Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (669)

Search Parameters:
Keywords = power-intent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Viewed by 67
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

13 pages, 505 KiB  
Article
The Power of Knowledge in Shaping Entrepreneurial Intentions: Entrepreneurship Education in Sustainability
by Panagiotis A. Tsaknis and Alexandros G. Sahinidis
Sustainability 2025, 17(15), 6785; https://doi.org/10.3390/su17156785 - 25 Jul 2025
Viewed by 566
Abstract
This study examined the impact of entrepreneurship education in sustainability on entrepreneurial intention using the theory of planned behavior (TPB). The MEMORE macro was used to analyze within-subject mediation and enabled us to examine how entrepreneurial intention is affected by changes in the [...] Read more.
This study examined the impact of entrepreneurship education in sustainability on entrepreneurial intention using the theory of planned behavior (TPB). The MEMORE macro was used to analyze within-subject mediation and enabled us to examine how entrepreneurial intention is affected by changes in the factors of the theory of planned behavior (attitude, subjective norms, perceived behavioral control). The survey follows a questionnaire-based, pre-test-post-test design (the research involved 271 business administration students in Athens). A paired sample t-test was used to analyze changes in attitude, subjective norms, perceived behavioral control, and entrepreneurial intention before and after education. The results indicated that after the entrepreneurship course in sustainability, students indicated a significant positive change in entrepreneurial intention, attitude, and perceived behavioral control. MEMORE macro indicated that only the change in perceived behavioral control positively influenced the increase in entrepreneurial intention levels. Based on these findings, entrepreneurship education in sustainability enhances students’ entrepreneurial intentions by increasing their perceived behavioral control. As a result, students’ confidence and knowledge regarding sustainable entrepreneurship are fundamental to the development of sustainable entrepreneurial mindsets. This study emphasizes the importance of integrating targeted pedagogical approaches that enhance perceived behavioral control in sustainable entrepreneurship education by equipping students with practical knowledge and skills to overcome psychological barriers. The use of the MEMORE macro highlights this study’s innovation, uncovering new relationships between the examined variables. Full article
Show Figures

Figure 1

23 pages, 8564 KiB  
Article
VisRep: Towards an Automated, Reflective AI System for Documenting Visualisation Design Processes
by Aron E. Owen and Jonathan C. Roberts
Mach. Learn. Knowl. Extr. 2025, 7(3), 72; https://doi.org/10.3390/make7030072 - 25 Jul 2025
Viewed by 212
Abstract
VisRep (Visualisation Report) is an AI-powered system for capturing and structuring the early stages of the visualisation design process. It addresses a critical gap in predesign: the lack of tools that can naturally record, organise, and transform raw ideation, spoken thoughts, sketches, and [...] Read more.
VisRep (Visualisation Report) is an AI-powered system for capturing and structuring the early stages of the visualisation design process. It addresses a critical gap in predesign: the lack of tools that can naturally record, organise, and transform raw ideation, spoken thoughts, sketches, and evolving concepts into polished, shareable outputs. Users engage in talk-aloud sessions through a terminal-style interface supported by intelligent transcription and eleven structured questions that frame intent, audience, and output goals. These inputs are then processed by a large language model (LLM) guided by markdown-based output templates for reports, posters, and slides. The system aligns free-form ideas with structured communication using prompt engineering to ensure clarity, coherence, and visual consistency. VisRep not only automates the generation of professional deliverables but also enhances reflective practice by bridging spontaneous ideation and structured documentation. This paper introduces VisRep’s methodology, interface design, and AI-driven workflow, demonstrating how it improves the fidelity and transparency of the visualisation design process across academic, professional, and creative domains. Full article
(This article belongs to the Section Visualization)
28 pages, 6503 KiB  
Article
Aging-in-Place Attachment Among Older Adults in Macau’s High-Density Community Spaces: A Multi-Dimensional Empirical Study
by Hongzhan Lai, Stephen Siu Yu Lau, Yuan Su and Chen-Yi Sun
World 2025, 6(3), 101; https://doi.org/10.3390/world6030101 - 17 Jul 2025
Viewed by 667
Abstract
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This [...] Read more.
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This study measured spatial characteristics of nine public spaces, conducted systematic behavioral observations, and collected questionnaire data on place attachment and aging intentions. Eye-tracking and galvanic skin response (GSR) captured visual attention and emotional arousal. Hierarchical regression analysis tested the explanatory power of each variable group, supplemented by semi-structured interviews for qualitative depth. The results showed that the physical environment had a limited direct impact but served as a critical foundation. Behavioral variables increased explanatory power (~15%), emphasizing community engagement. Human-factor data added ~4%, indicating that sensory and habitual interactions strengthen bonds. Psychological factors contributed most (~59%), confirming AiPA as a multidimensional construct shaped primarily by emotional and social connections, supported by physical and behavioral contexts. In Macau’s dense urban context, older adults’ desire to age in place is mainly driven by emotional connection and social participation, with spatial design serving as an enabler. Effective age-friendly strategies must extend beyond infrastructure upgrades to cultivate belonging and interaction. This study advances environmental gerontology and architecture theory by explaining the mechanisms of attachment in later life. Future work should explore how physical spaces foster psychological well-being and examine emerging factors such as digital and intergenerational engagement. Full article
Show Figures

Figure 1

16 pages, 9544 KiB  
Article
Electromagnetic Interference Effect of Portable Electronic Device with Satellite Communication to GPS Antenna
by Zhenyang Ma, Sijia Zhang, Zhaobin Duan and Yicheng Li
Sensors 2025, 25(14), 4438; https://doi.org/10.3390/s25144438 - 16 Jul 2025
Viewed by 244
Abstract
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental [...] Read more.
Recent technological advancements have resulted in the emergence of portable electronic devices (PEDs), including mobile phones equipped with satellite communication capabilities. These devices generally emit higher power, which can potentially cause electromagnetic interference to GPS antennas. This study uses both simulation and experimental methods to evaluate the interference path loss (IPL) between PEDs located inside an A320 aircraft and an external GPS antenna. The effects of PED location, antenna polarization, and frequency bands on IPL were simulated and analyzed. Additionally, measurement experiments were conducted on an A320 aircraft, and statistical methods were used to compare the experimental data with the simulation results. Considering the front-door coupling of both spurious and intentional radiated emissions, the measured IPL is up to 15 ± 3 dB lower than the IPLtarget. This result should be interpreted with caution. This issue offers new insights into the potential risks of electromagnetic interference in aviation environments. The findings help quantify the probability of interference with GPS antennas. Furthermore, the modeling simplification method used in this study may be applicable to the analysis of other large and complex structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 529 KiB  
Article
Learners’ Acceptance of ChatGPT in School
by Matthias Conrad and Henrik Nuebel
Educ. Sci. 2025, 15(7), 904; https://doi.org/10.3390/educsci15070904 - 16 Jul 2025
Viewed by 318
Abstract
The rapid development of generative artificial intelligence (AI) systems such as ChatGPT (GPT-4) could transform teaching and learning. Yet, integrating these tools requires insight into what drives students to adopt them. Research on ChatGPT acceptance has so far focused on university settings, leaving [...] Read more.
The rapid development of generative artificial intelligence (AI) systems such as ChatGPT (GPT-4) could transform teaching and learning. Yet, integrating these tools requires insight into what drives students to adopt them. Research on ChatGPT acceptance has so far focused on university settings, leaving school contexts underexplored. This study addresses the gap by surveying 506 upper secondary students in Baden-Württemberg, Germany, using the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Performance expectancy, habit and hedonic motivation emerged as strong predictors of behavioral intention to use ChatGPT for school purposes. Adding personality traits and personal values such as conscientiousness or preference for challenge raised the model’s explanatory power only marginally. The findings suggest that students’ readiness to employ ChatGPT reflects the anticipated learning benefits and enjoyment rather than the avoidance of effort. The original UTAUT2 is therefore sufficient to explain students’ acceptance of ChatGPT in school contexts. The results could inform educators and policy makers aiming to foster the reflective and effective use of generative AI in instruction. Full article
(This article belongs to the Special Issue Dynamic Change: Shaping the Schools of Tomorrow in the Digital Age)
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 226
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Numerical Study of the Effect of Unsteady Aerodynamic Forces on the Fatigue Load of Yawed Wind Turbines
by Dereje Haile Hirgeto, Guo-Wei Qian, Xuan-Yi Zhou and Wei Wang
Machines 2025, 13(7), 607; https://doi.org/10.3390/machines13070607 - 15 Jul 2025
Viewed by 257
Abstract
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw [...] Read more.
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw offsets using blade element momentum theory, dynamic blade element momentum, and the converging Lagrange filaments vortex method, all implemented in OpenFAST. Simulations employed yaw angles from −40° to 40°, with turbulent inflow generated by TurbSim, an OpenFAST tool for realistic wind conditions. Fatigue loads were calculated according to IEC 61400-1 design load case 1.2 standards, using thirty simulations per yaw angle across five wind speed bins. Damage equivalent load was evaluated via rainflow counting, Miner’s rule, and Goodman correction. Results showed that the free vortex method, by modeling unsteady aerodynamic forces, yielded distinct differences in damage equivalent load compared to the blade element method in yawed conditions. The free vortex method predicted lower damage equivalent load for the low-speed shaft bending moment at negative yaw offsets, attributed to its improved handling of unsteady effects that reduce load variations. Conversely, for yaw offsets above 20°, the free vortex method indicated higher damage equivalent for low-speed shaft torque, reflecting its accurate capture of dynamic inflow and unsteady loading. These findings highlight the critical role of unsteady aerodynamics in fatigue load predictions and demonstrate the free vortex method’s value within OpenFAST for realistic damage equivalent load estimates in yawed turbines. The results emphasize the need to incorporate unsteady aerodynamic models like the free vortex method to accurately assess yaw offset impacts on wind turbine component fatigue. Full article
(This article belongs to the Special Issue Aerodynamic Analysis of Wind Turbine Blades)
Show Figures

Figure 1

18 pages, 797 KiB  
Article
A Digital Sustainability Lens: Investigating Medical Students’ Adoption Intentions for AI-Powered NLP Tools in Learning Environments
by Mostafa Aboulnour Salem
Sustainability 2025, 17(14), 6379; https://doi.org/10.3390/su17146379 - 11 Jul 2025
Viewed by 386
Abstract
This study investigates medical students’ intentions to adopt AI-powered Natural Language Processing (NLP) tools (e.g., ChatGPT, Copilot) within educational contexts aligned with the perceived requirements of digital sustainability. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT), data were collected [...] Read more.
This study investigates medical students’ intentions to adopt AI-powered Natural Language Processing (NLP) tools (e.g., ChatGPT, Copilot) within educational contexts aligned with the perceived requirements of digital sustainability. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT), data were collected from 301 medical students in Saudi Arabia and analyzed using Partial Least Squares Structural Equation Modelling (PLS-SEM). The results indicate that Performance Expectancy (PE) (β = 0.65), Effort Expectancy (EE) (β = 0.58), and Social Influence (SI) (β = 0.53) collectively and significantly predict Behavioral Intention (BI), explicating 62% of the variance in BI (R2 = 0.62). AI awareness did not significantly influence students’ responses or the relationships among constructs, possibly because practical familiarity and widespread exposure to AI-NLP tools exert a stronger influence than general awareness. Moreover, BI exhibited a strong positive effect on perceptions of digital sustainability (PDS) (β = 0.72, R2 = 0.51), highlighting a meaningful link between AI adoption and sustainable digital practices. Consequently, these findings indicate the strategic role of AI-driven NLP tools as both educational innovations and key enablers of digital sustainability, aligning with global frameworks such as the Sustainable Development Goals (SDGs) 4 and 9. The study also concerns AI’s transformative potential in medical education and recommends further research, particularly longitudinal studies, to better understand the evolving impact of AI awareness on students’ adoption behaviours. Full article
Show Figures

Graphical abstract

19 pages, 2126 KiB  
Article
A Comparative Study of the Non-Destructive Diagnostic Tests of 500 Hz Accelerated-Aged XLPE Power Cables
by Adewumi Olujana Adeniyi, Trudy Sutherland and Hendrick Langa
Energies 2025, 18(14), 3647; https://doi.org/10.3390/en18143647 - 10 Jul 2025
Viewed by 207
Abstract
Power cable dielectrics must be tested to ascertain their insulation integrity after their design and manufacture. In Southern Africa, power cables must undergo testing in accordance with the South African National Standard (SANS) 1339. The SANS 1339 provides a destructive diagnostic method to [...] Read more.
Power cable dielectrics must be tested to ascertain their insulation integrity after their design and manufacture. In Southern Africa, power cables must undergo testing in accordance with the South African National Standard (SANS) 1339. The SANS 1339 provides a destructive diagnostic method to evaluate voltage breakdown strength and water tree growth. The shortfall is that there is no provision for the non-destructive determination of the residual strength and assessment of the condition of the power cables. It is possible that non-destructive tests are available. However, a question arises as to how they compare in effectiveness, which is the intention of this study. Accelerated aging at 500 Hz was conducted on the water-retardant cross-linked polyethene (TR-XLPE) power cable sample specimens, each 10 m long, according to SANS 1339. Non-destructive diagnostic tests (Tan δ, IRC, and RVM) were conducted on accelerated-aged and unaged cable samples. The comparative results of the accelerated-aged and unaged XPLE power cable samples, when applying non-destructive diagnostic techniques, show consistency and reveal the extent of degradation in the tested cable samples. This study demonstrates that non-destructive diagnostic methods can be used to assess the extent of XLPE power cable insulation aging. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 565
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

31 pages, 2227 KiB  
Article
Observer-Linked Branching (OLB)—A Proposed Quantum-Theoretic Framework for Macroscopic Reality Selection
by Călin Gheorghe Buzea, Florin Nedeff, Valentin Nedeff, Dragos-Ioan Rusu, Maricel Agop and Decebal Vasincu
Axioms 2025, 14(7), 522; https://doi.org/10.3390/axioms14070522 - 8 Jul 2025
Viewed by 346
Abstract
We propose Observer-Linked Branching (OLB), a mathematically rigorous extension of quantum theory in which an observer’s cognitive commitment actively modulates collapse dynamics at macroscopic scales. The OLB framework rests on four axioms, employing a norm-preserving nonlinear Schrödinger evolution and Lüders-type projection triggered by [...] Read more.
We propose Observer-Linked Branching (OLB), a mathematically rigorous extension of quantum theory in which an observer’s cognitive commitment actively modulates collapse dynamics at macroscopic scales. The OLB framework rests on four axioms, employing a norm-preserving nonlinear Schrödinger evolution and Lüders-type projection triggered by crossing a cognitive commitment threshold. Our expanded formalism provides five main contributions: (1) deriving Lie symmetries of the observer–environment interaction Hamiltonian; (2) embedding OLB into the Consistent Histories and path-integral formalisms; (3) multi-agent network simulations demonstrating intentional synchronisation toward shared macroscopic outcomes; (4) detailed statistical power analyses predicting measurable biases (up to ~5%) in practical experiments involving traffic delays, quantum random number generators, and financial market sentiment; and (5) examining the conceptual, ethical, and neuromorphic implications of intent-driven reality selection. Full reproducibility is ensured via the provided code notebooks and raw data tables in the appendices. While the theoretical predictions are precisely formulated, empirical validation is ongoing, and no definitive field results are claimed at this stage. OLB thus offers a rigorous, norm-preserving and falsifiable framework to empirically test whether cognitive engagement modulates macroscopic quantum outcomes in ways consistent with—but extending—standard quantum predictions. Full article
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 438
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

20 pages, 632 KiB  
Article
Bridging or Burning? Digital Sustainability and PY Students’ Intentions to Adopt AI-NLP in Educational Contexts
by Mostafa Aboulnour Salem
Computers 2025, 14(7), 265; https://doi.org/10.3390/computers14070265 - 7 Jul 2025
Cited by 1 | Viewed by 409
Abstract
The current study examines the determinants influencing preparatory year (PY) students’ intentions to adopt AI-powered natural language processing (NLP) models, such as Copilot, ChatGPT, and Gemini, and how these intentions shape their conceptions of digital sustainability. Additionally, the extended unified theory of acceptance [...] Read more.
The current study examines the determinants influencing preparatory year (PY) students’ intentions to adopt AI-powered natural language processing (NLP) models, such as Copilot, ChatGPT, and Gemini, and how these intentions shape their conceptions of digital sustainability. Additionally, the extended unified theory of acceptance and use of technology (UTAUT) was integrated with a diversity of educational constructs, including content availability (CA), learning engagement (LE), learning motivation (LM), learner involvement (LI), and AI satisfaction (AS). Furthermore, responses of 274 PY students from Saudi Universities were analysed using partial least squares structural equation modelling (PLS-SEM) to evaluate both the measurement and structural models. Likewise, the findings indicated CA (β = 0.25), LE (β = 0.22), LM (β = 0.20), and LI (β = 0.18) significantly predicted user intention (UI), explaining 52.2% of its variance (R2 = 0.522). In turn, UI significantly predicted students’ digital sustainability conceptions (DSC) (β = 0.35, R2 = 0.451). However, AI satisfaction (AS) did not exhibit a moderating effect, suggesting uniformly high satisfaction levels among students. Hence, the study concluded that AI-powered NLP models are being adopted as learning assistant technologies and are also essential catalysts in promoting sustainable digital conceptions. Similarly, this study contributes both theoretically and practically by conceptualising digital sustainability as a learner-driven construct and linking educational technology adoption to its advancement. This aligns with global frameworks such as Sustainable Development Goals (SDGs) 4 and 9. The study highlights AI’s transformative potential in higher education by examining how user intention (UI) influences digital sustainability conceptions (DSC) among preparatory year students in Saudi Arabia. Given the demographic focus of the study, further research is recommended, particularly longitudinal studies, to track changes over time across diverse genders, academic specialisations, and cultural contexts. Full article
(This article belongs to the Special Issue Present and Future of E-Learning Technologies (2nd Edition))
Show Figures

Figure 1

20 pages, 517 KiB  
Article
Exploring the Mechanism of AI-Powered Virtual Idols’ Intelligence Level on Digital Natives’ Impulsive Buying Intention in E-Commerce Live Streaming: A Perspective of Psychological Distance
by Honglei Li, Wenshu Li and Tianliang Ma
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 173; https://doi.org/10.3390/jtaer20030173 - 7 Jul 2025
Viewed by 701
Abstract
With the rise of live-streaming services on e-commerce platforms, AI-powered virtual idols have demonstrated tremendous application potential and thus possess high commercial value. From the perspective of psychological distance, this study adopts the Stimulus–Organism–Response (S–O–R) theoretical framework to construct a research model of [...] Read more.
With the rise of live-streaming services on e-commerce platforms, AI-powered virtual idols have demonstrated tremendous application potential and thus possess high commercial value. From the perspective of psychological distance, this study adopts the Stimulus–Organism–Response (S–O–R) theoretical framework to construct a research model of “AI-powered virtual idols–psychological distance–impulsive buying intention”. The model aims to explore how AI-powered virtual idols promote digital natives’ impulsive buying intention in the context of e-commerce live streaming. Furthermore, this study examines the moderating effect of technology readiness on the relationship between AI-powered virtual idols and psychological distance. The findings reveal that the level of intelligence of AI-powered virtual idols—including interactivity, anthropomorphism, homogeneity, and reputation—enhances digital natives’ impulsive buying intention by reducing psychological distance. For digital natives with lower technology readiness, the effect of AI-powered virtual idols in narrowing psychological distance is more pronounced. These findings enrich AI-driven consumer behavior models from a theoretical perspective and offer theoretical support and practical insights for developing AI-empowered digital marketing strategies tailored to the psychological traits and technological adaptability of digital natives. Full article
(This article belongs to the Special Issue Human–Technology Synergies in AI-Driven E-Commerce Environments)
Show Figures

Figure 1

Back to TopTop