Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Microorganisms
2.2. Carrot By-Product Fermentation
2.3. Microbiological and Biochemical Characterization
2.4. EPS Isolation and Quantification and Viscosity Analysis
2.5. Colour and Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Proximal Composition
3.2. Microbial Growth
3.3. Acidification, Carbohydrate Metabolism and Antioxidant Potential
3.4. EPS Synthesis and Viscosity
3.5. Sensory and Colour Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DPPH | 1,1-diphenyl-2-picrylhydrazyl |
| EPS | exopolysaccharides |
| LAB | lactic acid bacteria |
| MRS | De Man, Rogosa and Sharp |
| QPS | quality presumption of safety |
| TPC | total polyphenol content |
| TTA | total titratable acidity |
References
- Simon, P.W. Carrot (Daucus carota L.) breeding. In Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers; Springer International Publishing: Cham, Switzerland, 2021; pp. 213–238. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Parchami, M.; Ramamoorthy, S.K.; Soufiani, A.M.; Hakkarainen, M.; Zamani, A. Bioconversion of carrot pomace to value-added products: Rhizopus delemar fungal biomass and cellulose. Fermentation 2023, 9, 374. [Google Scholar] [CrossRef]
- Kaur, P.; Subramanian, J.; Singh, A. Green extraction of bioactive components from carrot industry waste and evaluation of spent residue as an energy source. Sci. Rep. 2022, 12, 16607. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Motrescu, I.; Cara, I.G.; Filip, M.; Țopa, D.; Jităreanu, G. Application of pomace powder of black carrot as a natural food ingredient in yoghurt. Foods 2024, 13, 1130. [Google Scholar] [CrossRef]
- Zhu, Y.; Luan, Y.; Zhao, Y.; Liu, J.; Duan, Z.; Ruan, R. Current technologies and uses for fruit and vegetable wastes in a sustainable system: A review. Foods 2022, 12, 1949. [Google Scholar] [CrossRef]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Nayak, P.K.; Sridhar, K.; Inbaraj, B.S. Valorization of food waste as animal feed: A step towards sustainable food waste management and circular bioeconomy. Animals 2023, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Ikram, A.; Rasheed, A.; Ahmad Khan, A.; Khan, R.; Ahmad, M.; Bashir, R.; Hassan Mohamed, M. Exploring the health benefits and utility of carrots and carrot pomace: A systematic review. Int. J. Food Prop. 2024, 27, 180–193. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; López-Malo, A.; Mani-López, E. Lactic acid bacteria-derived exopolysaccharides: Dual roles as functional ingredients and fermentation agents in food applications. Fermentation 2025, 11, 538. [Google Scholar] [CrossRef]
- Li, H.; Jin, Y.; Li, H.; Zhao, J.; Stanton, C.; Ross, R.P.; Yang, B. Understanding Exopolysaccharides from Lactic Acid Bacteria: Synthesis, Functions, and Applications. J. Agric. Food Chem. 2025, 73, 22110–22132. [Google Scholar] [CrossRef]
- Abarquero, D.; Renes, E.; Fresno, J.M.; Tornadijo, M.E. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: A review. J. Food Sci. Technol. 2022, 57, 16–26. [Google Scholar] [CrossRef]
- Sørensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef]
- Sharma, H.K.; Kumar, N. Utilization of carrot pomace. In Food Processing By-Products and Their Utilization; Anal, A.K., Ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 207–229. [Google Scholar] [CrossRef]
- Uzun, D.E.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Tomas, M.; Capanoglu, E. Exploring the impact of fermentation on bioactive compounds in two different types of carrot pomace. Food Biosci. 2024, 61, 104646. [Google Scholar] [CrossRef]
- Anghel, A. Antimicrobial effects of polyphenols from fermented and non-fermented apple and carrot pomace against Escherichia coli. Food Feed Res. 2024, 51, 175–187. [Google Scholar] [CrossRef]
- Verni, M.; Wang, Y.; Clement, H.; Koirala, P.; Rizzello, C.G.; Coda, R. Antifungal peptides from faba bean flour fermented by Levilactobacillus brevis AM7 improve the shelf-life of composite faba-wheat bread. Int. J. Food Microbiol. 2023, 407, 110403. [Google Scholar] [CrossRef] [PubMed]
- Demarinis, C.; Verni, M.; Koirala, P.; Cera, S.; Rizzello, C.G.; Coda, R. Effect of LAB starters on technological and functional properties of composite carob and chickpea flour plant-based gurt. Fut. Foods 2024, 9, 100289. [Google Scholar] [CrossRef]
- Koirala, P.; Maina, N.H.; Nihtilä, H.; Katina, K.; Coda, R. Brewers’ spent grain as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. Microb. Cell Fact. 2021, 20, 23. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemistry, 11th ed.; AACC: St. Paul, MN, USA, 2010. [Google Scholar]
- Ullah, H.; Sommella, E.; Santarcangelo, C.; D’Avino, D.; Rossi, A.; Dacrema, M.; Daglia, M. Hydroethanolic extract of Prunus domestica L.: Metabolite profiling and in vitro modulation of molecular mechanisms associated to cardiometabolic diseases. Nutrients 2022, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Ketabi, A.; Soleimanian-Zad, S.; Kadivar, M.; Sheikh-Zeinoddin, M. Production of microbial exopolysaccharides in the sourdough and its effects on the rheological properties of dough. Food Res. Int. 2008, 41, 948–951. [Google Scholar] [CrossRef]
- Elia, M. A procedure for sensory evaluation of bread: Protocol developed by a trained panel. J. Sens. Stud. 2011, 26, 269–277. [Google Scholar] [CrossRef]
- Montemurro, M.; Verni, M.; Fanelli, F.; Wang, Y.; Maina, H.N.; Torreggiani, A.; Rizzello, C.G. Molecular characterization of exopolysaccharide from Periweissella beninensis LMG 25373T and technological properties in plant-based food production. Food Res. Int. 2025, 201, 115537. [Google Scholar] [CrossRef]
- Woo, S.H.; Sung, J.M.; Park, J.; Park, J.D.; Park, E.Y. Sucrose-induced structural modification of in situ exopolysaccharides: Effects on rheological and baking properties of gluten-free sourdough. Food Res. Int. 2025, 221, 117523. [Google Scholar] [CrossRef] [PubMed]
- Caponio, M.; Verni, M.; Tlais, A.Z.A.; Longo, E.; Pontonio, E.; Di Cagno, R.; Rizzello, C.G. Development, optimization and integrated characterization of rice-based yogurt alternatives enriched with roasted and non-roasted sprouted barley flour. Curr. Res. Food Sci. 2025, 10, 101059. [Google Scholar] [CrossRef]
- Bearson, S.; Bearson, B.; Foster, J.W. Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 1997, 147, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mehmood, S.; Maina, N.H.; Katina, K.; Coda, R. Synthesis in situ of heteropolysaccharide by Levilactobacillus brevis AM7 during fermentation of oat and hemp and its effect on the techno-functional properties of oat yogurt type model. Food Hydrocoll. 2024, 147, 109416. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Cardello, A.V.; Jin, D.; Ryan, G.S.; Giacalone, D. Consumer perception of plant-based yoghurt: Sensory drivers of liking and emotional, holistic and conceptual associations. Food Res. Int. 2023, 167, 112666. [Google Scholar] [CrossRef]
- da Silva, R.M.; Souza, P.M.P.; Fernandes, F.A.; Gonçalves, L.R.; Rodrigues, S. Co-immobilization of dextransucrase and dextranase in epoxy-agarose-tailoring oligosaccharides synthesis. Proc. Biochem. 2019, 78, 71–81. [Google Scholar] [CrossRef]
- Kothari, D.; Delattre, C.; Goyal, A. Bioactive isomalto-oligosaccharides synthesized from Leuconostoc mesenteroides NRRL B-1426 dextransucrase with colon cancer cells inhibiting and functional food additive properties. Int. J. Food Nutr. Sci. 2015, 4, 37. [Google Scholar]
- Xu, Y.; Coda, R.; Holopainen-Mantila, U.; Laitila, A.; Katina, K.; Tenkanen, M. Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate. Food Res. Int. 2019, 115, 191–199. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef]
- Guérin, M.; Silva, C.R.D.; Garcia, C.; Remize, F. Lactic acid bacterial production of exopolysaccharides from fruit and vegetables and associated benefits. Fermentation 2020, 6, 115. [Google Scholar] [CrossRef]
- Yildiz, H.; Karatas, N. Microbial exopolysaccharides: Resources and bioactive properties. Proc. Biochem. 2018, 72, 41–46. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C.G. How fermentation affects the antioxidant properties of cereals and legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Yu, Q. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll. 2019, 93, 284–292. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Huamán-Carrión, M.L.; Calsina-Ponce, W.C.; Cruz, G.D.L.; Calderón Huamaní, D.F.; Cabel-Moscoso, D.J.; Jilaja-Carita, E.E. Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives. Foods 2025, 14, 1950. [Google Scholar] [CrossRef]



| Ct | AM7 EPS− | DSM EPS− | AM7 EPS+ | DSM EPS+ | |
|---|---|---|---|---|---|
| Carrot pomace (g) | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 |
| Sucrose (g) | - | - | - | 15 | 15 |
| Water (mL) | 292.5 | 292.5 | 292.5 | 277.5 | 277.5 |
| LAB inoculum (log cfu/mL) | - | 6.5 | 6.5 | 6.5 | 6.5 |
| Ct | AM7 EPS− | DSM EPS− | AM7 EPS+ | DSM EPS+ | |
|---|---|---|---|---|---|
| Total carbohydrates | 2.13 ± 0.07 b | 2.05 ± 0.06 b | 2.04 ± 0.10 b | 3.06 ± 0.15 a | 3.05 ± 0.8 a |
| of which sugars | 0.60 ± 0.05 b | 0.54 ± 0.02 b | 0.51 ± 0.04 a | 1.62 ± 0.07 a | 1.59 ± 0.01 a |
| of which fibres | 1.53 ± 0.03 a | 1.51 ± 0.05 a | 1.53 ± 0.05 a | 1.44 ± 0.07 a | 1.46 ± 0.06 a |
| Proteins | 0.17 ± 0.02 a | 0.15 ± 0.00 a | 0.15 ± 0.00 a | 0.14 ± 0.01 a | 0.14 ± 0.01 a |
| Fats | 0.04 ± 0.01 a | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.03 ± 0.01 a | 0.03 ± 0.00 a |
| Ashes | 0.12 ± 0.01 a | 0.11 ± 0.00 a | 0.12 ± 0.00 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a |
| Energy value (kcal/kJ) | 6.6/27.2 b | 7.4/31.5 b | 6.2/25.4 b | 10.2/42.6 a | 10.1/42.3 a |
| Ct | AM7 EPS− | DSM EPS− | AM7 EPS+ | DSM EPS+ | |
|---|---|---|---|---|---|
| pH | 5.87 ± 0.04 a | 4.80 ± 0.06 b | 4.70 ± 0.07 b | 4.67 ± 0.05 b | 4.70 ± 0.07 b |
| TTA (mL) | 0.7 ± 0.06 c | 1.4 ± 0.21 ab | 1.0 ± 0.27 b | 1.5 ± 0.28 a | 1.1 ± 0.12 ab |
| Glucose (g/L) | 0.46 ± 0.00 a | 0.27 ± 0.01 b | 0.28 ± 0.04 ab | 0.03 ± 0.02 c | 0.23 ± 0.02 b |
| Fructose (g/L) | 0.96 ± 0.00 c | 0.93 ± 0.01 c | 1.27 ± 0.02 b | 0.62 ± 0.02 d | 1.60 ± 0.03 a |
| Sucrose (g/L) | 4.63 ± 0.01 b | 3.14 ± 0.04 c | 2.58 ± 0.09 d | 11.43 ± 0.02 a | 11.25 ± 0.20 a |
| Lactic acid (mmol/L) | 0.28 ± 0.17 c | 3.34 ± 0.04 a | 2.55 ± 0.10 b | 2.27 ± 0.84 b | 2.72 ± 0.00 b |
| Acetic acid (mmol/L) | 0.00 ± 0.00 d | 0.84 ± 0.18 ab | 1.05 ± 0.00 a | 0.11 ± 0.11 c | 1.05 ± 0.29 a |
| TPC (mg GAE eq/g d.m.) | 68.5 ± 2.51 c | 77.7 ± 4.08 b | 90.5 ± 26.0 a | 113.6 ± 8.46 a | 107.4 ± 18.50 a |
| DPPH radical scavenging activity (%) | 54.3 ± 1.12 c | 71.9 ± 6.16 b | 78.2 ± 3.1 b | 83.4 ± 3.61 a | 84.6 ± 1.87 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Caponio, M.; De Lellis, L.F.; Daglia, M.; Verni, M.; Rizzello, C.G. Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage. Foods 2026, 15, 451. https://doi.org/10.3390/foods15030451
Caponio M, De Lellis LF, Daglia M, Verni M, Rizzello CG. Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage. Foods. 2026; 15(3):451. https://doi.org/10.3390/foods15030451
Chicago/Turabian StyleCaponio, Mario, Lorenza Francesca De Lellis, Maria Daglia, Michela Verni, and Carlo Giuseppe Rizzello. 2026. "Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage" Foods 15, no. 3: 451. https://doi.org/10.3390/foods15030451
APA StyleCaponio, M., De Lellis, L. F., Daglia, M., Verni, M., & Rizzello, C. G. (2026). Fermentation-Driven Valorization of a Carrot Juice By-Product into an Exopolysaccharide-Enriched Beverage. Foods, 15(3), 451. https://doi.org/10.3390/foods15030451

