Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,382)

Search Parameters:
Keywords = practical issues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1612 KiB  
Article
Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties
by Xuanyu Pan, Hongyuan Zhu, Fufei Qin, Mingxing Jing, Han Wu and Zhuangzhi Sun
Sensors 2025, 25(15), 4765; https://doi.org/10.3390/s25154765 (registering DOI) - 1 Aug 2025
Abstract
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. [...] Read more.
Ion-conductive-hydrogel strain sensors demonstrate broad application prospects in the fields of flexible sensing and bioelectric signal monitoring due to their excellent skin conformability and efficient signal transmission characteristics. However, traditional preparation methods face significant challenges in enhancing adhesion strength, conductivity, and mechanical stability. To address this issue, this study employed a freeze–thaw cycling method, using polyvinyl alcohol (PVA) as the matrix material, tannic acid (TA) as the adhesion reinforcement material, and lithium chloride (LiCl) as the conductive medium, successfully developing an ion-conductive hydrogel with superior comprehensive performance. Experimental data confirm that the PVA-TA-0.5/LiCl-1 hydrogel achieves optimal levels of adhesion strength (2.32 kPa on pigskin) and conductivity (0.64 S/m), while also exhibiting good tensile strength (0.1 MPa). Therefore, this hydrogel shows great potential for use in strain sensors, demonstrating excellent sensitivity (GF = 1.15), reliable operational stability, as the ΔR/R0 signal remains virtually unchanged after 2500 cycles of stretching, and outstanding strain sensing and electromyographic signal acquisition capabilities, fully highlighting its practical value in the fields of flexible sensing and bioelectric monitoring. Full article
(This article belongs to the Section Sensor Materials)
25 pages, 830 KiB  
Article
Writing Is Coding for Sustainable Futures: Reimagining Poetic Expression Through Human–AI Dialogues in Environmental Storytelling and Digital Cultural Heritage
by Hao-Chiang Koong Lin, Ruei-Shan Lu and Tao-Hua Wang
Sustainability 2025, 17(15), 7020; https://doi.org/10.3390/su17157020 (registering DOI) - 1 Aug 2025
Abstract
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage [...] Read more.
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage with AI-mediated multimodal creation to address environmental challenges. Using grounded theory methodology with 57 twelfth-grade students from technology-integrated high schools, we analyzed their experiences creating environmental stories and digital cultural artifacts using MidJourney, Kling, and Sora. Data collection involved classroom observations, semi-structured interviews, and reflective journals, analyzed through systematic coding procedures (κ = 0.82). Five central themes emerged: writing as algorithmic design for sustainability (89.5%), emotional scaffolding for environmental awareness (78.9%), aesthetics of imperfection in cultural preservation (71.9%), collaborative dynamics in sustainable creativity (84.2%), and pedagogical value of prompt literacy (91.2%). Findings indicate that AI deepens environmental consciousness and reframes writing as a computational process for addressing global issues. This research contributes a theoretical framework integrating expressive writing with algorithmic thinking in AI-assisted sustainability education, aligned with SDGs 4, 11, and 13. Full article
36 pages, 645 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 (registering DOI) - 1 Aug 2025
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 (registering DOI) - 1 Aug 2025
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 3731 KiB  
Article
Lake Water Depletion Linkages with Seismic Hazards in Sikkim, India: A Case Study on Chochen Lake
by Anil Kumar Misra, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari and Subash Dhakal
GeoHazards 2025, 6(3), 42; https://doi.org/10.3390/geohazards6030042 (registering DOI) - 1 Aug 2025
Abstract
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area [...] Read more.
After the 2011 earthquake, lake water depletion has become a widespread issue in Sikkim, especially in regions classified as high to very high seismic zones, where many lakes have turned into seasonal water bodies. This study investigates Chochen Lake in the Barapathing area of Sikkim’s Pakyong district, which is facing severe water seepage and instability. The problem, intensified by the 2011 seismic event and ongoing local construction, is examined through subsurface fracture mapping using Vertical Electrical Sounding (VES) and profiling techniques. A statistical factor method, applied to interpret VES data, helped identify fracture patterns beneath the lake. Results from two sites (VES-1 and VES-2) reveal significant variations in weathered and semi-weathered soil layers, indicating fractures at depths of 17–50 m (VES-1) and 20–55 m (VES-2). Higher fracture density near VES-1 suggests increased settlement risk and ground displacement compared to VES-2. Contrasting resistivity values emphasize the greater instability in this zone and the need for cautious construction practices. The findings highlight the role of seismic-induced fractures in ongoing water depletion and underscore the importance of continuous dewatering to stabilize the swampy terrain. Full article
Show Figures

Figure 1

22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 (registering DOI) - 1 Aug 2025
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

16 pages, 3043 KiB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 (registering DOI) - 1 Aug 2025
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
25 pages, 7503 KiB  
Article
A Diagnostic Framework for Decoupling Multi-Source Vibrations in Complex Machinery: An Improved OTPA Application on a Combine Harvester Chassis
by Haiyang Wang, Zhong Tang, Liyun Lao, Honglei Zhang, Jiabao Gu and Qi He
Appl. Sci. 2025, 15(15), 8581; https://doi.org/10.3390/app15158581 (registering DOI) - 1 Aug 2025
Abstract
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes [...] Read more.
Complex mechanical systems, such as agricultural combine harvesters, are subjected to dynamic excitations from multiple coupled sources, compromising structural integrity and operational reliability. Disentangling these vibrations to identify dominant sources and quantify their transmission paths remains a significant engineering challenge. This study proposes a robust diagnostic framework to address this issue. We employed a multi-condition vibration test with sequential source activation and an improved Operational Transfer Path Analysis (OTPA) method. Applied to a harvester chassis, the results revealed that vibration energy is predominantly concentrated in the 0–200 Hz frequency band. Path contribution analysis quantified that the “cutting header → conveyor trough → hydraulic cylinder → chassis frame” path is the most critical contributor to vertical vibration, with a vibration acceleration level of 117.6 dB. Further analysis identified the engine (29.3 Hz) as the primary source for vertical vibration, while lateral vibration was mainly attributed to a coupled resonance between the threshing cylinder (58 Hz) and the engine’s second-order harmonic. This study’s theoretical contribution lies in validating a powerful methodology for vibration source apportionment in complex systems. Practically, the findings provide direct, actionable insights for targeted structural optimization and vibration suppression. Full article
Show Figures

Figure 1

20 pages, 865 KiB  
Review
Barriers and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’ Perspective: A Scoping Review
by Giovanni Cangelosi, Andrea Conti, Gabriele Caggianelli, Massimiliano Panella, Fabio Petrelli, Stefano Mancin, Matteo Ratti and Alice Masini
Medicina 2025, 61(8), 1403; https://doi.org/10.3390/medicina61081403 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by [...] Read more.
Background and Objectives: Diabetes is a global public health challenge, with increasing prevalence worldwide. The implementation of artificial intelligence (AI) in the management of this condition offers potential benefits in improving healthcare outcomes. This study primarily investigates the barriers and facilitators perceived by healthcare professionals in the adoption of AI. Secondarily, by analyzing both quantitative and qualitative data collected, it aims to support the potential development of AI-based programs for diabetes management, with particular focus on a possible bottom-up approach. Materials and Methods: A scoping review was conducted following PRISMA-ScR guidelines for reporting and registered in the Open Science Framework (OSF) database. The study selection process was conducted in two phases—title/abstract screening and full-text review—independently by three researchers, with a fourth resolving conflicts. Data were extracted and assessed using Joanna Briggs Institute (JBI) tools. The included studies were synthesized narratively, combining both quantitative and qualitative analyses to ensure methodological rigor and contextual depth. Results: The adoption of AI tools in diabetes management is influenced by several barriers, including perceived unsatisfactory clinical performance, high costs, issues related to data security and decision-making transparency, as well as limited training among healthcare workers. Key facilitators include improved clinical efficiency, ease of use, time-saving, and organizational support, which contribute to broader acceptance of the technology. Conclusions: The active and continuous involvement of healthcare workers represents a valuable opportunity to develop more effective, reliable, and well-integrated AI solutions in clinical practice. Our findings emphasize the importance of a bottom-up approach and highlight how adequate training and organizational support can help overcome existing barriers, promoting sustainable and equitable innovation aligned with public health priorities. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 (registering DOI) - 1 Aug 2025
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

41 pages, 1921 KiB  
Article
Digital Skills, Ethics, and Integrity—The Impact of Risky Internet Use, a Multivariate and Spatial Approach to Understanding NEET Vulnerability
by Adriana Grigorescu, Teodor Victor Alistar and Cristina Lincaru
Systems 2025, 13(8), 649; https://doi.org/10.3390/systems13080649 (registering DOI) - 1 Aug 2025
Abstract
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet [...] Read more.
In an era where digitalization shapes economic and social landscapes, the intersection of digital skills, ethics, and integrity plays a crucial role in understanding the vulnerability of youth classified as NEET (Not in Education, Employment, or Training). This study explores how risky internet use and digital skill gaps contribute to socio-economic exclusion, integrating a multivariate and spatial approach to assess regional disparities in Europe. This study adopts a systems thinking perspective to explore digital exclusion as an emergent outcome of multiple interrelated subsystems. The research employs logistic regression, Principal Component Analysis (PCA) with Promax rotation, and Geographic Information Systems (GIS) to examine the impact of digital behaviors on NEET status. Using Eurostat data aggregated at the country level for the period (2000–2023) across 28 European countries, this study evaluates 24 digital indicators covering social media usage, instant messaging, daily internet access, data protection awareness, and digital literacy levels. The findings reveal that low digital skills significantly increase the likelihood of being NEET, while excessive social media and internet use show mixed effects depending on socio-economic context. A strong negative correlation between digital security practices and NEET status suggests that youths with a higher awareness of online risks are less prone to socio-economic exclusion. The GIS analysis highlights regional disparities, where countries with limited digital access and lower literacy levels exhibit higher NEET rates. Digital exclusion is not merely a technological issue but a multidimensional socio-economic challenge. To reduce the NEET rate, policies must focus on enhancing digital skills, fostering online security awareness, and addressing regional disparities. Integrating GIS methods allows for the identification of territorial clusters with heightened digital vulnerabilities, guiding targeted interventions for improving youth employability in the digital economy. Full article
Show Figures

Figure 1

23 pages, 13529 KiB  
Article
A Self-Supervised Contrastive Framework for Specific Emitter Identification with Limited Labeled Data
by Jiaqi Wang, Lishu Guo, Pengfei Liu, Peng Shang, Xiaochun Lu and Hang Zhao
Remote Sens. 2025, 17(15), 2659; https://doi.org/10.3390/rs17152659 (registering DOI) - 1 Aug 2025
Abstract
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep [...] Read more.
Specific Emitter Identification (SEI) is a specialized technique for identifying different emitters by analyzing the unique characteristics embedded in received signals, known as Radio Frequency Fingerprints (RFFs), and SEI plays a crucial role in civilian applications. Recently, various SEI methods based on deep learning have been proposed. However, in real-world scenarios, the scarcity of accurately labeled data poses a significant challenge to these methods, which typically rely on large-scale supervised training. To address this issue, we propose a novel SEI framework based on self-supervised contrastive learning. Our approach comprises two stages: an unsupervised pretraining phase that uses contrastive loss to learn discriminative RFF representations from unlabeled data, and a supervised fine-tuning stage regularized through virtual adversarial training (VAT) to improve generalization under limited labels. This framework enables effective feature learning while mitigating overfitting. To validate the effectiveness of the proposed method, we collected real-world satellite navigation signals using a 40-meter antenna and conducted extensive experiments. The results demonstrate that our approach achieves outstanding SEI performance, significantly outperforming several mainstream SEI methods, thereby highlighting the practical potential of contrastive self-supervised learning in satellite transmitter identification. Full article
Show Figures

Figure 1

29 pages, 2413 KiB  
Article
From Opportunity to Resistance: A Structural Model of Platform-Based Startup Adoption
by Ruixia Ji, Hong Chen and Sang-Do Park
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 187; https://doi.org/10.3390/jtaer20030187 - 1 Aug 2025
Abstract
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through [...] Read more.
This study explores the determinants of startup intention within the context of e-commerce platform-based startups in South Korea. We employ an extended technology acceptance model (TAM) that integrates individual, social, and entrepreneurial characteristics. A two-step analytical approach is applied, combining variable extraction through data mining and hypothesis testing using structural equation modeling. The results indicate that personal and social factors—such as entrepreneurial mindset and social influence—positively affect perceived usefulness, while job relevance and exposure to successful startup models enhance perceived ease of use. In contrast, security concerns and technological barriers negatively impact these relationships, posing critical obstacles to platform-based startups. This study extends the TAM framework to the platform-based startup context, offering theoretical contributions and proposing policy implications, including promoting digital literacy, developing entrepreneurial networks, and addressing security and regulatory issues. These insights offer a deeper understanding of how platform environments shape entrepreneurial behavior, providing practical guidance for startup founders, developers, and policymakers. Full article
Show Figures

Figure 1

28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 (registering DOI) - 1 Aug 2025
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

Back to TopTop