Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends
Abstract
:1. Introduction
2. Methodology of the Research
- Testing bench (basic unit of the station).
- Hydraulic feed system.
- Common Rail injection system.
- Injection visualisation chamber.
- High-speed camera to film the injection process.
- Duration of the entire signal controlling the aperture of the injector.
- Duration of the sustained signal.
- Frequency of the sustained signal.
- Fullness of the sustained signal.
- Cleaning the hydraulic system with compressed air and filling the system with the investigated fuel.
- Setting the appropriate injection pressure and time.
- Performing a procedure of heating the fuel in the system to a temperature of 40 °C ± 2 °C and the injector to a temperature of 55 °C ± 2 °C (the required temperatures are obtained through operation of the system under the specified test conditions).
- Performing a single injection into the visualisation chamber and recording it with the high-speed camera.
- Repeating the measurements a specified number of times to obtain results for statistical processing.
- Repeating the measurements for all the specified values of pressure in the system.
- After each experiment, the chamber was rinsed to prevent the formation of background fog from the previously sprayed fuel.
- After the tests had been completed, removing the fuel and flushing the system.
3. Results and Analysis
4. Conclusions
- At an injection pressure of 75 MPa, only the ON–ET10 sample was shown to produce a spray vertex angle that was larger than commercial diesel oil (by approximately 50.7%), whereas the smallest vertex angle was identified in the case of ON–ET30 (the value was approximately 30% lower than the baseline diesel oil).
- At an injection pressure of 100 MPa, only the sample of the ON–ET5 blend was found to have a larger spray vertex angle than the diesel oil sample (by approximately 13%).
- The smallest spray vertex angle, at an injection pressure of 100 MPa, was identified in the case of ON–ET30; the value was approximately 31% lower than diesel oil.
- At an injection pressure of 125 MPa, a larger vertex angle than that produced by commercial diesel oil was identified in the case of the blends with 5% and 10% contents of ethanol; for the remaining blends, the value of this parameter was lower.
- At an injection pressure of 125 MPa, the largest spray vertex angle, compared to that produced by the baseline diesel oil, was identified in the case of the ON–ET5 blend (the value was approximately 69% higher).
- The smallest spray vertex angle at an injection pressure of 125 MPa was identified in the case of the ON–ET30 blend; the value was approximately 42% lower than the baseline fuel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO | Carbon monoxide |
CO2 | Carbon dioxide |
HC | Hydrocarbons |
NOx | Nitrogen oxides |
PM | Particulate matter |
References
- Zhang, Z.; Li, J.; Tian, J.; Dong, R.; Zou, Z.; Gao, S.; Tan, D. Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends. Energy 2022, 249, 123733. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Ma, Y.; Wu, G.; Yang, Z.; Fu, Q. Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels. Sustainability 2024, 16, 631. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Luo, J.; Hu, D.; Yin, Z. Performance enhancement and emission reduction of a diesel engine fueled with different biodiesel-diesel blending fuel based on the multi-parameter optimization theory. Fuel 2022, 314, 122753. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Valeika, G.; Matijošius, J.; Orynycz, O.; Rimkus, A.; Kilikevičius, A.; Tucki, K. Compression Ignition Internal Combustion Engine’s Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends. Energies 2024, 17, 262. [Google Scholar] [CrossRef]
- Channappagoudra, M.; Ramesh, K.; Manavendra, G. Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renew. Energy 2019, 133, 216–232. [Google Scholar] [CrossRef]
- Di Iorio, S.; Catapano, F.; Magno, A.; Sementa, P.; Vaglieco, B.M. The Potential of Ethanol/Methanol Blends as Renewable Fuels for DI SI Engines. Energies 2023, 16, 2791. [Google Scholar] [CrossRef]
- Sitnik, L.J.; Sroka, Z.J.; Andrych-Zalewska, M. The Impact on Emissions When an Engine Is Run on Fuel with a High Heavy Alcohol Content. Energies 2021, 14, 41. [Google Scholar] [CrossRef]
- Zheng, F.; Cho, H.M. The Effect of Different Mixing Proportions and Different Operating Conditions of Biodiesel Blended Fuel on Emissions and Performance of Compression Ignition Engines. Energies 2024, 17, 344. [Google Scholar] [CrossRef]
- EL-Seesy, A.I.; Waly, M.S.; He, Z.; El-Batsh, H.M.; Nasser, A.; El-Zoheiry, R.M. Enhancement of the combustion and stability aspects of diesel-methanol-hydrous methanol blends utilizing n-octanol, diethyl ether, and nanoparticle additives. J. Clean. Prod. 2022, 371, 133673. [Google Scholar] [CrossRef]
- Gad, M.S.; El-Shafay, A.S.; Abu Hashish, H.M. Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds. Process. Saf. Environ. Prot. 2021, 147, 518–526. [Google Scholar] [CrossRef]
- López Núñez, A.R.; Rumbo Morales, J.Y.; Salas Villalobos, A.U.; De La Cruz-Soto, J.; Ortiz Torres, G.; Rodríguez Cerda, J.C.; Calixto-Rodriguez, M.; Brizuela Mendoza, J.A.; Aguilar Molina, Y.; Zatarain Durán, O.A.; et al. Optimization and Recovery of a Pressure Swing Adsorption Process for the Purification and Production of Bioethanol. Fermentation 2022, 8, 293. [Google Scholar] [CrossRef]
- Nour, M.; Kosaka, H.; Bady, M.; Sato, S.; Abdel-Rahman, A.K. Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold. Fuel Process. Technol. 2017, 164, 33–50. [Google Scholar] [CrossRef]
- Krzemiński, A.; Ustrzycki, A. Effect of Ethanol Added to Diesel Fuel on the Range of Fuel Spray. Energies 2023, 16, 1768. [Google Scholar] [CrossRef]
- Yilmaz, N.; Sanchez, T.M. Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends. Energy 2012, 46, 126–129. [Google Scholar] [CrossRef]
- Hansen, A.C.; Zhang, Q.; Lyne, P.W.L. Ethanol–diesel fuel blends—A review. Bioresour. Technol. 2005, 96, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Kuszewski, H.; Jaworski, A.; Ustrzycki, A. Lubricity of ethanol–diesel blends—Study with the HFRR method. Fuel 2017, 208, 491–498. [Google Scholar] [CrossRef]
- Li, D.; Zhen, H.; Lu, X.; Zhang, W.; Yang, J. Physico-chemical properties of ethanol–diesel blend fuel and its effect on performance and emissions of diesel engines. Renew. Energy 2005, 30, 967–976. [Google Scholar] [CrossRef]
- Laza, T.; Bereczky, A. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel 2011, 90, 803–810. [Google Scholar] [CrossRef]
- Torres-Jimenez, E.; Svoljšak Jerman, M.; Gregorc, A.; Lisec, I.; Pilar Dorado, M.; Kegl, B. Physical and chemical properties of ethanol–diesel fuel blends. Fuel 2011, 90, 795–802. [Google Scholar] [CrossRef]
- Pratas, M.J.; Freitas, S.V.D.; Oliveira, M.B.; Monteiro, S.C.; Lima, Á.S.; Coutinho, J.A.P. Biodiesel Density: Experimental Measurements and Prediction Models. Energy Fuels 2011, 25, 2333–2340. [Google Scholar] [CrossRef]
- Kuszewski, H. Experimental investigation of the effect of ambient gas temperature on the autoignition properties of ethanol–diesel fuel blends. Fuel 2018, 214, 26–38. [Google Scholar] [CrossRef]
- Anand, K.; Ranjan, A.; Mehta, P.S. Estimating the Viscosityof Vegetable Oil and Biodiesel Fuels. Energy Fuels 2010, 24, 664–672. [Google Scholar] [CrossRef]
- Song, Y.; Li, R.; Qian, Y.; Zhang, L.; Wang, Z.; Liu, S.; Pei, Y.; An, Y.; Yue, H.; Meng, Y. Study on spray characteristics of biodiesel alternative fuels for in-cylinder environment of diesel engine. J. Energy Inst. 2024, 113, 101507. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Fernández-Rodríguez, D.; Patiño-Camino, R. Modeling viscosity of butanol and ethanol blends with diesel and biodiesel fuels. Fuel 2017, 199, 332–338. [Google Scholar] [CrossRef]
- Murcak, A.; Haşimoğlu, C.; Cevik, İ.; Kahraman, H. Effect of injection timing to performance of a diesel engine fuelled with different diesel–ethanol mixtures. Fuel 2015, 153, 569–577. [Google Scholar] [CrossRef]
- Barabás, I. Predicting the temperature dependent density of biodiesel–diesel–bioethanol blends. Fuel 2013, 109, 563–574. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K.; Davies, P.A.; Doudin, K. Investigation of 2-butoxyethanol as biodiesel additive on fuel property and combustion characteristics of two neat biodiesels. Renew. Energy 2021, 164, 285–297. [Google Scholar] [CrossRef]
- Kwanchareon, P.; Luengnaruemitchai, A.; Jai, S. In Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 2007, 86, 1053–1061. [Google Scholar] [CrossRef]
- Guarieiro, L.L.N.; de Almeida Guerreiro, E.T.; dos Santos Amparo, K.K.; Manera, V.B.; Regis, A.C.D.; Santos, A.G.; Ferreira, V.P.; Leao, D.J.; Torres, E.A.; de Andrade, J.B. Assessment of the use of oxygenated fuels on emissions and performance of a diesel engine. Microchem. J. 2014, 117, 94–99. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Pyrc, M.; Sobiepański, M. A comparative study of co-combustion process of diesel-ethanol and biodiesel ethanol blends in the direct injection diesel engine. Appl. Therm. Eng. 2017, 117, 155–163. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Herreros, J.M. Emissions from a diesel–bioethanol blend in an automotive diesel engine. Fuel 2008, 87, 25–31. [Google Scholar] [CrossRef]
- Pielecha, I.; Czajka, J.; Wisłocki, K.; Borowski, P. Research-based assessment of the influence of hydrocarbon fuel atomization on the for-mation of self-ignition spots and the course of pre-flame processes. Combust. Engines 2014, 157, 22–35. [Google Scholar] [CrossRef]
- Hentschel, W. Optical diagnostics for combustion process development of direct-injection gasoline engines. Proc. Combust. Inst. 2000, 28, 1119–1135. [Google Scholar] [CrossRef]
- Kamimoto, T.; Ahn, S.K.; Chang, Y.J.; Kobayashi, H.; Matsuoka, S. Measurement of Droplet Diameter and Fuel Concentration in a Non-Evaporating Diesel Spray by Means of an Image Analysis of Shadow Photographs. SAE 1984, 93, 372–380. [Google Scholar] [CrossRef]
- Wisłocki, K. Studium Wykorzystania Badań Optycznych do Analizy Procesów Wtrysku i Spalania w Silnikach o Zapłonie Samoczynnym; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 2004; Volume 387. [Google Scholar]
- Orzechowski, Z.; Prywer, J. Wytwarzanie i Zastosowanie Rozpylonej Cieczy; Wydawnictwa Naukowo—Techniczne: Warsaw, Poland, 2008; ISBN 978-83-204-3416-3. [Google Scholar]
- Available online: https://www.orlen.pl/pl/dla-biznesu/produkty/paliwa/oleje-napedowe/ekodiesel-ultra-klasa-2 (accessed on 13 June 2024).
- Safety Data Sheet: Ethyl Alcohol Completely Contaminated; Alpinus: Solec Kujawski, Poland, 2016.
- Available online: https://www.carlroth.com/pl/pl/aliphatic-alcohols/1-dodecanol/p/9853.3 (accessed on 13 June 2024).
- Krzemiński, A.; Jaworski, A.; Kuszewski, H.; Woś, P. A comparative study on selected physical properties of diesel–ethanol–dodecanol blends. Combust. Engines 2024, 196, 99–105. [Google Scholar] [CrossRef]
- Przewodnik Głównego Urzędu Miar: Wyrażanie Niepewności Pomiaru (Guide of the Central Office of Measures: Expressing Measurement Uncertainty); Central Office of Measures: Warszawa, Poland, 1999.
- Zięba, A. Pracownia Fizyczna Wydziału Fizyki i Techniki Jądrowej; AGH: Kraków, Poland, 2002. [Google Scholar]
No | Type of Fuel | Percentage [% v/v] | ||
---|---|---|---|---|
Dodecanol | Ethanol | Diesel Oil | ||
1 | ON | 0 | 0 | 100 |
2 | ON–ET5 | 5 | 5 | 90 |
3 | ON–ET10 | 5 | 10 | 85 |
4 | ON–ET15 | 5 | 15 | 80 |
5 | ON–ET20 | 5 | 20 | 75 |
6 | ON–ET25 | 5 | 25 | 70 |
7 | ON–ET30 | 5 | 30 | 65 |
Name of Parameter | Unit | Value |
---|---|---|
Cetane number | – | 51.7 |
Kinematic viscosity (40 °C) | mm2/s | 2.51 |
Density (15 °C) | g/cm3 | 0.833 |
Water content | %(m/m) | 0.008 |
Sulphur content | mg/kg | 5.9 |
Name of Parameter | Unit | Value |
---|---|---|
Density | g/cm3 | 0.789 |
Alcohol content (20 °C) | % | 99.9 |
Kinematic viscosity (40 °C) | mm2/s | 1.13 |
Sulphur content | mg/kg | 5.9 |
Name of Parameter | Unit | Value |
---|---|---|
Density (25 °C) | g/cm3 | 0.843 |
Autoignition temperature | °C | 275 |
Flash point | °C | 134.8 |
Type of Fuel | Density (15 °C) [g/cm3] | Kinematic Viscosity (40 °C) [mm2/s] |
---|---|---|
ON | 0.83041 | 2.5807 |
ON–ET5 | 0.82834 | 2.4294 |
ON–ET10 | 0.82660 | 2.3085 |
ON–ET15 | 0.82472 | 2.2143 |
ON–ET20 | 0.82299 | 2.1278 |
ON–ET25 | 0.82127 | 2.0662 |
ON–ET30 | 0.81999 | 1.9908 |
Speed of the High-Pressure Pump 1000 rpm | |||
---|---|---|---|
Injection Time [μs] | Injection Pressure [MPa] | Fuel Tank Temperature [°C] | Injector Temperature [°C] |
500 | 75 | 40 ± 2 | 55 ± 2 |
500 | 100 | 40 ± 2 | 55 ± 2 |
500 | 125 | 40 ± 2 | 55 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemiński, A.; Ustrzycki, A. Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends. Energies 2024, 17, 3012. https://doi.org/10.3390/en17123012
Krzemiński A, Ustrzycki A. Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends. Energies. 2024; 17(12):3012. https://doi.org/10.3390/en17123012
Chicago/Turabian StyleKrzemiński, Artur, and Adam Ustrzycki. 2024. "Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends" Energies 17, no. 12: 3012. https://doi.org/10.3390/en17123012
APA StyleKrzemiński, A., & Ustrzycki, A. (2024). Visualisation Testing of the Vertex Angle of the Spray Formed by Injected Diesel–Ethanol Fuel Blends. Energies, 17(12), 3012. https://doi.org/10.3390/en17123012