Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (860)

Search Parameters:
Keywords = precipitant-free

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7843 KiB  
Article
Effect of Ageing on a Novel Cobalt-Free Precipitation-Hardenable Martensitic Alloy Produced by SLM: Mechanical, Tribological and Corrosion Behaviour
by Inés Pérez-Gonzalo, Florentino Alvarez-Antolin, Alejandro González-Pociño and Luis Borja Peral-Martinez
J. Manuf. Mater. Process. 2025, 9(8), 261; https://doi.org/10.3390/jmmp9080261 - 4 Aug 2025
Abstract
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and [...] Read more.
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and 8 wt.% chromium. It has been developed as a cost-effective and sustainable alternative to conventional maraging steels, while maintaining high mechanical strength and a refined microstructure tailored to the steep thermal gradients inherent to the SLM process. Several ageing heat treatments were assessed to evaluate their influence on microstructure, hardness, tensile strength, retained austenite content, dislocation density, as well as wear behaviour (pin-on-disc test) and corrosion resistance (polarisation curves in 3.5%NaCl). The results indicate that ageing at 540 °C for 2 h offers an optimal combination of hardness (550–560 HV), tensile strength (~1700 MPa), microstructural stability, and wear resistance, with a 90% improvement compared to the as-built condition. In contrast, ageing at 600 °C for 1 h enhances ductility and corrosion resistance (Rp = 462.2 kΩ; Ecorr = –111.8 mV), at the expense of a higher fraction of reverted austenite (~34%) and reduced hardness (450 HV). This study demonstrates that the mechanical, surface, and electrochemical performance of this novel SLM-produced alloy can be effectively tailored through controlled thermal treatments, offering promising opportunities for demanding applications requiring a customised balance of strength, durability, and corrosion behaviour. Full article
Show Figures

Graphical abstract

13 pages, 2517 KiB  
Article
A Framework for the Dynamic Mapping of Precipitations Using Open-Source 3D WebGIS Technology
by Marcello La Guardia, Antonio Angrisano and Giuseppe Mussumeci
Geographies 2025, 5(3), 40; https://doi.org/10.3390/geographies5030040 - 4 Aug 2025
Abstract
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts [...] Read more.
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts to focus their interest on the study of geotechnical assets in relation to these dangerous weather events. At the same time, geospatial representation in 3D WebGIS based on open-source solutions led specialists to employ this kind of technology to remotely analyze and monitor territorial events considering different sources of information. This study considers the construction of a 3D WebGIS framework for the real-time management of geospatial information developed with open-source technologies applied to the dynamic mapping of precipitation in the metropolitan area of Palermo (Italy) based on real-time weather station acquisitions. The structure considered is a WebGIS platform developed with Cesium.js JavaScript libraries, the Postgres database, Geoserver and Mapserver geospatial servers, and the Anaconda Python platform for activating real-time data connections using Python scripts. This framework represents a basic geospatial digital twin structure useful to municipalities, civil protection services, and firefighters for land management and for activating any preventive operations to ensure territorial safety. Furthermore, the open-source nature of the platform favors the free diffusion of this solution, avoiding expensive applications based on property software. The components of the framework are available and shared using GitHub. Full article
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 224
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 232
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 347
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

24 pages, 5129 KiB  
Article
On the Solidification and Phase Stability of Re-Bearing High-Entropy Superalloys with Hierarchical Microstructures
by Wei-Che Hsu, Takuma Saito, Mainak Saha, Hideyuki Murakami, Taisuke Sasaki and An-Chou Yeh
Metals 2025, 15(8), 820; https://doi.org/10.3390/met15080820 - 22 Jul 2025
Viewed by 413
Abstract
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with [...] Read more.
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with the suppression of detrimental topologically close-packed (TCP) phases. To elucidate solidification behavior and phase stability, Scheil–Gulliver and TC-PRISMA simulations were conducted alongside SEM and XRD analyses. Near-atomic scale analysis in 3D using Atom Probe Tomography (APT) revealed pronounced elemental partitioning, with Re strongly segregating to the γ matrix, while Al and Ti were preferentially enriched in the γ′ phase. Notably, Re demonstrated a unique partitioning behavior compared to conventional superalloys, facilitating the formation and stabilization of γ nanoparticles during two-step aging (Ag-2). These γ nanoparticles significantly contribute to improved mechanical properties. Long-term aging (up to 200 h) at 750–850 °C confirmed exceptional phase stability, with minimal coarsening of γ′ and retention of γ nanoparticles. The coarsening rate constant K of γ′ at 750 °C was significantly lower than that of Re-free HESA, confirming the diffusion-suppressing effect of Re. These findings highlight critical roles of Re in enhancing microstructural stability by reducing atomic mobility, enabling the development of next-generation HESAs with superior thermal and mechanical properties for high-temperature applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 293
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

24 pages, 50503 KiB  
Article
Quantifying the Influence of Sea Surface Temperature Anomalies on the Atmosphere and Precipitation in the Southwestern Atlantic Ocean and Southeastern South America
by Mylene Cabrera, Luciano Pezzi, Marcelo Santini and Celso Mendes
Atmosphere 2025, 16(7), 887; https://doi.org/10.3390/atmos16070887 - 19 Jul 2025
Viewed by 240
Abstract
Oceanic mesoscale activity influences the atmosphere in the southwestern and southern sectors of the Atlantic Ocean. However, the influence of high latitudes, specifically sea ice, on mid-latitudes and a better understanding of mesoscale ocean–atmosphere thermodynamic interactions still require further study. To quantify the [...] Read more.
Oceanic mesoscale activity influences the atmosphere in the southwestern and southern sectors of the Atlantic Ocean. However, the influence of high latitudes, specifically sea ice, on mid-latitudes and a better understanding of mesoscale ocean–atmosphere thermodynamic interactions still require further study. To quantify the effects of oceanic mesoscale activity during the periods of maximum and minimum Antarctic sea ice extent (September 2019 and February 2020), numerical experiments were conducted using a coupled regional model and an online two-dimensional spatial filter to remove high-frequency sea surface temperature (SST) oscillations. The largest SST anomalies were observed in the Brazil–Malvinas Confluence and along oceanic fronts in September, with maximum SST anomalies reaching 4.23 °C and −3.71 °C. In February, the anomalies were 2.18 °C and −3.06 °C. The influence of oceanic mesoscale activity was evident in surface atmospheric variables, with larger anomalies also observed in September. This influence led to changes in the vertical structure of the atmosphere, affecting the development of the marine atmospheric boundary layer (MABL) and influencing the free atmosphere above the MABL. Modulations in precipitation patterns were observed, not only in oceanic regions, but also in adjacent continental areas. This research provides a novel perspective on ocean–atmosphere thermodynamic coupling, highlighting the mesoscale role and importance of its representation in the study region. Full article
Show Figures

Figure 1

21 pages, 2186 KiB  
Article
Impact of Interactions Between Zn(II) and Selenites in an Aquatic Environment on the Accumulation of Se and Zn in a Fungal Cell
by Małgorzata Kałucka, Piotr Podsadni, Agnieszka Szczepańska, Eliza Malinowska, Anna Błażewicz and Jadwiga Turło
Molecules 2025, 30(14), 3015; https://doi.org/10.3390/molecules30143015 - 18 Jul 2025
Viewed by 280
Abstract
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if [...] Read more.
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if Zn2+ and SeO32− concentrations in the liquid medium are not high enough to precipitate ZnSeO3, the accumulation of selenium in the presence of zinc, and zinc in the presence of selenites, significantly dropped. This effect was more dependent on the molar ratio of ions in the medium than on the concentration values. We hypothesized that the formation of zinc–selenite soluble complexes with charges depending on the ion concentration ratio in the aquatic environment affects the first stage of ion transport into the fungal cell—biosorption. To verify this, we found the zinc–selenite molar ratio at which the complexes of the highest stability are formed, examined the influence of the molar ratio of ions in the medium on the concentration of Zn and Se in the mushroom cell wall, and investigated the correlation between the concentration of selenites not bound in complex compounds and the Se concentration in the cell wall. The results indicate that the molar fraction of Zn(II) in a liquid medium in the range of 0.5–0.6 promotes the formation of the most stable complexes. At the same time, it significantly reduces the percentage of free selenites in the medium and most strongly inhibits the biosorption process of both zinc and selenium. Full article
Show Figures

Figure 1

16 pages, 2520 KiB  
Article
Infrared Spectroscopic Determination of Strongly Bound Cyanides in Water
by Rihab Masmoudi and Carl P. Tripp
Spectrosc. J. 2025, 3(3), 21; https://doi.org/10.3390/spectroscj3030021 - 17 Jul 2025
Viewed by 200
Abstract
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. [...] Read more.
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. However, the strong acid dissociables cyanide also poses health concerns as it liberates free-CN under ultraviolet irradiation or when present in acidic solutions. Detection of strongly acid dissociables cyanide typically requires its digestion in acidic solutions and measurement of the gaseous HCN produced. A simple infrared spectroscopic method is described here to speciate and quantify three strong acid dissociables cyanide: [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2]. The strategy involves precipitating the strongly acid dissociables cyanide using cetyltrimethylethylammonium bromide, capturing the precipitate on a polyethylene membrane, and quantifying the individual strongly acid dissociables cyanide from the IR spectrum recorded in transmission mode through the membrane. Controlling the particle diameter to be in the range of 0.2–2 µm is important. Particles less than 0.2 µm pass through the membrane, whereas particles larger than about 2 µm lead to nonlinearity in quantification. The average %recoveries for [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2] were 100% (%RSD = 7), 91% (%RSD = 7), and 101% (%RSD = 8), respectively. The detection limit for [Fe(CN)6]3− and [Co(CN)6]3− were both 20 ppb CN, whereas [Au(CN)2] was 100 ppb CN. The detection range was 20–750 ppb CN for [Fe(CN)6]3− and [Co(CN)6]3− and 100–750 ppb CN for [Au(CN)2] with a linear regression of R2 = 0.999–1.000. Full article
Show Figures

Figure 1

25 pages, 5011 KiB  
Article
New Insights into Meteorological and Hydrological Drought Modeling: A Comparative Analysis of Parametric and Non-Parametric Distributions
by Ahmad Abu Arra and Eyüp Şişman
Atmosphere 2025, 16(7), 846; https://doi.org/10.3390/atmos16070846 - 11 Jul 2025
Viewed by 236
Abstract
Accurate drought monitoring depends on selecting an appropriate cumulative distribution function (CDF) to model the original data, resulting in the standardized drought indices. In the numerous research studies, while rigorous validation was not made by scrutinizing the model assumptions and uncertainties in identifying [...] Read more.
Accurate drought monitoring depends on selecting an appropriate cumulative distribution function (CDF) to model the original data, resulting in the standardized drought indices. In the numerous research studies, while rigorous validation was not made by scrutinizing the model assumptions and uncertainties in identifying theoretical drought CDF models, such oversights lead to biased representations of drought evaluation and characteristics. This research compares the parametric theoretical and empirical CDFs for a comprehensive evaluation of standardized Drought Indices. Additionally, it examines the advantages, disadvantages, and limitations of both empirical and theoretical distribution functions in drought assessment. Three drought indices, Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Standardized Precipitation Evapotranspiration Index (SPEI), cover meteorological and hydrological droughts. The assessment spans diverse applications, covering different climates and regions: Durham, United Kingdom (SPEI, 1868–2021); Konya, Türkiye (SPI, 1964–2022); and Lüleburgaz, Türkiye (SDI, 1957–2015). The findings reveal that theoretical and empirical CDFs demonstrated notable discrepancies, particularly in long-term hydrological drought assessments, where underestimations reached up to 50%, posing risks of misinformed conclusions that may impact critical drought-related decisions and policymaking. Root Mean Squared Error (RMSE) for SPI3 between empirical and best-fitted CDF was 0.087, and between empirical and Gamma it was 0.152. For SDI, it ranged between 0.09 and 0.143. The Mean Absolute Error (MAE) for SPEI was approximately 0.05 for all timescales. Additionally, it concludes that empirical CDFs provide more reliable and conservative drought assessments and are free from the constraints of model assumptions. Both approaches gave approximately the same drought duration with different intensities regarding drought characteristics. Due to the complex process of drought events and different definitions of drought events, each drought event must be studied separately, considering its effects on different sectors. Full article
(This article belongs to the Special Issue Drought Monitoring, Prediction and Impacts (2nd Edition))
Show Figures

Figure 1

21 pages, 2440 KiB  
Article
Dual-Purpose Utilization of Sri Lankan Apatite for Rare Earth Recovery Integrated into Sustainable Nitrophosphate Fertilizer Manufacturing
by D. B. Hashini Indrachapa Bandara, Avantha Prasad, K. D. Anushka Dulanjana and Pradeep Wishwanath Samarasekere
Sustainability 2025, 17(14), 6353; https://doi.org/10.3390/su17146353 - 11 Jul 2025
Viewed by 1177
Abstract
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction [...] Read more.
Rare earth elements (REEs) have garnered significant global attention due to their essential role in advanced technologies. Sri Lanka is endowed with various REE-bearing minerals, including the apatite-rich deposit in the Eppawala area, commonly known as Eppawala rock phosphate (ERP). However, direct extraction of REEs from ERP is technically challenging and economically unfeasible. This study introduces a novel, integrated approach for recovering REEs from ERP as a by-product of nitrophosphate fertilizer production. The process involves nitric acid-based acidolysis of apatite, optimized at 10 M nitric acid for 2 h at 70 °C with a pulp density of 2.4 mL/g. During cooling crystallization, 42 wt% of calcium was removed as Ca(NO3)2.4H2O while REEs remained in the solution. REEs were then selectively precipitated as REE phosphates via pH-controlled addition of ammonium hydroxide, minimizing the co-precipitation with calcium. Further separation was achieved through selective dissolution in a sulfuric–phosphoric acid mixture, followed by precipitation as sodium rare earth double sulfates. The process achieved over 90% total REE recovery with extraction efficiencies in the order of Pr > Nd > Ce > Gd > Sm > Y > Dy. Samples were characterized for their phase composition, elemental content, and morphology. The fertilizer results confirmed the successful production of a nutrient-rich nitrophosphate (NP) with 18.2% nitrogen and 13.9% phosphorus (as P2O5) with a low moisture content (0.6%) and minimal free acid (0.1%), indicating strong agronomic value and storage stability. This study represents one of the pioneering efforts to valorize Sri Lanka’s apatite through a novel, dual-purpose, and circular approach, recovering REEs while simultaneously producing high-quality fertilizer. Full article
(This article belongs to the Special Issue Technologies for Green and Sustainable Mining)
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
Removal of Chemical Oxygen Demand (COD) from Swine Farm Wastewater by Corynebacterium xerosis H1
by Jingyi Zhang, Meng Liu, Heshi Tian, Lingcong Kong, Wenyan Yang, Lianyu Yang and Yunhang Gao
Microorganisms 2025, 13(7), 1621; https://doi.org/10.3390/microorganisms13071621 - 9 Jul 2025
Viewed by 278
Abstract
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate [...] Read more.
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate an effective COD-degrading strain of SW, characterize (at the molecular level) its transformation of SW, and apply it to practical production. A strain of Corynebacterium xerosis H1 was isolated and had a 27.93% ± 0.68% (mean ± SD) degradation rate of COD in SW. This strain precipitated growth in liquids, which has the advantage of not needing to be immobilized, unlike other wastewater-degrading bacteria. Based on analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this bacterium removed nitrogen-containing compounds in SW, with proteins and lipids decreasing from 41 to 10% and lignins increasing from 51 to 82%. Furthermore, the enhancement of the sequencing batch reactor (SBR) with strain H1 improved COD removal in effluent, with reductions in the fluorescence intensity of aromatic protein I, aromatic protein II, humic-like acids, and fulvic acid regions. In addition, based on 16S rRNA gene sequencing analysis, SBRH1 successfully colonized some H1 bacteria and had a higher abundance of functional microbiota than SBRC. This study confirms that Corynebacterium xerosis H1, as a carrier-free efficient strain, can be directly applied to swine wastewater treatment, reducing carrier costs and the risk of secondary pollution. The discovery of this strain enriches the microbial resource pool for SW COD degradation and provides a new scheme with both economic and environmental friendliness for large-scale treatment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 4410 KiB  
Article
Host-Specific and Environment-Dependent Effects of Endophyte Alternaria oxytropis on Three Locoweed Oxytropis Species in China
by Yue-Yang Zhang, Yan-Zhong Li and Zun-Ji Shi
J. Fungi 2025, 11(7), 516; https://doi.org/10.3390/jof11070516 - 9 Jul 2025
Viewed by 407
Abstract
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−) [...] Read more.
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−) plants of three main Chinese locoweed species (O. kansuensis, O. glabra, and O. ochrocephala) under controlled conditions, and analyzed environmental factors at locoweed poisoning hotspots for herbivores. The results demonstrated significant species-specific effects: E+ plants of O. glabra and O. ochrocephala exhibited 26–39% reductions in biomass, net photosynthetic rate, and stomatal conductance, with elevated CO2 levels, while O. kansuensis showed no measurable impacts. Swainsonine concentrations were 16–20 times higher in E+ plants (122.6–151.7 mg/kg) than in E− plants. Geospatial analysis revealed that poisoning hotspots for herbivores consistently occurred in regions with extreme winter conditions (minimum temperatures ≤ −17 °C and precipitation ≤ 1 mm during the driest month), suggesting context-dependent benefits under abiotic stress. These findings suggest that the ecological role of A. oxytropis may vary depending on both host species and environmental context, highlighting a trade-off between growth costs and potential stress tolerance conferred by A. oxytropis. The study underscores the need for field validation to elucidate the adaptive mechanisms maintaining this symbiosis in harsh environments. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

18 pages, 1756 KiB  
Technical Note
Detection of Banana Diseases Based on Landsat-8 Data and Machine Learning
by Renata Retkute, Kathleen S. Crew, John E. Thomas and Christopher A. Gilligan
Remote Sens. 2025, 17(13), 2308; https://doi.org/10.3390/rs17132308 - 5 Jul 2025
Viewed by 562
Abstract
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred [...] Read more.
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred disease data with observed disease data. In this study, we present a novel remote-sensing-based framework that combines Landsat-8 imagery with meteorology-informed phenological models and machine learning to identify anomalies in banana crop health. Unlike prior studies, our approach integrates domain-specific crop phenology to enhance the specificity of anomaly detection. We used a pixel-level random forest (RF) model to predict 11 key vegetation indices (VIs) as a function of historical meteorological conditions, specifically daytime and nighttime temperature from MODIS and precipitation from NASA GES DISC. By training on periods of healthy crop growth, the RF model establishes expected VI values under disease-free conditions. Disease presence is then detected by quantifying the deviations between observed VIs from Landsat-8 imagery and these predicted healthy VI values. The model demonstrated robust predictive reliability in accounting for seasonal variations, with forecasting errors for all VIs remaining within 10% when applied to a disease-free control plantation. Applied to two documented outbreak cases, the results show strong spatial alignment between flagged anomalies and historical reports of banana bunchy top disease (BBTD) and Fusarium wilt Tropical Race 4 (TR4). Specifically, for BBTD in Australia, a strong correlation of 0.73 was observed between infection counts and the discrepancy between predicted and observed NDVI values at the pixel with the highest number of infections. Notably, VI declines preceded reported infection rises by approximately two months. For TR4 in Mozambique, the approach successfully tracked disease progression, revealing clear spatial spread patterns and correlations as high as 0.98 between VI anomalies and disease cases in some pixels. These findings support the potential of our method as a scalable early warning system for banana disease detection. Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Figure 1

Back to TopTop