Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = precipitate size distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 143
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 1865 KiB  
Article
pH-Controlled Yeast Protein Precipitation from Saccharomyces cerevisiae: Acid-Induced Denaturation for Improved Emulsion Stability
by Laura Riedel, Nico Leister and Ulrike S. van der Schaaf
Foods 2025, 14(15), 2643; https://doi.org/10.3390/foods14152643 - 28 Jul 2025
Viewed by 192
Abstract
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be [...] Read more.
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be understood. In order to investigate the impact of precipitation pH on their emulsion-stabilizing properties, yeast proteins from Saccharomyces cerevisiae were isolated via precipitation at different pH (pH 3.5 to 5) after cell disruption in the high-pressure homogenizer. Emulsions containing 5 wt% oil and ~1 wt% protein were analyzed for stability based on their droplet size distribution. Proteins precipitated at pH 3.5 stabilized the smallest oil droplets and prevented partitioning of the emulsion, outperforming proteins precipitated at higher pH values. It is hypothesized that precipitation under acidic conditions induces protein denaturation and thereby exposes hydrophobic regions that enhance adsorption at the oil–water interface and the stabilization of the dispersed oil phase. To investigate the stabilization mechanism, the molecular weight of the proteins was determined using SDS-PAGE, their solubility using Bradford assay, and their aggregation behavior using static laser scattering. Proteins precipitated at pH 3.5 possessed larger molecular weights, lower solubility, and a strong tendency to aggregate. Overall, the findings highlight the potential of yeast-derived proteins as bio-surfactants and suggest that pH-controlled precipitation can tailor their functionality in food formulations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 7447 KiB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Viewed by 238
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 356
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

28 pages, 5160 KiB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 275
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 3623 KiB  
Article
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
by Zhongyu Huang, Leilei Kou, Peng Hu, Haiyang Gao, Yanqing Xie and Liguo Zhang
Atmosphere 2025, 16(7), 886; https://doi.org/10.3390/atmos16070886 - 19 Jul 2025
Viewed by 238
Abstract
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, [...] Read more.
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, and dissipating using ERA5 reanalysis and IMERG precipitation estimates, and examined vertical microphysical structures using Dual-frequency Precipitation Radar (DPR) data from the Global Precipitation Measurement (GPM) satellite during the Meiyu period from 2014 to 2023. The results showed that convective heavy rainfall during the mature stage exhibits peak radar reflectivity and surface rainfall rates, with the largest near-surface mass weighted diameter (Dm ≈ 1.8 mm) and the smallest droplet concentration (dBNw ≈ 38). Downdrafts in the dissipating stage preferentially remove large ice particles, whereas sustained moisture influx stabilizes droplet concentrations. Stratiform heavy rainfall, characterized by weak updrafts, displays narrower particle size distributions. During dissipation, particle breakups dominate, reducing Dm while increasing dBNw. The analysis of the relationship between microphysical parameters and rainfall rate revealed that convective heavy rainfall shows synchronized growth of Dm and dBNw during the developing stage, with Dm peaking at about 2.1 mm near 70 mm/h before stabilizing in the mature stage, followed by small-particle dominance in the dissipating stage. In contrast, stratiform rainfall exhibits a “small size, high concentration” regime, where the rainfall rate correlates primarily with increasing dBNw. Additionally, convective heavy rainfall demonstrates about 22% higher precipitation efficiency than stratiform systems, while stratiform rainfall shows a 25% efficiency surge during the dissipation stage compared to other stages. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 3393 KiB  
Article
An Investigation of the Characteristics of the Mei–Yu Raindrop Size Distribution and the Limitations of Numerical Microphysical Parameterization
by Zhaoping Kang, Zhimin Zhou, Yinglian Guo, Yuting Sun and Lin Liu
Remote Sens. 2025, 17(14), 2459; https://doi.org/10.3390/rs17142459 - 16 Jul 2025
Viewed by 341
Abstract
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR [...] Read more.
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR) are slightly underestimated relative to RG measurements. Both observations and simulations identify 1–3 mm raindrops as the dominant precipitation contributors, though the model overestimates small and large drop contributions. At low RR, decreased small-drop and increased large-drop concentrations cause corresponding leftward and rightward RSD shifts with decreasing altitude—a pattern well captured by simulations. However, at elevated rainfall rates, the simulated concentration of large raindrops shows no significant increase, resulting in negligible rightward shifting of RSD in the model outputs. Autoconversion from cloud droplets to raindrops (ATcr), collision and breakup between raindrops (AGrr), ice melting (MLir), and evaporation of raindrops (VDrv) contribute more to the number density of raindrops. At 0.1 < RR < 1 mm·h−1, ATcr dominates, while VDrv peaks in this intensity range before decreasing. At higher intensities (RR > 20 mm·h−1), AGrr contributes most, followed by MLir. When the RR is high enough, the breakup of raindrops plays a more important role than collision, leading to a decrease in the number density of raindrops. The overestimation of raindrop breakup from the numerical parameterization may be one of the reasons why the RSD does not shift significantly to the right toward the surface under the heavy RR grade. The RSD near the surface varies with the RR and characterizes surface precipitation well. Toward the surface, ATcr and VDrv, but not AGrr, become similar when precipitation approaches. Full article
Show Figures

Figure 1

25 pages, 2780 KiB  
Article
Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment
by Mikhail N. Zharkov, Mikhail A. Pyataev, Denis E. Yakobson, Valentin P. Ageev, Oleg A. Kulikov, Vasilisa I. Shlyapkina, Dmitry N. Khmelenin, Larisa A. Balykova, Gleb B. Sukhorukov and Nikolay A. Pyataev
Magnetochemistry 2025, 11(7), 60; https://doi.org/10.3390/magnetochemistry11070060 - 14 Jul 2025
Viewed by 318
Abstract
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the [...] Read more.
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the spatial distribution of magnetic capsules has been obtained. We propose to characterize the interaction between the magnetic field and the capsules using a single vector, which we call “specific magnetic force”. To test our theory, we performed experiments on a model of a capillary bed and on a living organism with two types of magnetic capsules that differ in size and amount of magnetic material. The experimental results show that the distribution of the capsules in the field correlated with the theory, but there were fewer actually accumulated capsules than predicted by the theory. In the weaker fields, the difference was more significant than in stronger ones. We proposed an explanation for this phenomenon based on the assumption that a certain level of magnetic force is needed to keep the capsules close to the capillary wall. We also suggested a formula for the relationship between the probability of capsule precipitation and the magnetic force. We found the effective value of a specific magnetic force at which all the capsules attracted by the magnet reach the capillary wall. This value can be considered as the minimum level for the field at which it is, in principle, possible to achieve a significant magnetic control effect. We demonstrated that for each type of capsule, there is a specific radius of magnet for which the effective magnetic force is achieved at the largest possible distance from the magnet’s surface. For the capsules examined in this study, the maximum distance where the effective field can be achieved does not exceed 1.5 cm. The results of the study contribute to our understanding of the behavior of magnetic particles in the capillaries of living organisms when exposed to a magnetic field. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Graphical abstract

15 pages, 3298 KiB  
Article
Linkage Between Radar Reflectivity Slope and Raindrop Size Distribution in Precipitation with Bright Bands
by Qinghui Li, Xuejin Sun, Xichuan Liu and Haoran Li
Remote Sens. 2025, 17(14), 2393; https://doi.org/10.3390/rs17142393 - 11 Jul 2025
Viewed by 283
Abstract
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below [...] Read more.
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below the freezing level, revealing distinct microphysical regimes: Type 1 (K = 0 to −0.9) shows coalescence-dominated growth; Type 2 (|K| > 0.9) shows the balance between coalescence and evaporation/size sorting; and Type 3 (K = 0.9 to 0) demonstrates evaporation/size-sorting effects. Surface DSD analysis demonstrates distinct precipitation characteristics across classification types. Type 3 has the highest frequency of occurrence. A gradual decrease in the mean rain rates is observed from Type 1 to Type 3, with Type 3 exhibiting significantly lower rainfall intensities compared to Type 1. At equivalent rainfall rates, Type 2 exhibits unique microphysical signatures with larger mass-weighted mean diameters (Dm) compared to other types. These differences are due to Type 2 maintaining a high relative humidity above the freezing level (influencing initial Dm at bottom of melting layer) but experiencing limited Dm growth due to a dry warm rain layer and downdrafts. Type 1 shows opposite characteristics—a low initial Dm from the dry upper layers but maximum growth through the moist warm rain layer and updrafts. Type 3 features intermediate humidity throughout the column with updrafts and downdrafts coexisting in the warm rain layer, producing moderate growth. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 290
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

20 pages, 6376 KiB  
Article
Analyses of MODIS Land Cover/Use and Wildfires in Italian Regions Since 2001
by Ebrahim Ghaderpour, Francesca Bozzano, Gabriele Scarascia Mugnozza and Paolo Mazzanti
Land 2025, 14(7), 1443; https://doi.org/10.3390/land14071443 - 10 Jul 2025
Viewed by 351
Abstract
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly [...] Read more.
Monitoring land cover/use dynamics and wildfire occurrences is very important for land management planning and risk mitigation practices. In this research, moderate-resolution imaging spectroradiometer (MODIS) annual land cover images for the period 2001–2023 are utilized for the twenty administrative regions of Italy. Monthly MODIS burned area images are utilized for the period 2001–2020 to study wildfire occurrences across these regions. In addition, monthly Global Precipitation Measurement images for the period 2001–2020 are employed to estimate correlations between precipitation and burned areas annually and seasonally. Boxplots are produced to show the distributions of each land cover/use type within the regions. The non-parametric Mann–Kendall trend test and Sen’s slope are applied to estimate a linear trend, with statistical significance being evaluated for each land cover/use time series of size 23. Pearson’s correlation method is applied for correlation analysis. It is found that grasslands and woodlands have been declining and increasing in most regions, respectively, most significantly in Abruzzo (−0.88%/year for grasslands and 0.71%/year for grassy woodlands). The most significant and frequent wildfires have been observed in southern Italy, particularly in Basilicata, Apulia, and Sicily, mainly in grasslands. The years 2007 and 2017 experienced severe wildfires in the southern regions, mainly during July and August, due to very hot and dry conditions. Negative Pearson’s correlations are estimated between precipitation and burnt areas, with the most significant one being for Basilicata during the fire season (r = −0.43). Most of the burned areas were mainly within the elevation range of 0–500 m and the lowlands of Apulia. In addition, for the 2001–2020 period, a high positive correlation (r > 0.7) is observed between vegetation and land surface temperature, while significant negative correlations between these variables are observed for Apulia (r ≈ −0.59), Sicily (r ≈ −0.69), and Sardinia (r ≈ −0.74), and positive correlations (r > 0.25) are observed between vegetation and precipitation in these three regions. This study’s findings can guide land managers and policymakers in developing or maintaining a sustainable environment. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

16 pages, 4823 KiB  
Article
Magnetic Behavior of Co2+-Doped NiFe2O4 Nanoparticles with Single-Phase Spinel Structure
by Fatemeh Vahedrouz, Mehdi Alizadeh, Abbas Bahrami and Farnaz Heidari Laybidi
Crystals 2025, 15(7), 624; https://doi.org/10.3390/cryst15070624 - 4 Jul 2025
Viewed by 333
Abstract
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, [...] Read more.
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, which is a common and effective method for nanoparticle preparation. The microstructure and magnetic properties were studied after calcination at 600 °C and heat treatment at 1000 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of a single-phase spinel structure. The average crystallite size, calculated using the (311) diffraction peak and the Scherrer equation, ranged from 13 to 19 nm. Scanning electron microscopy (SEM) showed that the nanoparticles had a spherical morphology. Thermogravimetric and differential thermal analysis (TG-DTA) revealed a three-step weight loss process. Magnetic measurements, including remanent magnetization, saturation magnetization, and coercivity, were performed using a vibrating sample magnetometer (VSM) at room temperature. The replacement of Ni2+ with Co2+ enhanced the magnetic properties, resulting in increased magnetic moment and anisotropy. These effects are attributed to changes in cation distribution, exchange interactions, surface effects, and magnetocrystalline anisotropy. Overall, Co2+ doping improved the magnetic behavior of nickel ferrite, indicating its potential for application in memory devices and magnetic recording media. Full article
Show Figures

Figure 1

21 pages, 2873 KiB  
Article
Adaptive Evolution of Sporosarcina pasteurii Enhances Saline–Alkali Resistance for High-Performance Concrete Crack Repair via MICP
by Jieyu Liu, Huaihua Xu, Min Dong, Zilin Cheng, Chenkai Mi, Shuai Sun, Ruiying Zhu and Peipei Han
Microorganisms 2025, 13(7), 1526; https://doi.org/10.3390/microorganisms13071526 - 30 Jun 2025
Viewed by 452
Abstract
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose [...] Read more.
Microbially induced calcium carbonate precipitation (MICP) has emerged as a research focus in concrete crack remediation due to its environmental compatibility and efficient mineralization capacity. The hypersaline conditions of seawater (average 35 g/L NaCl) and alkaline environments (pH 12) within concrete cracks pose significant challenges to the survival of mineralization-capable microorganisms. To enhance microbial tolerance under these extreme conditions, this study employed a laboratory adaptive evolution strategy to successfully develop a Sporosarcina pasteurii strain demonstrating tolerance to 35 g/L NaCl and pH 12. Comparative analysis of growth characteristics (OD600), pH variation, urease activity, and specific urease activity revealed that the evolved strain maintained growth kinetics under harsh conditions comparable to the parental strain under normal conditions. Subsequent evaluations demonstrated the evolved strain’s superior salt–alkali tolerance through enhanced enzymatic activity, precipitation yield, particle size distribution, crystal morphology, and microstructure characterization under various saline–alkaline conditions. Whole-genome sequencing identified five non-synonymous mutated genes associated with ribosomal stability, transmembrane transport, and osmoprotectant synthesis. Transcriptomic profiling revealed 1082 deferentially expressed genes (543 upregulated, 539 downregulated), predominantly involved in ribosomal biogenesis, porphyrin metabolism, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and amino acid metabolism. In concrete remediation experiments, the evolved strain achieved superior performance with 89.3% compressive strength recovery and 48% reduction in water absorption rate. This study elucidates the molecular mechanisms underlying S. pasteurii’s salt–alkali tolerance and validates its potential application in the remediation of marine engineering. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

20 pages, 1556 KiB  
Article
Engineered PAM-SPION Nanoclusters for Enhanced Cancer Therapy: Integrating Magnetic Targeting with pH-Responsive Drug Release
by Dimitra Tzavara, Konstantina Papadia, Argiris Kolokithas-Ntoukas, Sophia G. Antimisiaris and Athanasios Skouras
Molecules 2025, 30(13), 2785; https://doi.org/10.3390/molecules30132785 - 28 Jun 2025
Viewed by 435
Abstract
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved [...] Read more.
Background: Nanomedicine approaches for cancer therapy face significant challenges, including a poor tumor accumulation, limited therapeutic efficacy, and systemic toxicity. We hypothesized that controlling the clustering of poly(acrylic acid-co-maleic acid) (PAM)-coated superparamagnetic iron oxide nanoparticles (SPIONs) would enhance their magnetic properties for improved targeting, while enabling a pH-responsive drug release in tumor microenvironments. Methods: PAM-stabilized SPION clusters were synthesized via arrested precipitation, characterized for physicochemical and magnetic properties, and evaluated for doxorubicin loading and pH-dependent release. A dual targeting approach combining antibody conjugation with magnetic guidance was assessed in cellular models, including a novel alternating magnetic field (AMF) pre-treatment protocol. Results: PAM-SPION clusters demonstrated controlled size distributions (60–100 nm), excellent colloidal stability, and enhanced magnetic properties, particularly for larger crystallites (13 nm). The formulations exhibited a pH-responsive drug release (8.5% at pH 7.4 vs. 14.3% at pH 6.5) and a significant enhancement of AMF-triggered release (17.5%). The dual targeting approach achieved an 8-fold increased cellular uptake compared to non-targeted formulations. Most notably, the novel AMF pre-treatment protocol demonstrated an 87% improved therapeutic efficacy compared to conventional post-treatment applications. Conclusions: The integration of targeting antibodies, magnetic guidance, and a pH-responsive PAM coating creates a versatile theranostic platform with significantly enhanced drug delivery capabilities. The unexpected synergistic effect of the AMF pre-treatment represents a promising new approach for improving the therapeutic efficacy of nanoparticle-based cancer treatments. Full article
Show Figures

Figure 1

20 pages, 6159 KiB  
Article
Recrystallization and Second-Phase Precipitation in Nb-V Microalloyed Steels: A Thermal Simulation Study
by Qilin Ma, Shubiao Yin, Chengjia Shang, Qingyou Liu, Ba Li and Shujun Jia
Materials 2025, 18(13), 3069; https://doi.org/10.3390/ma18133069 - 27 Jun 2025
Viewed by 324
Abstract
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess [...] Read more.
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess the influence of Nb-V microalloying on second-phase precipitation. The results show that both the deformation amount and temperature significantly affect recrystallization, with Nb-V steel exhibiting more pronounced grain refinement compared to Nb steel. Significant differences in the type, morphology, and size distribution of second-phase precipitates were observed, with Nb-V steel primarily precipitating (Nb, V)C, while Nb steel only precipitates NbC. The average size of second-phase particles in Nb-V steel (10.60 nm) is smaller and more uniformly dispersed than in Nb steel (33.85 nm). Thermodynamic and kinetic analyses indicate that Nb-V microalloying accelerates second-phase precipitation kinetics. Moreover, second-phase particles hinder grain-boundary motion during recrystallization, with their effect surpassing that of Nb and V solid-solution atoms. These findings enhance the understanding of Nb-V composites in refining austenite grain size and promoting second-phase precipitation, providing valuable insights into the design and processing of high-performance microalloyed steels. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

Back to TopTop