Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,777)

Search Parameters:
Keywords = power recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1356 KB  
Review
Advancements in Food Waste Recycling Technologies in South Africa: Novel Approaches for Biofertilizer and Bioenergy Production—A Review
by Samukelo Zwelokuthula Mngadi, Emmanuel Kweinor Tetteh, Siphesihle Mangena Khumalo and Sudesh Rathilal
Energies 2025, 18(20), 5396; https://doi.org/10.3390/en18205396 (registering DOI) - 13 Oct 2025
Abstract
Globally, tons of agricultural and food waste are inevitably produced daily due to increasing population demands. As fertilizer prices surge and environmental degradation worsens, sustainable farming practices are gaining attention, especially with circular economic principles. This study explores how food waste can be [...] Read more.
Globally, tons of agricultural and food waste are inevitably produced daily due to increasing population demands. As fertilizer prices surge and environmental degradation worsens, sustainable farming practices are gaining attention, especially with circular economic principles. This study explores how food waste can be repurposed into biofertilizers and bioenergy using advanced technologies like anaerobic digestion, composting, pyrolysis, and heat treatment. These methods are evaluated for their effectiveness in recovering essential nutrients (nitrogen, phosphorus, and potassium) and generating energy, alongside their sustainability and cost-effectiveness. Data trends reveal a significant rise in studies focused on “circular economy” and “food waste valorization.” Early findings highlight anaerobic digestion and composting as the most practical approaches, offering efficient nutrient recovery and minimal greenhouse gas emissions. Overall, the integration of food waste recycling with sustainable agricultural practices presents a powerful path toward mitigating environmental impact, lowering fertilizer costs, and supporting global food security through circular economic solutions. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
24 pages, 1238 KB  
Article
Automated T-Cell Proliferation in Lab-on-Chip Devices Integrating Microfluidics and Deep Learning-Based Image Analysis for Long-Term Experiments
by María Fernanda Cadena Vizuete, Martin Condor, Dennis Raith, Avani Sapre, Marie Follo, Gina Layedra, Roland Mertelsmann, Maximiliano Perez and Betiana Lerner
Biosensors 2025, 15(10), 693; https://doi.org/10.3390/bios15100693 (registering DOI) - 13 Oct 2025
Abstract
T cells play a pivotal role in cancer research, particularly in immunotherapy, which harnesses the immune system to target malignancies. However, conventional expansion methods face limitations such as high reagent consumption, contamination risks, and difficulties in maintaining suspension cells in dynamic culture environments. [...] Read more.
T cells play a pivotal role in cancer research, particularly in immunotherapy, which harnesses the immune system to target malignancies. However, conventional expansion methods face limitations such as high reagent consumption, contamination risks, and difficulties in maintaining suspension cells in dynamic culture environments. This study presents a microfluidic system for long-term culture of non-adherent cells, featuring automated perfusion and image acquisition. The system integrates deep learning-based image analysis, which quantifies cell coverage and estimates cell numbers, and efficiently processes large volumes of data. The performance of this deep learning approach was benchmarked against the widely used Trainable Weka Segmentation (TWS) plugin for Fiji. Additionally, two distinct lab-on-a-chip (LOC) devices were evaluated independently: the commercial ibidi® LOC and a custom-made PDMS LOC. The setup supported the proliferation of Jurkat cells and primary human T cells without significant loss during medium exchange. Each platform proved suitable for long-term expansion while offering distinct advantages in terms of design, cell seeding and recovery, and reusability. This integrated approach enables extended experiments with minimal manual intervention, stable perfusion, and supports multi-reagent administration, offering a powerful platform for advancing suspension cell research in immunotherapy. Full article
24 pages, 654 KB  
Article
Economic Dimension of Integrating Electric Vehicle Fleets in V2G-Enabled Cities in the Turkish mFRR Market: Scenario and Life-Cycle Cost Analysis
by Wojciech Lewicki and Hasan Huseyin Coban
Energies 2025, 18(20), 5387; https://doi.org/10.3390/en18205387 (registering DOI) - 13 Oct 2025
Abstract
Despite the ongoing electromobility revolution in urban areas, fleet managers still prefer combustion engines over electric vehicles. Fleet electrification can deliver tangible benefits not only for the urban environment but also for the company itself. However, this requires a robust economic and technical [...] Read more.
Despite the ongoing electromobility revolution in urban areas, fleet managers still prefer combustion engines over electric vehicles. Fleet electrification can deliver tangible benefits not only for the urban environment but also for the company itself. However, this requires a robust economic and technical analysis approach. This study assesses the technical and economic viability of integrating electric vehicle (EV) fleets into the Turkish manual frequency recovery reserve (mFRR) market. Using a life-cycle costing (LCC) framework, three operational scenarios are modeled: Baseline (leased EVs without V2G), V2G+ (leased EVs with aggregator-based mFRR), and High Utilization (owned EVs with full V2G integration and increased rental activity). The baseline scenario assumes a net cost of USD 142,500 over 10 years, excluding revenue share. V2G+ reduces this amount to USD 137,000, generating an annual income of approximately USD 4400 from its share of the frequency reserve. A high utilization scenario, combining V2G with ownership and higher rental income, reduces the net LCC to USD 125,500 and generates over USD 12,000 annually, reaching breakeven around year 7. Sensitivity analyses show that the financial profitability of the system is significantly influenced by EV purchase prices, aggregator fees, mFRR capacity payments, and vehicle utilization rates. Adding a 30–50% solar-powered charging enclosure further reduces operating costs by up to USD 21,500, demonstrating the synergistic potential of integrating V2G and distributed photovoltaics. These results influence not only the priorities for electrifying the urban vehicle fleet, but also smart city regulations in the area of energy management, through the development of bidirectional charging standards and pilot implementation of V2G in emerging markets such as Turkey. Full article
(This article belongs to the Section G1: Smart Cities and Urban Management)
21 pages, 3305 KB  
Article
A Power Flow Sensitivity-Based Approach for Distributed Voltage Regulation and Power Sharing in Droop-Controlled DC Distribution Networks
by Nan Jiang, He Gao, Xingyu Zhang, Zhe Zhang, Yufei Peng and Dong Liang
Energies 2025, 18(20), 5382; https://doi.org/10.3390/en18205382 (registering DOI) - 13 Oct 2025
Abstract
Aiming at the challenges of design complexity and parameter adjustment difficulties in existing distributed controllers, a novel power flow sensitivity-based distributed cooperative control approach is proposed for voltage regulation and power sharing in droop-controlled DC distribution networks (DCDNs). Firstly, based on the power [...] Read more.
Aiming at the challenges of design complexity and parameter adjustment difficulties in existing distributed controllers, a novel power flow sensitivity-based distributed cooperative control approach is proposed for voltage regulation and power sharing in droop-controlled DC distribution networks (DCDNs). Firstly, based on the power flow model of droop-controlled DCDNs, a comprehensive sensitivity model is established that correlates bus voltages, voltage source converter (VSC) loading rates, and VSC reference power adjustments. Leveraging the sensitivity model, a discrete-time linear state-space model is developed for DCDNs, using all VSC reference power as control variables, along with the weighted sum of the voltage deviation at the VSC connection point and the loading rate deviation of adjacent VSCs as state variables. A distributed consensus controller is then designed to alleviate the communication burden. The feedback gain design problem is formulated as an unconstrained multi-objective optimization model, which simultaneously enhances dynamic response speed, suppresses overshoot and oscillation, and ensures stability. The model can be efficiently solved by global optimization algorithms such as the genetic algorithm, and the feedback gains can be designed in a systematic and principled manner. The simulation results on a typical four-terminal DCDN under large power disturbances demonstrate that the proposed distributed control method achieves rapid voltage recovery and converter load sharing under a sparse communication network. The design complexity and parameter adjustment difficulties are greatly reduced without losing the control performance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

12 pages, 2200 KB  
Article
Cross-Linked Supramolecular Polyurea Elastomers with Mechanical Robustness and Recyclability
by Yanping Li, Chong Wang and Bo Qin
Molecules 2025, 30(20), 4061; https://doi.org/10.3390/molecules30204061 (registering DOI) - 12 Oct 2025
Abstract
Cross-linked polymers are indispensable in advanced applications, but suffer from poor recyclability due to permanent covalent networks. Herein, we report recyclable supramolecular polyurea elastomers that integrate ureidopyrimidinone-based quadruple hydrogen-bonding motifs directly into the polymer backbone. The dynamic and reversible nature of these motifs [...] Read more.
Cross-linked polymers are indispensable in advanced applications, but suffer from poor recyclability due to permanent covalent networks. Herein, we report recyclable supramolecular polyurea elastomers that integrate ureidopyrimidinone-based quadruple hydrogen-bonding motifs directly into the polymer backbone. The dynamic and reversible nature of these motifs imparts the SPUEs with remarkable malleability and reprocessability while preserving the robustness of conventional polyureas. The SPUEs display remarkable mechanical robustness, solvent resistance, and facile reprocessability through hot-pressing, producing homogeneous films with minimal performance loss. Impressively, tensile strength, elongation at break, and toughness retained high recovery after reprocessing, demonstrating excellent closed-loop mechanical recyclability. This work showcases supramolecular engineering as a powerful strategy to reconcile mechanical robustness with recyclability in cross-linked polymers, offering new opportunities for sustainable thermosets and elastomers in circular materials design. Full article
(This article belongs to the Special Issue Recyclable Supramolecular Polymer Materials)
Show Figures

Figure 1

18 pages, 2922 KB  
Article
Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration
by Alireza Moradmand, M. Soltani, Saeid Ziaei Tabatabaei, Arash Haghparast Kashani, Mohammad Golmohammad, Alireza Mahmoudpour and Mohammad Bandehee
Energies 2025, 18(20), 5368; https://doi.org/10.3390/en18205368 (registering DOI) - 12 Oct 2025
Abstract
Combined Cycle Power Plants (CCPP) suffer from drops in power and efficiency due to summer time ambient conditions. This power reduction is especially important in regions with extreme summer ambient conditions. Given the substantial investment and labor involved in the establishment and operation [...] Read more.
Combined Cycle Power Plants (CCPP) suffer from drops in power and efficiency due to summer time ambient conditions. This power reduction is especially important in regions with extreme summer ambient conditions. Given the substantial investment and labor involved in the establishment and operation of these power plants, mitigating power loss using various methods emerges as a promising solution. In this context, the integration of Concentrated Solar Power (CSP) technologies has been proposed in this research not primarily to improve the overall performance efficiency of power plants as other recent studies entail, but to ensure continuous power generation throughout summer days, improving stability. This research aims to address this issue by conducting an extensive study covering the different scenarios in which Concentrated Solar Power (CSP) can be integrated into the power plant. Multiple scenarios for integration were defined including CSP integration in the Heat Recovery Steam Generator, CSP-powered chiller for Gas Turbine Compressor Cooling and Gas Turbine Combustion Chamber Preheating using CSP, and scenarios with inlet air fog cooling and hybrid scenarios were studied. This systematic analysis resulted in the selection of the scenario where the CSP is integrated into the combined cycle power plant in the HRSG section as the best case. The selected scenario was benchmarked against its equivalent model operating in Seville’s ambient conditions. By comparing the final selected model, both Yazd and Seville experience a noticeable boost in power and efficiency while reaching the maximum integration capacity at different reflector lengths (800 m for Seville and 900 m for Yazd). However, both cities reach their minimum fuel consumption at an approximate 300 m total reflector length. Full article
Show Figures

Figure 1

20 pages, 4326 KB  
Article
Analysis and Enhancement of HQT and ENTSO-E Synthetic Inertia Criteria Using the Unison U151 Wind Turbine
by Yong Cheol Kang, Kicheol Kang, Youngsun Lee and Kyu-Ho Kim
Energies 2025, 18(20), 5359; https://doi.org/10.3390/en18205359 (registering DOI) - 11 Oct 2025
Abstract
Synthetic inertia (SI) enables wind turbine generators (WTGs) to support frequency stability by releasing stored kinetic energy during disturbances. Existing grid-code requirements, such as those of Hydro-Québec TransÉnergie (HQT) and ENTSO-E/Nord Pool, improve the first frequency nadir but often aggravate a second frequency [...] Read more.
Synthetic inertia (SI) enables wind turbine generators (WTGs) to support frequency stability by releasing stored kinetic energy during disturbances. Existing grid-code requirements, such as those of Hydro-Québec TransÉnergie (HQT) and ENTSO-E/Nord Pool, improve the first frequency nadir but often aggravate a second frequency dip (SFD) or risk rotor over-deceleration (OD) when the boost magnitude is large. This paper proposes an enhanced SI requirement that retains the stepwise boost-and-hold structure but replaces the time-based ramp-down with a rotor-speed-dependent recovery, followed by a smooth transition back to maximum power point tracking (MPPT). The proposed scheme was validated using an electromagnetic transient model of the Unison U151 wind turbine (4.569 MW, inertia constant 9.68 s), designed for Korea’s low-wind conditions. Five case studies at wind speeds of 5 and 7 m/s with varying boost levels confirmed that all methods yield identical first nadirs for a given boost, but only the proposed approach consistently maintained a higher second nadir, stabilized rotor dynamics, and prevented repeated dips. These results demonstrate that rotor-speed-dependent SI requirements, when combined with high-inertia turbines, can enhance frequency stability while protecting turbine operation, offering practical guidance for future grid-code revisions. Full article
Show Figures

Figure 1

28 pages, 13587 KB  
Article
Numerical Study of the Flow Around Twin Straight-Bladed Darrieus Hydrokinetic Turbines
by Santiago Laín, Miguel Viveros, Aldo Benavides-Morán and Pablo Ouro
J. Mar. Sci. Eng. 2025, 13(10), 1947; https://doi.org/10.3390/jmse13101947 - 11 Oct 2025
Viewed by 19
Abstract
Nowadays, the potential of hydrokinetic turbines as a sustainable alternative to complement traditional hydropower is widely recognized. This study presents a comprehensive numerical analysis of twin straight-bladed Darrieus hydrokinetic turbines, characterizing their hydrodynamic interactions and performance characteristics. The influence of turbine configuration spacing [...] Read more.
Nowadays, the potential of hydrokinetic turbines as a sustainable alternative to complement traditional hydropower is widely recognized. This study presents a comprehensive numerical analysis of twin straight-bladed Darrieus hydrokinetic turbines, characterizing their hydrodynamic interactions and performance characteristics. The influence of turbine configuration spacing and flow parameters on efficiency and wake dynamics are investigated. The employed 3D computational approach combines the overset mesh technique, used to capture the unsteady flow around the turbines, with the URANS k-ω Shear Stress Transport (SST) turbulence model. Results show that turbine spacing improves power coefficients and overall efficiency, albeit at the cost of slower wake recovery. A noticeable performance increase is observed when the turbines are spaced between 1.5 and 2 diameters apart, which is predicted to reach up to 40% regarding the single turbine. Furthermore, the effect of flow interaction between the turbines is examined by analyzing the influence of turbine spacing on flow structures as well as pressure and skin friction coefficients on the blades. The performed analysis reveals that vortex detachment is delayed in the twin-turbine configuration compared to the isolated case, which partially explains the observed performance enhancement. The insights gained from this work are expected to contribute to the advancement of renewable hydrokinetic energy technologies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 13425 KB  
Article
Evaluation of Wood Decay and Identification of Fungi Found in the USS Cairo, a Historic American Civil War Ironclad Gunboat
by Robert A. Blanchette, Benjamin W. Held, Claudia Chemello and Paul Mardikian
J. Fungi 2025, 11(10), 732; https://doi.org/10.3390/jof11100732 (registering DOI) - 11 Oct 2025
Viewed by 70
Abstract
Studies of microbial degradation of historic woods are essential to help protect and preserve these important cultural properties. The USS Cairo is a historic Civil War gunboat and one of the first steam-powered and ironclad ships used in the American Civil War. Built [...] Read more.
Studies of microbial degradation of historic woods are essential to help protect and preserve these important cultural properties. The USS Cairo is a historic Civil War gunboat and one of the first steam-powered and ironclad ships used in the American Civil War. Built in 1861, the ship sank in the Yazoo River of Mississippi in 1862 after a mine detonated and tore a hole in the port bow. The ship remained on the river bottom and was gradually buried with sediments for over 98 years. After recovery of the ship, it remained exposed to the environment before the first roofed structure was completed in 1980, and it has been displayed under a tensile fabric canopy with open sides at the Vicksburg National Military Park in Vicksburg, Mississippi. Concerns over the long-term preservation of the ship initiated this investigation to document the current condition of the wooden timbers, identify the fungi that may be present, and determine the elemental composition resulting from past wood-preservative treatments. Micromorphological characteristics observed using scanning electron microscopy showed that many of the timbers were in advanced stages of degradation. Eroded secondary cell walls leaving a weak framework of middle lamella were commonly observed. Soft rot attack was prevalent, and evidence of white and brown rot degradation was found in some wood. DNA extraction and sequencing of the ITS region led to the identification of a large group of diverse fungi that were isolated from ship timbers. Soft rot fungi, including Alternaria, Chaetomium, Cladosporium, Curvularia, Xylaria and others, and white rot fungi, including Bjerkandera, Odontoefibula, Phanerodontia, Phlebiopsis, Trametes and others, were found. No brown rot fungi were isolated. Elemental analyses using induced coupled plasma spectroscopy revealed elevated levels of all elements as compared to sound modern types of wood. High concentrations of boron, copper, iron, lead, zinc and other elements were found, and viable fungi were isolated from this wood. Biodegradation issues are discussed to help long-term conservation efforts to preserve the historic ship for future generations. Full article
(This article belongs to the Special Issue Mycological Research in Cultural Heritage Protection)
Show Figures

Figure 1

20 pages, 904 KB  
Article
Impact on Competitive Performance and Assessment of Fatigue and Stress Based on Heart Rate Variability
by Galya Georgieva-Tsaneva, Yoan-Aleksandar Tsanev, Miroslav Dechev and Krasimir Cheshmedzhiev
Appl. Sci. 2025, 15(20), 10892; https://doi.org/10.3390/app152010892 - 10 Oct 2025
Viewed by 103
Abstract
Background: Optimizing training load and recovery is crucial for achieving peak performance in competitive wrestling, a sport characterized by high physical, technical, and psychological demands. Methods: This study compared the effects of two different training programs—one emphasizing high-intensity interval training (HIIT) sessions and [...] Read more.
Background: Optimizing training load and recovery is crucial for achieving peak performance in competitive wrestling, a sport characterized by high physical, technical, and psychological demands. Methods: This study compared the effects of two different training programs—one emphasizing high-intensity interval training (HIIT) sessions and the other based on traditional volume-oriented training—on both competitive performance and autonomic regulation measured by heart rate variability (HRV). A total of 24 elite wrestlers were divided into two equal groups, each following a different weekly training regimen over a 3-month period. HRV was recorded using a wearable 3-channel ECG Holter before training, immediately after training, and during recovery phases (up to 2 h post-exercise). HRV parameters were analyzed to assess training-induced stress and recovery status. Competitive performance was evaluated using official national championship scores and ranking positions. Results: Both training programs improved competitive performance, the HIIT-based regimen induced greater short-term suppression of parasympathetic activity (RMSSD: −32% vs. −14%; HF power: −40% vs. −18%) and increased sympathetic dominance (LF/HF: +56% vs. +22%) after training. Wrestlers in the HIIT group achieved a mean competition score of 17.92 ± 4.50 points, compared to 15.08 ± 6.26 points in the volume-oriented group. These acute autonomic shifts may provide a higher readiness for intense and explosive actions, which is advantageous in short and dynamic matches. In contrast, the volume-oriented program induced smaller acute autonomic changes but showed a slower recovery to baseline. Conclusions: These findings suggest that HRV-derived measures can serve as sensitive indicators of training load tolerance, recovery capacity, and stress susceptibility in combat sports athletes. This study highlights the value of integrating HRV monitoring into the periodization of combat training to individualize the load, prevent overtraining, and optimize performance outcomes. Full article
(This article belongs to the Special Issue Human Performance in Sports and Training)
Show Figures

Figure 1

26 pages, 1051 KB  
Article
From Resilience to Cognitive Adaptivity: Redefining Human–AI Cybersecurity for Hard-to-Abate Industries in the Industry 5.0–6.0 Transition
by Andrés Fernández-Miguel, Susana Ortíz-Marcos, Mariano Jiménez-Calzado, Alfonso P. Fernández del Hoyo, Fernando Enrique García-Muiña and Davide Settembre-Blundo
Information 2025, 16(10), 881; https://doi.org/10.3390/info16100881 - 10 Oct 2025
Viewed by 97
Abstract
This paper introduces cognitive adaptivity as a novel framework for addressing human factors in cybersecurity during the Industry 5.0–6.0 transition, with a focus on hard-to-abate industries where digital transformation intersects sustainability constraints. While the integration of IoT, automation, digital twins, and artificial intelligence [...] Read more.
This paper introduces cognitive adaptivity as a novel framework for addressing human factors in cybersecurity during the Industry 5.0–6.0 transition, with a focus on hard-to-abate industries where digital transformation intersects sustainability constraints. While the integration of IoT, automation, digital twins, and artificial intelligence expands industrial efficiency, it simultaneously exposes organizations to increasingly sophisticated social engineering and AI-powered attack vectors. Traditional resilience-based models, centered on recovery to baseline, prove insufficient in these dynamic socio-technical ecosystems. We propose cognitive adaptivity as an advancement beyond resilience and antifragility, defined by three interrelated dimensions: learning, anticipation, and human–AI co-evolution. Through an in-depth case study of the ceramic value chain, this research develops a conceptual model demonstrating how organizations can embed trust calibration, behavioral evolution, sustainability integration, and systemic antifragility into their cybersecurity strategies. The findings highlight that effective protection in Industry 6.0 environments requires continuous behavioral adaptation and collaborative intelligence rather than static controls. This study contributes to cybersecurity literature by positioning cognitive adaptivity as a socio-technical capability that redefines the human–AI interface in industrial security. Practically, it shows how organizations in hard-to-abate sectors can align cybersecurity governance with sustainability imperatives and regulatory frameworks such as the CSRD, turning security from a compliance burden into a strategic enabler of resilience, competitiveness, and responsible digital transformation. Full article
Show Figures

Figure 1

12 pages, 1141 KB  
Article
Bitumen Extraction from Bituminous Sands by Ultrasonic Irradiation
by Yerzhan Imanbayev, Yerdos Ongarbayev, Akerke Abylaikhan, Binur Mussabayeva, Dinara Muktaly and Zhannur Myltykbayeva
ChemEngineering 2025, 9(5), 109; https://doi.org/10.3390/chemengineering9050109 - 10 Oct 2025
Viewed by 144
Abstract
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration [...] Read more.
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration (1 wt.%) were optimized to achieve a maximum bitumen recovery of 98 wt.% within 8 min. The most effective sand-to-solution mass ratio was determined as 1:2, while the optimal process temperature was 75 °C. The application of ultrasound significantly enhances cavitation and reagent penetration, enabling efficient separation of bitumen with minimal chemical usage. Fourier-transform infrared (FTIR) spectroscopy and GC–MS analyses revealed the presence of aromatic hydrocarbons, paraffinic and naphthenic structures, as well as sulfur- and oxygen-containing functional groups (e.g., sulfoxides, carboxylic acids). These characteristics suggest moderate maturity and a high degree of aromaticity of the organic matter. Despite suitable thermal and compositional properties, the extracted bitumen exhibits a relatively low stiffness and softening point, indicating the need for additional upgrading (e.g., oxidation) prior to use in road construction. Although standard rheological tests (e.g., dynamic shear rhinometry) were not conducted in this study, the penetration and softening point values suggest a relatively soft binder, possibly unsuitable for high-temperature paving applications without modification. Future research will focus on rheological evaluation and oxidative upgrading to meet the ST RK 1373-2013 specification requirements. Full article
Show Figures

Figure 1

20 pages, 8941 KB  
Article
Transient Stability Enhancement of a PMSG-Based System by Saturated Current Angle Control
by Huan Li, Tongpeng Mu, Yufei Zhang, Duhai Wu, Yujun Li and Zhengchun Du
Appl. Sci. 2025, 15(20), 10861; https://doi.org/10.3390/app152010861 - 10 Oct 2025
Viewed by 110
Abstract
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both [...] Read more.
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both factors pose a risk of turbine overspeed and instability. To overcome these vulnerabilities, a dual-mechanism control strategy is proposed, featuring an adaptive saturated current angle control that, unlike conventional fixed-angle methods, which risk creating Current Limiting Control (CLC) equilibrium points, dynamically aligns the current vector with the grid voltage to guarantee a stable post-fault trajectory. The effectiveness of the proposed strategy is validated through time-domain simulations in MATLAB/Simulink. The results show that the proposed control not only prevents overspeed trip failures seen in conventional methods but also reduces post-fault recovery time by over 60% and significantly improves system damping, ensuring robust fault ride-through and enhancing overall system stability. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

21 pages, 5164 KB  
Article
Effects of Different Operation Years of Photovoltaic Power Stations on Vegetation and Soil Characteristics in Temperate Deserts
by Yaoxin Yu, Tao Chen, Shijun Ma, Ya Tian, Qing Li, Zhaoshan Cai, Lijun Zhao, Xiaoni Liu, Jianhua Xiao and Yafei Shi
Agriculture 2025, 15(19), 2097; https://doi.org/10.3390/agriculture15192097 - 9 Oct 2025
Viewed by 124
Abstract
The rapid expansion of photovoltaic installations in arid and semi-arid regions has altered regional water–heat regimes, triggering complex responses in vegetation recovery and soil processes. However, systematic assessments of ecological restoration under varying operational durations and microenvironmental interactions remain insufficient. Therefore, this study [...] Read more.
The rapid expansion of photovoltaic installations in arid and semi-arid regions has altered regional water–heat regimes, triggering complex responses in vegetation recovery and soil processes. However, systematic assessments of ecological restoration under varying operational durations and microenvironmental interactions remain insufficient. Therefore, this study examines photovoltaic power stations operating for 1, 7, and 13 years within China’s temperate desert regions, alongside undeveloped control areas, to compare differences across four microenvironments: the front eave of photovoltaic panels (FP), underneath photovoltaic panels (UP), back eave of photovoltaic panels (BP), and interval between photovoltaic panels (IP). Combining analysis of variance, correlation analysis, variance partitioning analysis (VPA), and generalised additive models (GAMs), the study evaluates the coupling mechanisms between vegetation and soil. The results indicate that operational duration significantly enhances vegetation cover, biomass, and species diversity, with the 13 year operational zone demonstrating optimal restoration outcomes. Microenvironmental variations were pronounced, with vegetation and soil quality in the front eave zone surpassing other areas, while the inter-panel zone exhibited the weakest recovery. Key soil factors shifted with recovery stages: early-stage vegetation showed heightened sensitivity to soil water content (SWC), whereas later stages relied more heavily on soil organic matter (SOM) and nutrient supply. Variation Partial Analysis (VPA) revealed that soil factors in the 13 year operational zone accounted for 71.9% of the variation in vegetation cover. The operational lifespan of photovoltaic power stations, microenvironmental variations, and key soil factors collectively drive the restoration of thermophilic desert vegetation. This research reveals phased regulatory mechanisms during the restoration process, providing scientific grounds for optimising photovoltaic layouts and enhancing desert ecosystem stability. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

24 pages, 12411 KB  
Article
RANS-Based Aerothermal Database of LS89 Transonic Turbine Cascade Under Adiabatic and Cooled Wall Conditions
by Davide Fornasari, Stefano Regazzo, Ernesto Benini and Francesco De Vanna
Energies 2025, 18(19), 5321; https://doi.org/10.3390/en18195321 - 9 Oct 2025
Viewed by 117
Abstract
Modern gas turbines for aeroengines operate at ever-increasing inlet temperatures to maximize thermal efficiency, power, output and thrust, subjecting turbine blades to severe thermal and mechanical stresses. To ensure component durability, effective cooling strategies are indispensable, yet they strongly influence the underlying aerothermal [...] Read more.
Modern gas turbines for aeroengines operate at ever-increasing inlet temperatures to maximize thermal efficiency, power, output and thrust, subjecting turbine blades to severe thermal and mechanical stresses. To ensure component durability, effective cooling strategies are indispensable, yet they strongly influence the underlying aerothermal behavior, particularly in transonic regimes where shock–boundary layer interactions are critical. In this work, a comprehensive Reynolds-Averaged Navier–Stokes (RANS) investigation is carried out on the LS89 transonic turbine cascade, considering both adiabatic and cooled wall conditions. Three operating cases, spanning progressively higher outlet Mach numbers (0.84, 0.875, and 1.020), are analyzed using multiple turbulence closures. To mitigate the well-known model dependence of RANS predictions, a model-averaging strategy is introduced, providing a more robust prediction framework and reducing the uncertainty associated with single-model results. A systematic mesh convergence study is also performed to ensure grid-independent solutions. The results show that while wall pressure and isentropic Mach number remain largely unaffected by wall cooling, viscous near-wall quantities and wake characteristics exhibit a pronounced sensitivity to the wall-to-recovery temperature ratio. To support further research and model benchmarking, the complete RANS database generated in this work is released as an open-source resource and made publicly. Full article
(This article belongs to the Special Issue Advancements in Gas Turbine Aerothermodynamics)
Show Figures

Figure 1

Back to TopTop