Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = power-line noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 186
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

24 pages, 7102 KiB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 258
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

31 pages, 3621 KiB  
Review
Electromyography Signal Acquisition, Filtering, and Data Analysis for Exoskeleton Development
by Jung-Hoon Sul, Lasitha Piyathilaka, Diluka Moratuwage, Sanura Dunu Arachchige, Amal Jayawardena, Gayan Kahandawa and D. M. G. Preethichandra
Sensors 2025, 25(13), 4004; https://doi.org/10.3390/s25134004 - 27 Jun 2025
Viewed by 553
Abstract
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, [...] Read more.
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, noise mitigation, data preprocessing, feature extraction, and control strategies. Various EMG acquisition methods, including surface, intramuscular, and high-density surface EMG, are evaluated for their applicability in real-time control. The review addresses prevalent signal quality challenges, such as motion artifacts, power-line interference, and crosstalk. It also highlights both traditional filtering techniques and advanced methods, such as wavelet transforms, empirical mode decomposition, and adaptive filtering. Feature extraction techniques are explored to support pattern recognition and motion classification. Machine learning approaches are examined for their roles in pattern recognition-based and hybrid control architectures. This article emphasizes muscle synergy analysis and adaptive control algorithms to enhance personalization and fatigue compensation, followed by the benefits of multimodal sensing and edge computing in addressing the limitations of EMG-only systems. By focusing on EMG-driven strategies through signal processing, machine learning, and sensor fusion innovations, this review bridges gaps in human–machine interaction, offering insights into improving the precision, adaptability, and robustness of next generation exoskeletons. Full article
(This article belongs to the Special Issue Sensors-Based Healthcare Diagnostics, Monitoring and Medical Devices)
Show Figures

Figure 1

25 pages, 3362 KiB  
Article
A Fault Direction Discrimination Method for a Two-Terminal Weakly Fed AC System Using the Time-Domain Fault Model for the Difference Discrimination of Composite Electrical Quantities
by Lie Li, Yu Sun, Yifan Zhao, Xiaoqian Zhu, Ping Xiong, Wentao Yang and Junjie Hou
Electronics 2025, 14(13), 2556; https://doi.org/10.3390/electronics14132556 - 24 Jun 2025
Viewed by 194
Abstract
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential [...] Read more.
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential transformation in fault characteristics and protection requirements. At present, in research, the traditional directional elements are limited by the negative-sequence control strategy, resulting in the decline of their sensitivity and reliability. Therefore, this paper proposes a model for identifying directional elements using composite electrical quantities that is not affected by the control strategy of the two-terminal weakly fed AC system and can reliably identify the fault direction. Firstly, the adaptability of traditional directional elements under the negative-sequence current suppression strategy on both sides of the system when faults occur in the AC line was analyzed. Secondly, based on the idea of model recognition, the model relationship of fault voltage and current in the case of ground faults and non-ground faults occurring at different locations was analyzed. Finally, a fitted voltage was constructed and the Kendall correlation coefficient was introduced to achieve fault direction discrimination. Simulation results demonstrate that the proposed pilot protection scheme can operate reliably under conditions of 300 Ω transition resistance and 25 dB noise interference. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
A 209 ps Shutter-Time CMOS Image Sensor for Ultra-Fast Diagnosis
by Houzhi Cai, Zhaoyang Xie, Youlin Ma and Lijuan Xiang
Sensors 2025, 25(12), 3835; https://doi.org/10.3390/s25123835 - 19 Jun 2025
Viewed by 352
Abstract
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image [...] Read more.
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image sensor that can be seamlessly integrated with an electronic pulse broadening system can provide a viable alternative to the microchannel plate detector. This paper introduces the design of an 8 × 8 pixel-array ultrashort shutter-time single-framing CMOS image sensor, which leverages silicon epitaxial processing and a 0.18 μm standard CMOS process. The focus of this study is on the photodiode and the readout pixel-array circuit. The photodiode, designed using the silicon epitaxial process, achieves a quantum efficiency exceeding 30% in the visible light band at a bias voltage of 1.8 V, with a temporal resolution greater than 200 ps for visible light. The readout pixel-array circuit, which is based on the 0.18 μm standard CMOS process, incorporates 5T structure pixel units, voltage-controlled delayers, clock trees, and row-column decoding and scanning circuits. Simulations of the pixel circuit demonstrate an optimal temporal resolution of 60 ps. Under the shutter condition with the best temporal resolution, the maximum output swing of the pixel circuit is 448 mV, and the output noise is 77.47 μV, resulting in a dynamic range of 75.2 dB for the pixel circuit; the small-signal responsivity is 1.93 × 10−7 V/e, and the full-well capacity is 2.3 Me. The maximum power consumption of the 8 × 8 pixel-array and its control circuits is 0.35 mW. Considering both the photodiode and the pixel circuit, the proposed CMOS image sensor achieves a temporal resolution better than 209 ps. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT
by Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser and Christer Ruff
Diagnostics 2025, 15(12), 1541; https://doi.org/10.3390/diagnostics15121541 - 17 Jun 2025
Viewed by 378
Abstract
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using [...] Read more.
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques—Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)—in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). Methods: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. Results: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (p < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51–1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all p < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (p < 0.001), while SAFIRE achieved slightly higher image contrast scores (p < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (p < 0.01). Conclusions: Both IR techniques—ADMIRE and SAFIRE—achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted. Full article
Show Figures

Figure 1

19 pages, 4090 KiB  
Article
Transmission Line Defect Detection Algorithm Based on Improved YOLOv12
by Yanpeng Ji, Tianxiang Ma, Hongliang Shen, Haiyan Feng, Zizi Zhang, Dan Li and Yuling He
Electronics 2025, 14(12), 2432; https://doi.org/10.3390/electronics14122432 - 14 Jun 2025
Cited by 1 | Viewed by 695
Abstract
To address the challenges of high missed detection rates for minute transmission line defects, strong complex background interference, and limited computational power on edge devices in UAV-assisted power line inspection, this paper proposes a lightweight improved YOLOv12 real-time detection model. First, a Bidirectional [...] Read more.
To address the challenges of high missed detection rates for minute transmission line defects, strong complex background interference, and limited computational power on edge devices in UAV-assisted power line inspection, this paper proposes a lightweight improved YOLOv12 real-time detection model. First, a Bidirectional Weighted Feature Fusion Network (BiFPN) is introduced to enhance bidirectional interaction between shallow localization information and deep semantic features through learnable feature layer weighting, thereby improving detection sensitivity for line defects. Second, a Cross-stage Channel-Position Collaborative Attention (CPCA) module is embedded in the BiFPN’s cross-stage connections, jointly modeling channel feature significance and spatial contextual relationships to effectively suppress complex background noise from vegetation occlusion and metal reflections while enhancing defect feature representation. Furthermore, the backbone network is reconstructed using ShuffleNetV2’s channel rearrangement and grouped convolution strategies to reduce model complexity. Experimental results demonstrate that the improved model achieved 98.7% mAP@0.5 on our custom transmission line defect dataset, representing a 3.0% improvement over the baseline YOLOv12, with parameters compressed to 2.31M (8.3% reduction) and real-time detection speed reaching 142.7 FPS. This method effectively balances detection accuracy and inference efficiency, providing reliable technical support for unmanned intelligent inspection of transmission lines. Full article
Show Figures

Figure 1

14 pages, 4931 KiB  
Article
State-of-the-Art VCO with Eight-Shaped Resonator-Type Transmission Line
by Sheng-Lyang Jang, Zi-Jun Lin and Miin-Horng Juang
Electronics 2025, 14(12), 2322; https://doi.org/10.3390/electronics14122322 - 6 Jun 2025
Cited by 1 | Viewed by 423
Abstract
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with [...] Read more.
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with eight-shaped inductors. The design and measurement of an 8.53 GHz oscillator in the TSMC 0.18 μm CMOS technology are discussed. The fully-integrated chip occupies a die area of 1.2 × 1.2 mm2. The oscillator consists of four sub-oscillators and uses four 1:1 symmetric twisted transformers, with the secondary inductors connected to form a twisted closed-loop transmission line for coupling the sub-oscillators. The transformers are configured as eight-shaped structures to minimize the far-field magnetic field radiation from each transformer and the whole transformer. At a supply voltage of 1.7 V, the power consumption is 5.84 mW. The free-running oscillation frequency of the RTWO is tunable from 8.53 GHz to 10.0 GHz. The measured phase noise at a 1 MHz frequency offset is −122.4 dBc/Hz at an oscillation frequency of 8.53 GHz, and the figure of merit (FOM) of the proposed VCO with a specific inductor layout is −193.4 dBc/Hz, surpassing other similar RTWOs. The FOM with a tuning range (FOMT) is −195.96 dBc/Hz. Full article
(This article belongs to the Special Issue Advances in Frontend Electronics for Millimeter-Wave Systems)
Show Figures

Figure 1

17 pages, 11290 KiB  
Article
Learning to Utilize Multi-Scale Feature Information for Crisp Power Line Detection
by Kai Li, Min Liu, Feiran Wang, Xinyang Guo, Geng Han, Xiangnan Bai and Changsong Liu
Electronics 2025, 14(11), 2175; https://doi.org/10.3390/electronics14112175 - 27 May 2025
Viewed by 306
Abstract
Power line detection (PLD) is a crucial task in the electric power industry where accurate PLD forms the foundation for achieving automated inspections. However, recent top-performing power line detection methods tend to generate thick and noisy edge lines, adding to the difficulties of [...] Read more.
Power line detection (PLD) is a crucial task in the electric power industry where accurate PLD forms the foundation for achieving automated inspections. However, recent top-performing power line detection methods tend to generate thick and noisy edge lines, adding to the difficulties of subsequent tasks. In this work, we propose a multi-scale feature-based PLD method named LUM-Net to allow for the detection of power lines in a crisp and precise way. The algorithm utilizes EfficientNetV1 as the backbone network, ensuring effective feature extraction across various scales. We developed a Coordinated Convolutional Block Attention Module (CoCBAM) to focus on critical features by emphasizing both channel-wise and spatial information, thereby refining the power lines and reducing noise. Furthermore, we constructed the Bi-Large Kernel Convolutional Block (BiLKB) as the decoder, leveraging large kernel convolutions and spatial selection mechanisms to capture more contextual information, supplemented by auxiliary small kernels to refine the extracted feature information. By integrating these advanced components into a top-down dense connection mechanism, our method achieves effective, multi-scale information interaction, significantly improving the overall performance. The experimental results show that our method can predict crisp power line maps and achieve state-of-the-art performance on the PLDU dataset (ODS = 0.969) and PLDM dataset (ODS = 0.943). Full article
Show Figures

Figure 1

22 pages, 3105 KiB  
Article
High Impedance Fault Line Detection Based on Current Traveling Wave Spectrum Symmetry Driving for New Distribution Network
by Maner Xiao, Jupeng Zeng, Zehua Zhou, Qiming Zhang, Li Deng and Feiyu Peng
Symmetry 2025, 17(5), 775; https://doi.org/10.3390/sym17050775 - 16 May 2025
Viewed by 397
Abstract
Challenges are brought to high impedance fault (HIF) line selection in traditional distribution networks by the fault signals with short windows and weak characteristics provided by new energy power sources. A new method driven by the symmetry of current traveling wave spectrum is [...] Read more.
Challenges are brought to high impedance fault (HIF) line selection in traditional distribution networks by the fault signals with short windows and weak characteristics provided by new energy power sources. A new method driven by the symmetry of current traveling wave spectrum is proposed in this paper. Frequency-domain features are extracted by using Pisarenko spectral decomposition, and the differences in amplitude, frequency, and polarity between faulted and healthy feeders are analyzed. A similarity matrix is constructed with the help of Manhattan distance, and an improved density-based spatial clustering of application with noise (DBSCAN) clustering is adopted to achieve intelligent fault line selection. Experimental results show that compared with the steady state component method and the transient component method, the accuracy of this method is increased to 97.5%, with an improvement of more than 12.5%. Quantitative thresholds are replaced by qualitative spectrum differences, and this method is not affected by weak signals, thus solving the problem of threshold setting caused by the access of new energy. The accuracy of this method under different fault types, phases, and resistances is verified by simulation, ensuring easy engineering implementation. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 3056 KiB  
Article
Noise Effects on Detection and Localization of Faults for Unified Power Flow Controller-Compensated Transmission Lines Using Traveling Waves
by Javier Rodríguez-Herrejón, Enrique Reyes-Archundia, Jose A. Gutiérrez-Gnecchi, Marcos Gutiérrez-López and Juan C. Olivares-Rojas
Electricity 2025, 6(2), 25; https://doi.org/10.3390/electricity6020025 - 2 May 2025
Viewed by 655
Abstract
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, [...] Read more.
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, which are inherent to power generation, transmission, and UPFC operation. A novel algorithm is proposed combining the Discrete Wavelet Transform and Clarke Transform to detect and localize faults under various noise conditions. The algorithm is tested on a simulated transmission line model in MATLAB/Simulink (Version R2022b) with noise levels of 20 dB, 30 dB, and 40 dB and transient frequencies of 1 kHz, 5 kHz, and 10 kHz. The results demonstrate that the algorithm achieves an average fault localization error of 0.523% under harmonic noise and 0.777% under transient noise, with fault detection rates of 96.3% and 90.75%, respectively. This study highlights the robustness of the traveling wave method in noisy environments and provides insights into the challenges posed by UPFC-compensated lines. Full article
Show Figures

Figure 1

18 pages, 2152 KiB  
Article
Insulator Defect Detection via a Residual Denoising Diffusion Mechanism
by Li Zhang, Mengyang Song, Huaping Guo, Yange Sun and Xinxia Wang
Materials 2025, 18(8), 1738; https://doi.org/10.3390/ma18081738 - 10 Apr 2025
Viewed by 481
Abstract
Insulators are critical components of transmission lines, and defective insulators pose a serious threat to the safety of power supply systems. Timely detection of these defects is crucial to prevent catastrophic consequences for human lives and property. However, insulator defects are often small [...] Read more.
Insulators are critical components of transmission lines, and defective insulators pose a serious threat to the safety of power supply systems. Timely detection of these defects is crucial to prevent catastrophic consequences for human lives and property. However, insulator defects are often small and easily affected by the noise of rain, fog, sunlight, dirt, and other pollutants, making detection challenging. We observe that diffusion models learn data distribution by progressively introducing noise and subsequently performing denoising. The progressive denoising mechanism can naturally simulate the randomness of environmental noise. Based on this observation, we treat the localization of insulator defects as a denoising-based recovery process, where the true defect bounding boxes are progressively reconstructed from noisy representations. To this end, we propose a novel diffusion-based Insulator Defect Detector (IDDet) that is specifically designed to handle complex environmental noise. IDDet introduces noise to the true bounding boxes to generate noisy target boxes with random distributions and is then trained to recover the true bounding boxes from these noisy representations through a residual denoising diffusion mechanism. For the inference stage, IDDet refines the defect location from a random noise bounding box by gradually removing the noise, ultimately achieving the task of precisely locating the defect in the image. Experimental results show that IDDet significantly improves detection capability in noisy environments, achieving the best mean average precision (mAP) of 92.3%, confirming the feasibility and effectiveness of our approach. Full article
(This article belongs to the Special Issue Advancements in Ultrasonic Testing for Metallurgical Materials)
Show Figures

Figure 1

6 pages, 1393 KiB  
Article
Results from Cryo-PoF Project: Power over Fiber at Cryogenic Temperature for Fundamental and Applied Physics
by Andrea Falcone, Alessandro Andreani, Claudia Brizzolari, Esteban Javier Cristaldo Morales, Maritza Juliette Delgado Gonzales, Claudio Gotti, Massimo Lazzaroni, Luca Meazza, Gianluigi Pessina, Francesco Terranova, Marta Torti and Valeria Trabattoni
Particles 2025, 8(2), 41; https://doi.org/10.3390/particles8020041 - 8 Apr 2025
Viewed by 396
Abstract
The Cryo-PoF project is an R&D project funded by the Italian Insitute for Nuclear Research (INFN) in Milano-Bicocca (Italy). The technology at the basis of the project is Power over Fiber (PoF). By sending laser light through an optical fiber, this technology delivers [...] Read more.
The Cryo-PoF project is an R&D project funded by the Italian Insitute for Nuclear Research (INFN) in Milano-Bicocca (Italy). The technology at the basis of the project is Power over Fiber (PoF). By sending laser light through an optical fiber, this technology delivers electrical power to a photovoltaic power converter, in order to power sensors or electrical devices. Among the several advantages this solution can provide, we can underline the spark-free operation when electric fields are present, the removal of noise induced by power lines, the absence of interference with electromagnetic fields, and robustness in hostile environments. R&D for the application of PoF in cryogenic environments started at Fermilab in 2020; for the DUNE Vertical Drift detector, it was needed to operate the Photon Detector System on a high-voltage cathode surface. Cryo-PoF, starting from this project, developed a single-laser input line system to power, at cryogenic temperatures, both an electronic amplifier and Photon Detection devices, tuning their bias by means of the input laser power, without adding ancillary fibers. The results obtained in Milano-Bicocca will be discussed, presenting the tests performed using power photosensors at liquid nitrogen temperature. Full article
Show Figures

Figure 1

17 pages, 6487 KiB  
Article
A Cost-Effective System for EMG/MMG Signal Acquisition
by Jerzy S. Witkowski and Andrzej Grobelny
Electronics 2025, 14(7), 1468; https://doi.org/10.3390/electronics14071468 - 5 Apr 2025
Viewed by 827
Abstract
This article presents a cost-effective, robust, and reliable system for EMG/MMG (electromyography/mechanomyography). Signals indicating muscle activity have numerous applications and are the subject of many studies. However, acquiring these signals is challenging. Commercial measurement systems are often expensive, limiting their accessibility. Therefore, the [...] Read more.
This article presents a cost-effective, robust, and reliable system for EMG/MMG (electromyography/mechanomyography). Signals indicating muscle activity have numerous applications and are the subject of many studies. However, acquiring these signals is challenging. Commercial measurement systems are often expensive, limiting their accessibility. Therefore, the primary goal of this project was to develop a simple and affordable system for simultaneous EMG and MMG data acquisition, offering efficiency comparable to commercial systems. The system consists of eight EMG/MMG probes, 16-bit analog-to-digital converters with 16 channels, and a microprocessor unit. Despite its multiple components, the system remains simple and user-friendly. This paper describes the construction of the EMG/MMG probe and analyzes the intrinsic noise of the preamplifier, as well as electromagnetic interference, particularly power line noise. The elimination of power line noise was carried out in two stages: first, using techniques known for electromagnetic compatibility (EMC), and second, by implementing a digital filter in the microprocessor system. The proposed solution enables direct data collection from eight EMG/MMG probes using any computer equipped with a USB interface. This interface facilitates both data transmission and power supply, making EMG/MMG data acquisition straightforward and efficient. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

18 pages, 7740 KiB  
Article
Study on Post-Stack Signal Denoising for Long-Offset Transient Electromagnetic Data Based on Combined Windowed Interpolation and Singular Spectrum Analysis
by Chuyang Lu, Xingbing Xie, Yang Xu, Lei Zhou and Liangjun Yan
Geosciences 2025, 15(4), 121; https://doi.org/10.3390/geosciences15040121 - 1 Apr 2025
Viewed by 354
Abstract
The long-offset transient electromagnetic (LOTEM) method, as a widely applied electromagnetic exploration technique, plays a significant role in mineral resource exploration, hydraulic fracturing monitoring, and fluid identification in oil and gas reservoirs. However, due to external interference, the signals acquired by this method [...] Read more.
The long-offset transient electromagnetic (LOTEM) method, as a widely applied electromagnetic exploration technique, plays a significant role in mineral resource exploration, hydraulic fracturing monitoring, and fluid identification in oil and gas reservoirs. However, due to external interference, the signals acquired by this method often contain substantial noise, which severely affects the reliability of subsequent inversion and interpretation. Therefore, denoising is a critical issue in LOTEM data processing. To address this problem, this paper proposes a denoising study for LOTEM post-stack signals based on a combination of windowed interpolation and singular spectrum analysis. First, the stacking method and windowed interpolation are employed to remove most of the random noise and power-line interference (including its harmonics). Then, singular spectrum analysis is applied to further suppress noise and obtain higher-quality signal data. Experimental results demonstrate that the proposed method performs well in denoising, effectively reducing the root mean square error (RMSE) of the signal and improving its signal-to-noise ratio (SNR). The method was validated using LOTEM data collected from Zhongjiang County, Sichuan Province. The validation results show that the method can effectively remove noise interference from underground media, providing essential technical support for inversion and interpretation. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Back to TopTop