Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (633)

Search Parameters:
Keywords = prebiotic properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 596 KB  
Article
Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage
by Mario Caponio, Lorenza Francesca De Lellis, Maria Daglia, Michela Verni and Carlo Giuseppe Rizzello
Foods 2026, 15(3), 451; https://doi.org/10.3390/foods15030451 - 27 Jan 2026
Viewed by 141
Abstract
Carrot juice processing generates large amounts of pomace, a fibre-rich by-product with significant valorisation potential. This study explored the feasibility of fermenting carrot by-product with Levilactobacillus brevis AM7 and Leuconostoc pseudomesenteroides DSM20193 to produce exopolysaccharide (EPS)-enriched functional beverages. Beverages were fermented with or [...] Read more.
Carrot juice processing generates large amounts of pomace, a fibre-rich by-product with significant valorisation potential. This study explored the feasibility of fermenting carrot by-product with Levilactobacillus brevis AM7 and Leuconostoc pseudomesenteroides DSM20193 to produce exopolysaccharide (EPS)-enriched functional beverages. Beverages were fermented with or without sucrose addition (EPS+ and EPS, respectively) and characterized for microbiological, biochemical, rheological, and sensory attributes. Both strains showed robust growth (>8 log cfu/mL) and acidification (final pH below 4.8), comparable to plant-based yoghurt alternatives, with EPS synthesis markedly enhanced in sucrose-supplemented beverages. Leuc. pseudomesenteroides DSM20193 synthesized the highest EPS concentration (16.8 g/100 g dry weight), resulting in a 6-fold viscosity increase compared to EPS samples, thus improving the adherence to the spoon and preventing syneresis of the beverages. Sensory evaluation revealed that EPS+ carrot-based beverages had improved sweetness due to a slight sucrose residue, aroma, and mouthfeel, while maintaining low off-flavours and high colour uniformity. The results highlight carrot by-product as a promising substrate for developing clean-label beverages that are rich in dietary fibres and polyphenols and show antioxidant and potential prebiotic properties through sustainable fermentation processes. Full article
Show Figures

Figure 1

30 pages, 2087 KB  
Review
Prebiotics and Gut Health: Mechanisms, Clinical Evidence, and Future Directions
by Cinara Regina A. V. Monteiro, Eduarda G. Bogea, Carmem D. L. Campos, José L. Pereira-Filho, Viviane S. S. Almeida, André A. M. Vale, Ana Paula S. Azevedo-Santos and Valério Monteiro-Neto
Nutrients 2026, 18(3), 372; https://doi.org/10.3390/nu18030372 - 23 Jan 2026
Viewed by 508
Abstract
Background/Objectives: Prebiotics, which are non-digestible compounds that selectively modulate gut microbiota, are recognized for their potential to promote host health. Although their bifidogenic effect is well documented, a systematic synthesis of how this microbial modulation translates into clinical gastrointestinal (GI) and metabolic outcomes [...] Read more.
Background/Objectives: Prebiotics, which are non-digestible compounds that selectively modulate gut microbiota, are recognized for their potential to promote host health. Although their bifidogenic effect is well documented, a systematic synthesis of how this microbial modulation translates into clinical gastrointestinal (GI) and metabolic outcomes across diverse populations is needed. This review aims to integrate mechanistic insights with clinical evidence to elucidate the pathway from prebiotic structures to tangible health benefits. Methods: This comprehensive narrative review details the structural properties of major prebiotics (e.g., inulin, FOS, and GOS) that govern their fermentation and the production of short-chain fatty acids (SCFAs). To evaluate clinical efficacy, an analysis of 22 randomized controlled trials from the past decade was conducted, focusing on human studies that utilized ISAPP-recognized prebiotics as the sole intervention. Results: The analysis confirms that prebiotic supplementation consistently increased the abundance of beneficial bacteria (e.g., Bifidobacterium and Lactobacillus) and SCFA production. These changes are associated with significant clinical improvements, including enhanced stool frequency and consistency, strengthened intestinal barrier function, and modulated immune responses. Benefits have been documented in healthy individuals, children, the elderly, and those with conditions such as constipation, metabolic syndrome, and antibiotic-associated dysbiosis. However, significant inter-individual variability in response was evident, and the study designs showed notable heterogeneity in prebiotic type, dosage, and duration. Conclusions: Prebiotics are effective modulators of gut health, driving clinical benefits through selective microbial fermentation and SCFA production. The documented heterogeneity and variability highlight the need for future research to focus on personalized nutritional strategies. Key priorities include standardizing intervention protocols, elucidating dose–response relationships, integrating multi-omics data to link taxonomy to function, and exploring novel applications such as synbiotic formulations and gut–brain axis modulation. Full article
Show Figures

Figure 1

29 pages, 3890 KB  
Review
Selection for Molecularly Complementary Modules (MCMs) Drives the Origins and Evolution of Pleiofunctional, Epistatic Interactomes (PEIs)
by Robert Root-Bernstein
Life 2026, 16(1), 170; https://doi.org/10.3390/life16010170 - 20 Jan 2026
Viewed by 137
Abstract
The huge number of possible permutations of genes, proteins and small molecules make the random emergence of cellular networks problematic. How, therefore, do interactomes come into existence? What selects for their stability and functionality? I hypothesize that interactomes originate from molecularly complementary modules [...] Read more.
The huge number of possible permutations of genes, proteins and small molecules make the random emergence of cellular networks problematic. How, therefore, do interactomes come into existence? What selects for their stability and functionality? I hypothesize that interactomes originate from molecularly complementary modules (MCMs) that are selected for stability and retain their interactivity when mixed and matched with other such modules to create novel molecules and complexes displaying emergent properties not present in the individual components of the network. Because evolution can only proceed by working upon existing variants, and these variants emerge from selection of MCMs, the resulting systems must exhibit the characteristics of pleiofunctional, epistatic interactomes (PEIs). The resulting systems should display “molecular paleontology”, providing clues as to the historical process by which these MCMs were incorporated into the system. The MCM mechanism of PEI evolution is illustrated here by two case studies. The first concerns the prebiotic emergence of the glutathione–ascorbate anti-oxidant system and its later incorporation into regulation of glucose transport and catecholamine receptor activity. The second concerns the MCM evolution of the ribosome as, perhaps, the first PEI, and its role as a module for the later construction of the first cellular genomes. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

22 pages, 1375 KB  
Article
In Vitro Assessment of Gut Microbiota Modulation Through Functional Biscuits Enriched with Almond By-Products
by Angela Racioppo, Maria Rosaria Corbo, Angela Guerrieri, Milena Sinigaglia, Antonio Bevilacqua, Rossella Caporizzi, Antonio Derossi and Barbara Speranza
Foods 2026, 15(2), 313; https://doi.org/10.3390/foods15020313 - 15 Jan 2026
Viewed by 250
Abstract
Almond skin is an abundant by-product of almond processing and is recognized for its rich content of dietary fiber, polyphenols, and unsaturated fatty acids along with potential health benefits. This study aimed to evaluate the nutritional composition, prebiotic potential, and microbiota modulation properties [...] Read more.
Almond skin is an abundant by-product of almond processing and is recognized for its rich content of dietary fiber, polyphenols, and unsaturated fatty acids along with potential health benefits. This study aimed to evaluate the nutritional composition, prebiotic potential, and microbiota modulation properties of dehydrated almond skin, including its use in 3D-printed functional biscuits. Nutritional analysis revealed high dietary fiber (62.6%) and substantial antioxidant capacity linked to polyphenols. Almond skin supplementation with a concentration ranging from 2.5% to 5.0% significantly enhanced the viability of various probiotic strains during storage, extending their shelf life. Two biscuit formulations, with and without almond skin, were produced and subjected to simulated gastrointestinal digestion (INFOGEST protocol) followed by in vitro fermentation using a minimal gut microbiota model (Bifidobacterium longum, Lactobacillus rhamnosus, Bacteroides caccae, Escherichia coli, Segatella copri, and Clostridioides difficile). Results demonstrated that biscuit enriched with almond skin selectively promoted the growth of beneficial bacteria such as B. longum and L. rhamnosus (from 6.9 to 8.5 log cfu/mL and from 7.8 to 9.0 log cfu/mL, respectively) while suppressing pathogens including C. difficile and E. coli. Moreover, enriched biscuits retained higher polyphenol content and exhibited a favorable macronutrient profile. These findings support the valorization of almond skin as a sustainable functional ingredient offering prebiotic effects and probiotic viability protection, with promising applications in personalized nutrition and gut health management. Further in vivo studies and clinical trials are necessary to confirm these effects and optimize formulations for commercial use. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

23 pages, 1396 KB  
Article
Physicochemical and Sensory Evaluation of Dark Chocolate Enriched with Aloe vera-Derived Polysaccharide
by Veronika Kotrcová, Ekambaranellore Prakash, Marcela Sluková, Jana Čopíková and Natália Palugová
Polysaccharides 2026, 7(1), 6; https://doi.org/10.3390/polysaccharides7010006 - 9 Jan 2026
Viewed by 339
Abstract
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the [...] Read more.
The demand for clean-label functional foods has increased interest in natural polysaccharides with health benefits. Acemannan, an O-acetylated glucomannan from Aloe vera, possesses antioxidant, immunomodulatory, and prebiotic activities, but its performance in fat-based systems is not well understood. This study examined the incorporation of acemannan into dark chocolate at 1% and 5% (w/w) and its effects on physicochemical, rheological, antioxidant, and sensory properties. Particle size distribution remained within acceptable limits, though the 5% sample showed a larger mean size and broader span. Rheological tests confirmed shear-thinning behavior, with the higher concentration increasing viscosity at low shear and reducing it at high shear. Antioxidant activity measured by the DPPH assay showed modest improvement in enriched samples. Consumer tests with 30 panelists indicated a strong preference (89%) for the 1% formulation, which maintained a smooth mouthfeel and balanced sensory characteristics, while the 5% sample displayed more fruity and earthy notes with lower acceptance. GC–MS analysis revealed altered volatile profiles, and FTIR spectroscopy confirmed acemannan stability in the chocolate matrix. These findings demonstrate that acemannan can be incorporated into dark chocolate up to 1% as a multifunctional, structurally stable polysaccharide ingredient without compromising product quality. Full article
Show Figures

Graphical abstract

15 pages, 3127 KB  
Article
Optimization of the Probiotic Fermentation Process of Ganoderma lucidum Juice and Its In Vitro Immune-Enhancing Potential
by Dilireba Shataer, Xin Liu, Yanan Qin, Jing Lu, Haipeng Liu and Liang Wang
Foods 2026, 15(2), 227; https://doi.org/10.3390/foods15020227 - 8 Jan 2026
Viewed by 295
Abstract
Fermented products have recently garnered substantial interest in both research and commercial contexts. Although probiotic fermentation is predominantly practiced with dairy, fruits, vegetables, and grains, its application to dual-purpose food-medicine materials like Ganoderma lucidum has been comparatively underexplored. In this study, Ganoderma lucidum [...] Read more.
Fermented products have recently garnered substantial interest in both research and commercial contexts. Although probiotic fermentation is predominantly practiced with dairy, fruits, vegetables, and grains, its application to dual-purpose food-medicine materials like Ganoderma lucidum has been comparatively underexplored. In this study, Ganoderma lucidum fermented juice (GFJ) served as the substrate and was fermented with five probiotic strains. The optimal inoculation ratios—determined by employing a uniform design experiment—were as follows: Bifidobacterium animalis 6.05%, Lacticaseibacillus paracasei 9.52%, Lacticaseibacillus rhamnosus 6.63%, Pediococcus pentosaceus 21.38%, and Pediococcus acidilactici 56.42%. Optimal fermentation parameters established by response surface methodology included 24 h of fermentation at 37 °C, a final cell density of 5 × 106 CFU/mL, and a sugar content of 4.5 °Brix. Experiments with RAW264.7 macrophages revealed that GFJ significantly promoted both phagocytic activity and nitric oxide (NO) secretion, indicating enhanced immune characteristics as a result of fermentation. Untargeted metabolomics profiling of GFJ across different fermentation stages showed upregulation of functional metabolites, including polyphenols, prebiotics, functional oligosaccharides, and Ganoderma triterpenoids (GTs)—notably myricetin-3-O-rhamnoside, luteolin-7-O-glucuronide, raffinose, sesamose, and Ganoderma acids. These increments in metabolic compounds strongly correlate with improved functional properties in GFJ, specifically heightened superoxide dismutase activity and immunomodulatory capacity. These results highlight an effective approach for developing functionally enriched fermented products from medicinal fungi, with promising applications in functional food and nutraceutical industries. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

26 pages, 861 KB  
Review
Targeting the Gut Microbiota: Mechanistic Investigation of Polyphenol Modulation of the Gut–Brain Axis in Alzheimer’s Disease
by Zhenning Wang, Shanshan Ba, Man Li, Yuanyuan Wei, Yuenan Wang, Jianqin Mao, Yang Xiang, Dongdong Qin and Chuhua Zeng
Int. J. Mol. Sci. 2026, 27(2), 604; https://doi.org/10.3390/ijms27020604 - 7 Jan 2026
Viewed by 269
Abstract
Alzheimer’s disease (AD) represents an increasingly severe global health challenge. Recently, the role of the gut–brain axis in AD pathogenesis has garnered significant attention. Dysbiosis of the gut microbiota can exacerbate core pathologies such as neuroinflammation, amyloid beta (Aβ) deposition, and tau hyperphosphorylation [...] Read more.
Alzheimer’s disease (AD) represents an increasingly severe global health challenge. Recently, the role of the gut–brain axis in AD pathogenesis has garnered significant attention. Dysbiosis of the gut microbiota can exacerbate core pathologies such as neuroinflammation, amyloid beta (Aβ) deposition, and tau hyperphosphorylation through neural, endocrine, and immune pathways. Polyphenolic compounds have emerged as a focal point in neuroprotective research owing to their pronounced anti-inflammatory and antioxidant properties. Notably, polyphenols exert effects not only by directly influencing the central nervous system (CNS) but also through indirectly modulating the composition and function of the gut microbiota, thereby impacting bidirectional gut–brain communication. This dual mechanism offers a potential avenue for their application in the prevention and treatment of AD. This review aims to compile recent research on the relationship between polyphenols and the gut microbiota. We assessed the literature from PubMed, Google Scholar, and Web of Science databases, published from the establishment of the database to 24 November 2025. The keywords used include “Polyphenols”, “Gut–brain axis”, “Gut microbiota”, “Alzheimer’s disease”, “Epigallocatechin gallate”, “Quercetin”, “Curcumin”, “Ferulic acid”, “Resveratrol”, “Anthocyanin”, “Myricetin”, “Chlorogenic acid”, etc. This review discusses the various mechanisms by which polyphenols influence AD through modulating the gut microbiota. Polyphenols and gut microbiota exhibit critical bidirectional interactions. On one hand, the bioavailability and activity of polyphenols are highly dependent on metabolic conversion by gut microbiota. On the other hand, polyphenols selectively promote the proliferation of beneficial bacteria such as bifidobacteria and lactobacilli like prebiotics, while inhibiting the growth of pathogenic bacteria. This reshapes the intestinal microecology, enhances barrier function, and regulates beneficial metabolites. Utilizing a nanotechnology-based drug delivery system, the pharmacokinetic stability and brain targeting efficacy of polyphenols can be significantly enhanced, providing innovative opportunities for the targeted prevention and management of AD. Full article
(This article belongs to the Special Issue Nutrition in Neurodegenerative Diseases: Molecular Perspectives)
Show Figures

Graphical abstract

30 pages, 1140 KB  
Review
Fatty Acids as Prebiotics and Their Role in Antibiofilm Activity
by Filomena Nazzaro, Francesca Coppola, Florinda Fratianni and Raffaele Coppola
Antibiotics 2026, 15(1), 57; https://doi.org/10.3390/antibiotics15010057 - 5 Jan 2026
Viewed by 517
Abstract
Microbial biofilms pose significant medical and industrial challenges due to their resistance to conventional antimicrobials, accounting for 40–80% of bacteria in various environments. This resistance primarily results from the extracellular polymeric matrix, a protective network of sugars, proteins, and other molecules produced by [...] Read more.
Microbial biofilms pose significant medical and industrial challenges due to their resistance to conventional antimicrobials, accounting for 40–80% of bacteria in various environments. This resistance primarily results from the extracellular polymeric matrix, a protective network of sugars, proteins, and other molecules produced by bacteria. The matrix restricts antibiotic penetration, facilitates microbial communication, and retains nutrients. Consequently, novel strategies to counteract biofilms are under investigation. Fatty acids have emerged as promising prebiotic agents, defined as substances that stimulate the growth of beneficial bacteria. These compounds can disrupt biofilm structure and increase microbial susceptibility to treatment. Short- and medium-chain fatty acids demonstrate direct antimicrobial activity and can alter microbial community composition, thereby inhibiting biofilm formation in several pathogens, including oral species. For instance, omega-3 fatty acids effectively inhibit Staphylococcus aureus and Pseudomonas aeruginosa biofilms through membrane disruption and quorum sensing (QS) inhibition. Additionally, long-chain fatty acids, particularly omega-3 and omega-6 polyunsaturated fatty acids, exhibit anti-inflammatory and antibacterial properties. This review synthesises current evidence on fatty acids as prebiotics, emphasising their mechanisms of action and therapeutic potential against drug-resistant biofilm-associated infections. Given the increasing prevalence of antimicrobial resistance, unsaturated and essential fatty acids rep-resent promising candidates for innovative biofilm-control strategies. Full article
(This article belongs to the Special Issue Natural Compounds as Antimicrobial Agents, 3rd Edition)
Show Figures

Figure 1

16 pages, 2342 KB  
Article
Valorization of Hericium erinaceus By-Products for β-Glucan Recovery via Pulsed Electric Field-Assisted Alkaline Extraction and Prebiotic Potential Analysis
by Tannaporn Jeenpitak, Alisa Pattarapisitporn, Pipat Tangjaidee, Tabkrich Khumsap, Artit Yawootti, Suphat Phongthai, Seiji Noma and Wannaporn Klangpetch
Foods 2026, 15(1), 145; https://doi.org/10.3390/foods15010145 - 2 Jan 2026
Viewed by 609
Abstract
Hericium erinaceus is a well-known edible fungus rich in β-glucans, widely recognized for its immune-boosting and prebiotic properties. This study used a pulsed electric field (PEF) combined with alkaline extraction to improve β-glucan yield from H. erinaceus by-products. The treated residues were extracted [...] Read more.
Hericium erinaceus is a well-known edible fungus rich in β-glucans, widely recognized for its immune-boosting and prebiotic properties. This study used a pulsed electric field (PEF) combined with alkaline extraction to improve β-glucan yield from H. erinaceus by-products. The treated residues were extracted with hot water or 7.5% NaOH. The results exhibited that PEF pretreatment followed by NaOH extraction gave the highest β-glucan yield (25 g/100 g) and purity (56.93%). SEM images revealed greater cell wall damage in NaOH-treated samples, while FTIR spectroscopy confirmed clear β-glycosidic linkages. The optimal conditions of PEF investigated by response surface methodology (RSM) were electric field strength 10 kV/cm, frequency 12 Hz, and mushroom/water ratio 8.44%, yielding β-glucan content of 50.14%. The extracted β-glucan demonstrated high prebiotic potential, supporting probiotic Lactobacillus spp. growth, enhancing short-chain fatty acids production, and resisting gastrointestinal digestion. Overall, this study demonstrates the broader potential of PEF-assisted alkaline extraction to support sustainable food processing, valorization of agro-industrial by-products, and the development of functional ingredients for modern food industry applications. Full article
Show Figures

Figure 1

17 pages, 7028 KB  
Article
Comparative Study on the In Vitro Fermentation Characteristics of Three Plant-Derived Polysaccharides with Different Structural Compositions
by Xingyue Gao, Xinming Zhao, Jie Huang, Huan Liu and Jielun Hu
Foods 2026, 15(1), 137; https://doi.org/10.3390/foods15010137 - 2 Jan 2026
Viewed by 460
Abstract
This study aimed to elucidate the structure–activity relationship between the structural characteristics of three plant-derived polysaccharides, Lycium barbarum polysaccharide (LBP), citrus pectin (CP) and peach gum polysaccharide (PGP), and their prebiotic functionalities. Structural analysis indicated that LBP exhibited a medium molecular weight and [...] Read more.
This study aimed to elucidate the structure–activity relationship between the structural characteristics of three plant-derived polysaccharides, Lycium barbarum polysaccharide (LBP), citrus pectin (CP) and peach gum polysaccharide (PGP), and their prebiotic functionalities. Structural analysis indicated that LBP exhibited a medium molecular weight and was rich in galactose and rhamnose, which contributed to its high uronic acid content, strong antioxidant activity, and sustained fermentation profile with enhanced butyrate production. In contrast, CP, with its low molecular weight and neutral linear glucan backbone, was rapidly utilized by gut microbiota, leading to accelerated propionate accumulation. Meanwhile, PGP, characterized by an ultra-high molecular weight and a highly branched arabinogalactan configuration, acted as a specific substrate that promoted mid- to late-stage fermentation and significantly increased butyrate yield, highlighting its prebiotic property driven by structural complexity. The functional differences among these polysaccharides were determined by their monosaccharide composition, molecular weight distribution, and chain conformation. These findings provide a scientific basis for the targeted development of plant-derived prebiotics aimed at specific metabolic functions. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2963 KB  
Article
Effect of Ultrasonic-Assisted Extraction on the Structural and Physiological Activity of Jackfruit Polysaccharides
by Jinmei Hu, Zongcheng Luo, Fengzhen You, Donghui Luo, Fengchuan Ma, Zhongsheng Tang and Siming Zhu
Foods 2026, 15(1), 132; https://doi.org/10.3390/foods15010132 - 2 Jan 2026
Viewed by 350
Abstract
This study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the physicochemical properties, biological activities, and intestinal flora regulatory capacity of jackfruit polysaccharides (JPs). Under optimized UAE conditions (liquid-to-solid ratio 30 mL/g, extraction time 30 min, power 90 W), the yield [...] Read more.
This study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the physicochemical properties, biological activities, and intestinal flora regulatory capacity of jackfruit polysaccharides (JPs). Under optimized UAE conditions (liquid-to-solid ratio 30 mL/g, extraction time 30 min, power 90 W), the yield of JP reached 8.70 ± 0.11%. Compared with hot-water-extracted jackfruit polysaccharides (HAE-JPs), ultrasonic-assisted extracted jackfruit polysaccharides (UAE-JPs) exhibited a lower molecular weight, a smaller particle size, and a significant 11.5-fold increase in galacturonic acid content. Structural analyses confirmed that UAE-JPs retained a triple-helix and highly branched conformation but with enhanced exposure of acidic monosaccharides. These structural modifications contributed to superior antioxidant activity and enzyme inhibition ability, demonstrated by its lower IC50 values against DPPH, ABTS radicals, and α-glucosidase. Crucially, in vitro fecal fermentation revealed that UAE-JPs and HAE-JPs differentially modulated the gut microbiota. UAE-JPs preferentially promoted the proliferation of Lactobacillus (an increase of 27.04%) and Bifidobacterium, facilitating short-term acidification. In contrast, HAE-JPs enriched butyrate-producing bacteria like Clostridium (increase of 18.56%). Both polysaccharides significantly inhibited the growth of Fusobacterium (a decrease of 5.23%) related to cancer. Consequently, this study establishes UAE as a green and efficient technique capable of not only modifying the structure of JPs but also precisely tailoring their prebiotic functionality, which ultimately demonstrates the potential of UAE-JPs as a functional food ingredient with enhanced bioactivity. Full article
(This article belongs to the Special Issue The Extraction, Structure and Bioactivities of Plant Polysaccharides)
Show Figures

Graphical abstract

21 pages, 1062 KB  
Article
Chia Seed Gel Powder as a Clean-Label Enhancer of Texture, Physicochemical Quality, Antioxidant Activity, and Prebiotic Function in Probiotic Low-Fat Yogurt
by Mahmoud E. A. Hamouda, Ratul Kalita, Abdelfatah K. Ali, Pratibha Chaudhary, Pramith U. Don, Omar A. A. Abdelsater, Anjali Verma and Yaser Elderwy
Processes 2026, 14(1), 145; https://doi.org/10.3390/pr14010145 - 31 Dec 2025
Viewed by 711
Abstract
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using [...] Read more.
This study evaluated the effect of incorporating chia seed gel powder (CSGP) as a natural, clean-label stabilizer on the physicochemical, functional, microbiological, microstructural, antioxidant, and sensory properties of probiotic low-fat yogurt (PLFY) during 21 days of refrigerated storage. Six formulations were prepared using 0–2.5% CSGP, including Control (0% CSGP), YOG1 (0.5% CSGP), YOG2 (1.0% CSGP), YOG3 (1.5% CSGP), YOG4 (2.0% CSGP), and YOG5 (2.5% CSGP). Results showed that increasing CSGP levels noticeably enhanced the total solids, protein content, viscosity, hardness, and water-holding capacity of the PLFY (p < 0.05), while consistently reducing syneresis. Antioxidant activity also rose with higher CSGP concentrations, with YOG5 exhibiting the greatest DPPH scavenging activity (35.12%). Confocal laser scanning microscopy revealed a denser and more uniform protein network in PLFY fortified with CSGP, consistent with rheological measurements showing increased storage (G′) and loss (G″) moduli. Probiotic viability significantly increased (p < 0.05) in CSGP-added samples, indicating a potential prebiotic effect of CSGP. Sensory results demonstrated that although higher CSGP levels slightly darkened the yogurt color, body, texture, flavor, and total sensory scores improved markedly, with YOG5 gaining the highest total score (81.77). The results demonstrate that CSGP acts as a highly effective, multifunctional ingredient that enhances texture, stability, probiotic viability, and antioxidant capacity, making it a strong clean-label candidate for developing high-quality, functional probiotic low-fat yogurt. Full article
Show Figures

Graphical abstract

21 pages, 2111 KB  
Article
Multidimensional Profiling of Chinese Sweet Tea (Lithocarpus litseifolius): Processing Methods Modulate Sensory Properties, Bioaccessibility and Prebiotic Potential via Gut Microbiota Regulation
by Zhen Zeng, Qiyun Zhang, Lijia Zhang, Baichuan Hu, Xinyue Wen, Zihan Wang, Wenjuan Wu and Yuntao Liu
Foods 2026, 15(1), 110; https://doi.org/10.3390/foods15010110 - 30 Dec 2025
Viewed by 277
Abstract
This study systematically examines the effects of processing methods (green vs. black tea) and preparation techniques (brewing vs. decoction) on the flavor and functional composition of Chinese sweet tea (Lithocarpus litseifolius). Fermentation degree and extraction temperature were found to significantly influence [...] Read more.
This study systematically examines the effects of processing methods (green vs. black tea) and preparation techniques (brewing vs. decoction) on the flavor and functional composition of Chinese sweet tea (Lithocarpus litseifolius). Fermentation degree and extraction temperature were found to significantly influence polyphenol bioavailability, with green tea exhibiting the highest polyphenol and flavonoid contents (144.51 mg/g and 88.97 mg/g, respectively), while black tea showed an approximately 40% reduction in catechin levels due to oxidative polymerization. During in vitro simulated digestion, green tea maintained strong antioxidant activity despite its stronger bitter–astringent taste. Notably, in vitro fecal fermentation experiments demonstrated that sweet tea significantly promoted short-chain fatty acid (SCFA) production and modulated gut microbiota composition (with a 3.2-fold increase in acetate content in the black-tea decoction group). Black tea particularly enhanced beneficial genera (Roseburia and Coprococcus) after 24 h fermentation (p < 0.05) and exhibited superior prebiotic properties. Principal coordinate analysis confirmed there were significant structural differences in microbial communities among the treatment groups. This study is the first to reveal that processing methods regulate the prebiotic efficacy of sweet tea by modulating the bioaccessibility of active compounds, providing a theoretical foundation for the development of functional sweet tea products. Full article
Show Figures

Graphical abstract

30 pages, 1959 KB  
Review
Insights into the Mechanisms and Functional Effects of Insoluble Dietary Fiber Modification: A Review
by Jiayi Li, Wenjing Lang, Shuo Han, Xinyi Wu, Fuwei Hao, Yurong Zhou, Renpeng Du and Chen Song
Foods 2026, 15(1), 38; https://doi.org/10.3390/foods15010038 - 23 Dec 2025
Viewed by 1046
Abstract
Dietary fiber is an essential component of the human diet, and insoluble dietary fiber (IDF) accounts for a significant proportion. However, its poor solubility and rigid structure limit its high-value applications. In recent years, modification technologies have become key strategies for enhancing the [...] Read more.
Dietary fiber is an essential component of the human diet, and insoluble dietary fiber (IDF) accounts for a significant proportion. However, its poor solubility and rigid structure limit its high-value applications. In recent years, modification technologies have become key strategies for enhancing the functional properties of IDF and expanding its applications. This review systematically summarizes the latest advances in the field of IDF modification, emphasizing how different modification strategies precisely regulate the multilevel structure of IDF to selectively improve its physicochemical properties and physiological functions. The principles and mechanisms of physical, chemical, biological, and combined modification methods are explained, and the unique advantages and limitations of each method in terms of structural changes, functional enhancement, and application scenarios are compared. Using high-pressure hydrostatic pressure-assisted cellulase treatment on potato dietary fiber can effectively disrupt fiber rigidity, increase soluble dietary fiber (SDF), and markedly enhance cholesterol and glucose adsorption capacities, outperforming single-treatment approaches. Microwave-assisted enzymatic treatment of millet bran IDF raises its intestinal fermentation rate from 36% to 59% and doubles butyrate production, significantly boosting prebiotic activity and offering a new pathway for targeted modulation of gut microbiota; combined modification strategies further demonstrate synergistic benefits. Modified IDF can serve not only as a low-calorie fat replacer in foods but also, through specific structural alterations, be incorporated into plant-based meat products to improve their fiber attributes and nutritional density. Moreover, this review explores the emerging potential of modified IDF in pharmaceutical carriers and gut microecology regulation. The aim is to provide theoretical guidance for selecting and optimizing IDF modification strategies, thereby promoting the high-value utilization of agricultural processing by-products and the development of high-quality dietary fiber products. Full article
Show Figures

Graphical abstract

17 pages, 676 KB  
Article
Bioyogurt Enriched with Provitamin A Carotenoids and Fiber: Bioactive Properties and Stability
by Camila Bernal-Castro, Ángel David Camargo-Herrera, Carolina Gutiérrez-Cortés and Consuelo Díaz-Moreno
Fermentation 2025, 11(12), 698; https://doi.org/10.3390/fermentation11120698 - 16 Dec 2025
Viewed by 727
Abstract
Recent research has focused on yogurts supplemented with plant-derived and apiculture ingredients to enhance functional properties. This study evaluates the symbiotic potential of provitamin A carotenoids, dietary fiber, and oligosaccharides from carrots, mangoes, and honeydew honey in probiotic-enriched bioyogurt. Formulations were assessed during [...] Read more.
Recent research has focused on yogurts supplemented with plant-derived and apiculture ingredients to enhance functional properties. This study evaluates the symbiotic potential of provitamin A carotenoids, dietary fiber, and oligosaccharides from carrots, mangoes, and honeydew honey in probiotic-enriched bioyogurt. Formulations were assessed during fermentation (45 °C ± 1 °C for 5 h) and refrigerated storage (4 °C ± 1 °C for 21 days). Probiotic and starter culture viability was determined using pour-plate counts on MRS agar. Physicochemical parameters including pH, titratable acidity, total soluble solids, water-holding capacity, and antioxidant metrics (total phenolics and carotenoids) were analyzed. After 21 days of storage, the probiotic culture (VEGE 092) reached 10.26 log CFU/mL and the starter culture (YOFLEX) achieved 8.66 log CFU/mL, maintaining therapeutic thresholds. Total carotenoid content increased significantly (p < 0.05) from 2.15 to 3.96 µg β-carotene/g, indicating synergistic interactions between lactic acid bacteria and plant-derived bioactive compounds. These findings demonstrate that combining plant-derived carotenoids, prebiotic fibers, and honeydew oligosaccharides effectively maintains probiotic viability and enhances antioxidant stability throughout fermentation and refrigerated storage, supporting the development of functional dairy products with improved nutritional profiles. Full article
Show Figures

Graphical abstract

Back to TopTop