossRef]
- Germane, G.J.; Wood, C.G.; Hess, C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines—A Review; Technical paper 831694; SAE International: Warrendale, PA, USA, 1983. [Google Scholar] [CrossRef]
Hydrogen | Gasoline | Unit | |
---|---|---|---|
Chemical formula | H2 | C7H17 | – |
Research Octane number | >130 | 95 | - |
Molecular weight | 2 | 100–114 | g mol−1 |
Density | 0.08 | 737 | kg m−3 |
Auto-ignition temperature | 585 | 371 | °C |
Minimum ignition energy | 0.02 | 0.25 | MJ |
Lower heating value | 120 | 43.44 | MJ kg−1 |
Stoichiometric air–fuel ratio | 34.2 | 14.7 | kgair kg−1 fuel |
Quenching gap @ NTP | 0.64 | ∼2 | mm |
Flammability limits | 4–75 (lean to rich) | 1.4–7.6 (lean to rich) | vol% |
Parameter | Specification |
---|---|
Engine type | Inline 3-cylinder with turbocharged GDI |
Compression ratio | 11:1 |
Swept volume | 1.5 L |
Bore | 84 mm |
Stroke | 90 mm |
Rated power | 134 kW @ 6000 rpm |
Rated torque | 240 Nm @ 1600–4500 rpm |
Fuel system | Direct gasoline injection |
Emmision compliance | 6d |
Emmision control | TWC, ECU with lambda control |
Name | Lambda (λ) | H2 Flow Rate L/min | Gasoline Flow Rate kg/min × 10−3 | Mol. % H | λe | COVimep | SOC (deg) | Combustion Duration (deg) |
---|---|---|---|---|---|---|---|---|
M0 | 1 | 0 | 43.0 | 0 | 0.9 | 2.78 | −16 | 57 |
M1 | 1.1 | 0 | 41.3 | 0 | 1.0 | 5.23 | −15 | 64 |
M2 | 1.2 | 0 | 40.5 | 0 | 1.2 | 8.16 | −15 | 63 |
H0 | 1 | 20 | 31.9 | 3.8 | 1.2 | 1.05 | −12 | 66 |
H1 | 1.1 | 20 | 31.7 | 3.7 | 1.2 | 1.12 | −13 | 68 |
H2 | 1.2 | 20 | 31.7 | 3.5 | 1.3 | 1.21 | −14 | 67 |
H3 | 1.3 | 20 | 31.5 | 3.3 | 1.4 | 1.35 | −14 | 67 |
H4 | 1.4 | 20 | 31.5 | 3.1 | 1.5 | 1.46 | −15 | 66 |
H5 | 1.5 | 20 | 314 | 3.0 | 1.5 | 1.47 | −14 | 63 |
H6 | 1.6 | 20 | 31.3 | 2.8 | 1.6 | 1.60 | −16 | 63 |
H7 | 1.7 | 20 | 31.2 | 2.7 | 1.7 | 1.72 | −14 | 63 |
H8 | 1.8 | 20 | 31.1 | 2.5 | 1.8 | 1.84 | −14 | 62 |
H9 | 1.9 | 20 | 31.0 | 2.4 | 1.9 | 1.99 | −20 | 62 |
H10 | 2 | 20 | 31.0 | 2.3 | 2.0 | 2.21 | −19 | 63 |
Name | Engine Energy Need kW | Engine Brake Power kW | Thermal Efficiency % | BSFC g/kWh | Fuel + Air (for 1 cyl) kg/cycle | HSE |
---|---|---|---|---|---|---|
M0 | 31.1636 | 8.377841 | 26.88342 | 308.2678 | 0.000213 | 0 |
M1 | 29.88736 | 8.377841 | 28.03138 | 295.6434 | 0.000219 | 0 |
M2 | 29.31216 | 8.377841 | 28.58145 | 289.9535 | 0.000232 | 0 |
H0 | 26.26112 | 8.377841 | 31.90206 | 239.5776 | 0.000219 | 0.121853 |
H1 | 26.14915 | 8.377841 | 32.03867 | 238.47 | 0.000223 | 0.122375 |
H2 | 26.1791 | 8.377841 | 32.00202 | 238.7662 | 0.000237 | 0.122235 |
H3 | 26.00761 | 8.377841 | 32.21304 | 237.0698 | 0.000249 | 0.123041 |
H4 | 25.98106 | 8.377841 | 32.24595 | 236.8072 | 0.000263 | 0.123167 |
H5 | 25.92877 | 8.377841 | 32.31098 | 236.29 | 0.000271 | 0.123415 |
H6 | 25.84672 | 8.377841 | 32.41355 | 235.4783 | 0.000291 | 0.123807 |
H7 | 25.78451 | 8.377841 | 32.49176 | 234.863 | 0.0003 | 0.124106 |
H8 | 25.71734 | 8.377841 | 32.57662 | 234.1985 | 0.000318 | 0.12443 |
H9 | 25.65017 | 8.377841 | 32.66193 | 233.5341 | 0.000331 | 0.124756 |
H10 | 25.583 | 8.377841 | 32.74769 | 232.8696 | 0.000352 | 0.125083 |
Name | CO (ppm) | NO (ppm) | NO2 (ppm) | HC (ppm) | NOx (ppm) |
---|---|---|---|---|---|
M0 | 6158.35 | 1589.30 | 2.58 | 2097.31 | 1591.87 |
M1 | 1071.03 | 2125.08 | 9.82 | 1862.60 | 2134.89 |
M2 | 624.22 | 1761.79 | 20.84 | 1835.25 | 1789.49 |
H0 | 4676.36 | 1939.27 | 2.16 | 1348.38 | 1941.43 |
H1 | 606.86 | 2560.28 | 12.59 | 1167.49 | 2572.87 |
H2 | 460.98 | 1885.10 | 24.35 | 1163.74 | 1909.45 |
H3 | 471.61 | 1250.22 | 30.53 | 1202.76 | 1280.76 |
H4 | 472.37 | 727.26 | 35.84 | 1343.64 | 763.10 |
H5 | 463.70 | 407.99 | 37.79 | 1417.72 | 445.78 |
H6 | 460.40 | 205.71 | 36.95 | 1490.02 | 242.65 |
H7 | 472.45 | 96.74 | 32.41 | 1681.36 | 129.15 |
H8 | 513.19 | 43.15 | 25.74 | 1944.80 | 68.88 |
H9 | 573.98 | 25.87 | 21.99 | 2315.25 | 47.86 |
H10 | 664.74 | 24.87 | 21.19 | 3083.49 | 46.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tairu, O.O.; Ajide, O.O.; Ismail, O.S.; Oyewola, O.M. Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control. Thermo 2025, 5, 19. https://doi.org/10.3390/thermo5020019
Tairu OO, Ajide OO, Ismail OS, Oyewola OM. Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control. Thermo. 2025; 5(2):19. https://doi.org/10.3390/thermo5020019
Chicago/Turabian StyleTairu, Onawale O., Olusegun O. Ajide, Olawale S. Ismail, and Olanrewaju M. Oyewola. 2025. "Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control" Thermo 5, no. 2: 19. https://doi.org/10.3390/thermo5020019
APA StyleTairu, O. O., Ajide, O. O., Ismail, O. S., & Oyewola, O. M. (2025). Hydrogen Gas Blending in Gasoline GDI Engines: Combustion Analysis and Emission Control. Thermo, 5(2), 19. https://doi.org/10.3390/thermo5020019